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Abstract

Although several studies showed adverse neurotoxic effects of melamine on hippocampus

(HPC)-dependent learning and reversal learning, the evidence for this mechanism is still

unknown. We recently demonstrated that intra-hippocampal melamine injection affected the

induction of long-term depression, which is associated with novelty acquisition and memory

consolidation. Here, we infused melamine into the HPC of rats, and employed behavioral

tests, immunoblotting, immunocytochemistry and electrophysiological methods to sought

evidence for its effects on cognitive flexibility. Rats with intra-hippocampal infusion of mela-

mine displayed dose-dependent increase in trials to the criterion in reversal learning, with no

locomotion or motivation defect. Compared with controls, melamine-treated rats avoided

HPC-dependent place strategy. Meanwhile, the learning-induced BDNF level in the HPC

neurons was significantly reduced. Importantly, bilateral intra-hippocampal BDNF infusion

could effectively mitigate the suppressive effects of melamine on neural correlate with rever-

sal performance, and rescue the strategy bias and reversal learning deficits. Our findings

provide first evidence for the effect of melamine on cognitive flexibility and suggest that the

reversal learning deficit is due to the inability to use place strategy. Furthermore, the sup-

pressive effects of melamine on BDNF-mediated neural activity could be the mechanism,

thus advancing the understanding of compulsive behavior in melamine-induced and other

neuropsychiatric disorders.

1. Introduction

Melamine, a triazine heterocyclic chemical, has been widely used in various industries, includ-

ing plastics, dyes, fertilizers and fireproof materials. It is also approved as food-content sub-

stance, but it cannot be used as an additive [1]. In September 2008, melamine was illegally

added to foods to increase their protein content, resulting in the melamine-contaminated

milk powder scandal. Considering that young children are relatively vulnerable to food
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contaminants, melamine-contaminated milk incident has raised concerns about melamine

toxicity in recent years. However, the effect of melamine and its mechanism are still unclear.

Although the nephrotoxicity of melamine has been widely reported [2–4], there is limited

information concerning its neurotoxicity [5, 6]. Previously, the neurotoxicity of melamine had

been linked to dysfunction and neuropathological alterations in the hippocampus (HPC), a

region known to be critically involved in spatial learning and memory. For instance, melamine

induced pathological changes in hippocampal structure, such as neuronal loss and necrosis [7,

8]. The damage induced by melamine to neurons mainly occurred due to the formation of

insoluble metabolites in cells [9] and oxidative stress [8, 10]. Spatial learning and memory was

impaired by chronic and prenatal exposure, with the mechanisms of neurotoxicity varying

depending on the treatment route and the age of subjects [11–13]. Continuous melamine feed-

ing to young rats inhibited both presynaptic and postsynaptic glutamate transmission, thereby

affecting hippocampal synaptic function, leading to behavioral inflexibility [12, 14]. Further-

more, alleviation of oxidative damage caused by melamine in hippocampal CA1 area is known

to reverse learning and re-acquisition deficits [15, 16]. Our recent findings showed that a single

dose infusion of melamine into hippocampus hindered spatial memory consolidation via

reduction in the levels of NR1 and NR2B subunits of N-methyl- D -aspartate (NMDA) recep-

tors (NMDARs) [17]. Since long-term depression (LTD), which weakened synaptic transmis-

sion to enhance reversal performance [18, 19], was suppressed following intra-hippocampal

infusion [17], it is unknown whether cognitive flexibility was affected.

Navigation towards a goal in certain types of learning tasks can be accomplished by execut-

ing distinct cognitive strategies associated with specific regions of the brain [20–22]. Place

strategies rely on the HPC, an area important for flexible integration of novel information in

an extra-maze environment [23, 24]. Alternatively, the striatum mediates a habitual form of

learning in which stimulus-response habits accrue in an incremental or gradual fashion [25].

Notably, the two brain systems operate independently, in parallel, to control the type of infor-

mation learned [26, 27]. In particular, deregulation of HPC function following lesions, phar-

macological manipulations [28, 29], or temporary inactivation of neural activity [22] are

associated with greater preference for a striatum-dependent learning strategy on tasks that

also can be solved by HPC-dependent learning strategy. These results are consistent with the

hypothesis that one neural system may process information that is not useful when solving a

task that is predominantly dependent on another system, thereby interfering with cognitive

behavior [26, 30, 31]. However, it remains unclear whether interfering with the functioning

of HPC by acute melamine exposure disrupts spatial phenotype associated with facilitating

response-based behavioral process.

In this study, we sought to determine whether the infusion of melamine into HPC affected

reversal learning in Y-maze task. To better understand the action of melamine on reversal per-

formance, the action of melamine on learning strategy was assessed in cross-maze task. Previ-

ously, the hippocampal BDNF level was increased by exposure to a novel environment [32].

Learning-induced expression of BDNF in the HPC was implicated for effective solving of

maze task by place strategy [33–35]. Similarly, intrahippocampal infusion of BDNF facilitates

strategy shifting by minimizing response perseveration to the previously acquired strategy

[36]. Additional evidence has shown that the flexible memory system was associated with up-

regulation of BDNF expression and transcriptionally permissive histone acetylation in the

HPC [37]. Moreover, compelling evidence showed BDNF-mediated neural excitability verify-

ing successful learning [38, 39]. Based on these findings, we further tested the effect of mela-

mine on learning-induced BDNF expression and neural correlate of reversal performance.

Our study helps to understand how melamine acts on reversal learning and place strategy, and

the neural correlate of this cognitive process.
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2. Materials and methods

2.1 Subjects

Male Sprague-Dawley rats (270–320 g, Beijing Research Center for Experimental Animals, Bei-

jing, China) were individually housed in a temperature- and humidity-controlled room under

a 12-h light-dark cycle (21±2˚C; 45±5% humidity; lights on at 7:00 a.m.). Rats were restricted

to maintain their weight at 85% to their as libitum weight with free access to water throughout

the experiment in preparation for the Y-maze, T-maze and level press tests. Two weeks before

the experimental day, rats were handled extensively (around 5 min per day). Experiments were

conducted during the light period (between 2 p.m. and 5 p.m.) and experimenters were blind

to the treatment of the animals. All animal experiments and procedures were reviewed and

approved by the Experimental Animal Care Committee of Guizhou University of Traditional

Chinese Medicine (SCXK-2013-0020).

Rats in the melamine groups were bilaterally infused with melamine (200 mM/μL or 400

mM/μL; Yingda Sparseness and Nobel Reagent Chemical Factory, China). Mel+BDNF group

was injected recombinant human BDNF (1.5 μg/μL; St. Louis, MO, USA) into HPC 15 min fol-

lowing melamine infusions. Rats in the control and BDNF groups were received with artificial

CSF (ACSF) and BDNF infusions into the HPC, respectively. The infusion was maintained at a

rate of 0.5 μL/min for 2 min. According to previous studies [40–42], the dose was chosen as

about 5 fold of the equivalent dose of human tolerable daily intake (TDI) of melamine, which

was recommended by US Food and Drug Administration (FDA) in 2008 [43]. The dosage was

converted from human dose to rat dose included height, weight and surface area by the online

FDA Dose Calculator [44] and was corrected by conversion factor as previously described [45].

Totally, two hundred and four rats were used in this study. Briefly, twenty-four, eighteen,

eighteen and sixty rats were used in the Y-maze test, open field test, press tests, and corss-maze

test, respectively (Fig 1). There were 8, 6, 6 and 20 rats in the Y-maze, open field, level press,

and corss-maze tests of each group, respectively. The Hippocampi from the rats that tested in

the Y-maze test were collected and detected the neuronal BDNF levels (Fig 2A). Additionally,

twelve rats (6 in the control and 6 the melamine groups) were used to confirm the basal BDNF

expression (Fig 2D). Thirty-two and forty rats were used to test the reversal effect of BDNF in

the Y-maze (with recording) and cross-maze tests, respectively (Fig 3). There were 8, and 10

rats in the Y-maze and corss-maze tests of each group, respectively. The number of rats in each

group was also indicated in the figure legend.

2.2 Learning and reversal learning in Y-maze test

The maze consisted of three arms (40cm×15cm×8cm) separated with 120˚ angles and built of

black Plexiglas. The experiment room contained various distal spatial cues. An attached start

box built of black Plexiglas (18cm×14cm×14cm) was separated from the entry arm of the Y-

maze by a removable blocker. Small brown bowls (4.5 cm in height, 9 cm in diameter) were

placed 1 cm before the end of both test arms, preventing visual inspection for food presence

from a distance. Only one of the test arms was baited with 0.5 g of chocolate chips (Milka; Kraft

Foods) as the reward. A blocker located halfway down each arm could be operated manually

from the experimenter’s position and was used to allow animals only one choice in each training

trial. The initiation of each trial was toned (1 kHz) by an auditory instruction cue presentation.

The procedure was conducted as our previous studies with modification [46, 47]. Briefly,

the rat was placed in the start arm and allowed to visit the end of one of reward arms. After

reaching the end of an arm, the rat was returned to its home cage that served as the inter-trial

box. After each trial, arms were cleaned with 70% alcohol and allowed to dry completely. The
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inter-trial interval was about 20 s. The start arm was pseudo-randomly selected in each trial

but counter-balanced across rats of groups. A visit was defined as the animal placing all 4 paws

in one test arm. Success in response learning was defined as reaching a criterion of six correct

trials in a row. On the next day, the animals were then subjected to reversal training, in which

the food reward was relocated to the previously unbaited arm. Following the reversal, the ses-

sion continued until criterion was reached on the newly baited side (six consecutive correct tri-

als). Total trials to reach criterion during learning and reversal learning and velocity to reach

the reward cup were quantified.

2.3 Cross-maze task

Rats were trained according to the versions of the cross-maze task [46, 47]. Training was con-

ducted in a black Plexiglas cross-maze consisting of 2 start arms (e.g., north and south arm)

and 2 test (reward) arms (e.g., east and west arm). All 4 arms were 45 cm long, 14-cm

width, 8-cm height. Arms diverged at a 90˚ angle from each other. A start Plexiglas box

Fig 1. Intra-hippocampal melamine impairs reversal learning and cognitive strategy. (A) Schematic representation of the cannulae placements

presented for the low dse (200 mM/μL) of melamine group (gray), for the high dose (400 mM/μL) of melamine group (black) and or the control group

(hollow). (B) The total trails to the criterion in the reversal learning of Y-maze task. Both low and high dose of melamine induced reversal impairment, with

a dose-dependent manner. n = 8 per group. Rats infused with melamine did not affect locomotion in open field task (C) or motivation behavior in level-

press task (D). n = 6 per group. (E) Learning strategy was tested in a probe trial of the cross-maze task and the number of rats that used each learning

strategy was presented. Melamine-treated rats showed a learning strategy preference but avoid using place strategy. n = 20 per group. �P<0.05, vs. Control

group; #P<0.05, vs. Melamine (200 mM/μL) group.

https://doi.org/10.1371/journal.pone.0245326.g001
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(18cm×14cm×14cm) with a blocker was connected to the start arm. Only one start arm was

used during the training days, the other start arm was blocked by removable black Plexiglas

barrier. Several clearly visible, distinctive cues were fixed in the experiment room. Rat was

allowed to visit all available maze arms until it obtained reward. If a rat did not reach the

reward within 3 min, it was placed in the inter-trial Plexiglas box (45cm×45cm×52cm). After

reward consumption, the experimenter placed the rat in the inter-trial box for 10–20 seconds.

After cleaning all test arms and re-baiting the same arm. For each individual animal, the

reward location was fixed, however reward location pseudorandomly between subjects and

treatments during each training day. Rats were trained till reaching the criterion (six correct

trials in a row). They were then subjected to a probe trial to assess the learning strategy used

during training. During the probe trial, the animals started from the opposite start arm while

the original start arm was blocked. Rats were rewarded whatever the choice they made in

probe test. The same maze and environment were used, thereby insuring common sensory,

behavioral, and motivational experiences. The probe trial had two possible outcomes: (1) rats

using a place (spatial) strategy would visit the arm that was baited during training, i.e., the

same spatial location or (2) rats using a response strategy would make the same turn as they

had done during training and would visit the other arm.

2.4 Open field test

Locomotor activity was assessed in a 20-min open field, which consisted of a 91.5×91.5×61

cm3 Perspex box with dark walls, as described previously [48, 49]. The field was divided into a

Fig 2. Melamine reduces learning-induced BDNF expression in the HPC neurons. (A) Representative micrographs showing labeling of NeuN (green),

BDNF (red), and NeuN/BDNF overlap (yellow) in pre-reversal (Top) and post-reversal (Bottom) trained rats. After training in the learning stage of Y-maze

task, the basal levels of BDNF in the neuron (B) and total BDNF (C) were tested 30 min following melamine treatment. No statistical difference was found

before the reversal learning. n = 8 per group. (D) The BDNF level in the HPC neurons was significantly lower compared melamine to control groups. n = 8

per group. (E) A strong correlation between the trails to criterion during reversal learning and hippocampal BDNF expression. �P<0.05, vs. Good group.

n = 8 per group. (F) After the reversal learning, there was no statistical difference in the total BDNF expression between melamine and control groups. n = 8

per group. �P<0.05, vs. Control group.

https://doi.org/10.1371/journal.pone.0245326.g002
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peripheral region (within 15.25 cm of the walls) and central region (61×61 cm2) of approxi-

mately equal area. Locomotion was recorded using VersaMax Activity Monitoring System

(AccuScan Instruments, Columbus, OH).

2.5 Level press test

Rats were trained to lever press for food pellets in standard operant chambers located inside

sound-attenuating boxes (Med Associates, St. Albans, VT). The chambers contained two

retractable levers located on either side of a central food trough. As previous studies [17, 47,

48], rats were trained daily 30-min sessions with one of two levers extended randomly when

Fig 3. Intra-hippocampal BDNF infusion mitigates the disruptive effects of melamine on neural correlate of reversal performance and cognitive

strategy. (A) Exogenous BDNF effectively reduced the total trials to the criterion in the reversal learning of Y-maze task. n = 8 per group. (B) Infusion

BDNF into the HPC of melamine-treated rats could rescue the learning strategy bias. n = 10 per group. BDNF-mediated neural activity of pyramidal

neurons (C), but not FS interneurons (D), was inhibited by melamine but reversed following BDNF treatment. �P<0.05, Melamine group vs. other groups.

https://doi.org/10.1371/journal.pone.0245326.g003
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the cue light above the level was illuminated. The schedule was progressively changed accord-

ing to the sequence fixed ratio (FR)-1, FR-15, FR-30, and finally FR-60. Rats were tested in a

30-min session till they reached 10 presses per min on FR-60.

2.6 Surgery and microinjection

Rats were anesthetized with isoflurane and placed in a stereotaxic frame (SN-3, Narishige,

Japan) for surgery [13, 50, 51]. Stainless steel guide cannulae (22-Ga; Plastics One, Inc.) were

bilaterally implanted to the dorsal CA1 region of the HPC (AP: -3.3 mm, ML: ±2.2 mm, DV:

2.4–2.8 mm). Obdurators (30-gauge, Plastics One Inc.) were inserted into guide cannula to

prevent obstruction. Rats were allowed to recover for seven to ten days.

Infusions were performed by inserting custom needles (30-Ga, Small Parts Inc.) connected

through PE-50 tube into an infusion pump (Harvard Apparatus), extended 1.0 mm pass the

end of the cannulae. After infusions, the needles were left for 3–5 min to allow the diffusion of

the drug. Dose and route of administration were chosen based on our and other previous stud-

ies [17, 40, 48, 49, 52, 53]. The infusion needles were left in place for 3–5 min to allow the drug

to diffuse. On each drug treatment day, the treatments were reversed or counterbalanced

designs. One week before the treatment, infusion procedure was habituated on four separate

days. The infusion sites were identified with the aid of The Rat Brain in Stereotaxic Coordi-

nates (1997, third edition). Only data from animals with correct implants were analyzed

(Fig 1A).

2.7 Immunocytochemistry

Rats were killed by overdose of urethane and the hemispheres were post-fixed in 4% parafor-

maldehyde for an additional 2 h, and placed in 30% sucrose cryoprotectant solution for 48 h.

After freezing, coronal sections (20-μm thick) were processed on a cryostat (Leica Microsys-

tems). Sections were incubated overnight with sheep anti-BDNF antibody (1:500, Millipore

Bioscience Research Reagents). After rinsing in phosphate-buffered saline, sections were

incubated with a fluorescent donkey anti-sheep IgG (1:1000; Millipore Bioscience Research

Reagents) conjugated with Alexa Fluor 647 (1:500; Abcam). Sections were rinsed again in PBS,

blocked with 10% normal donkey serum NGS, Vector Laboratories), and incubated for 3

hours with a polyclonal mouse anti-neuronal nuclei (NeuN) antibody (1:100; Millipore Coop-

eration). After rinsing in phosphate-buffered saline, sections were incubated with a fluorescent

donkey anti-mouse IgG conjugated with Alexa Fluor 488 (1:500, Millipore). Finally, sections

were rinsed again in PBS, mounted with Fluor-Gel (Electron Microscopy Sciences).

Four rostrocaudal sections of each animal were used for analyzing double labeling using a

fluorescence microscope (Olympus, BX61) equipped with a digital camera (Color view, SIS).

Image pairs were acquired using the appropriate filter sets for green Alexa Fluor 488 or red

Alexa Fluor 647 fluorescence, respectively for NeuN or BDNF labeling. Images were processed

using commercial software (Metamorph Software v7.7, Molecular Devices) by digitally remov-

ing background luminescence and automatically determining the threshold. The percentage of

overlapping area between NeuN and BDNF images (co-labeling) was determined as previous

studies [35, 53, 54].

2.8 Western blot analysis

Rats were killed by overdose of urethane and hippocampi were bilaterally dissected and

homogenized in ice-cold lysis buffer (pH 7.4) containing a cocktail of protein phosphatase and

proteinase inhibitors (Sigma, MA, USA). The samples were centrifuged at 12,000×g and 4˚C

for 10 min and the supernatant were collected. Protein concentrations were detected by
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bicinchoninic acid assay (Bio-Rad Lab). Equal amount of proteins were resolved by 10–15%

SDS-PAGE and then transferred onto PVDF membranes (Pall, Florida, USA) for immuno-

blotting. The membranes were blocked with 5% non-fat skimmed milk for one hour and incu-

bated with the primary rabbit anti-BDNF antibody (1:5,000; Chemicon, Temecula, USA).

Mouse anti-GAPDH (1:5000, Chemicon, USA) was used as an internal control. After three

washes with TBST buffer (10 min in each), the membranes were incubated with horseradish-

peroxidase (HRP)-conjugated secondary goat anti-rabbit or anti-mouse IgG (1:1000; Southern

Biotechnology Associates, AL) incubated for one hour. After three washes with TBST buffer,

immunoreactivity was detected by ECL Detection Kit (CWBIO, China).

2.9 Electrophysiology

Microelectrode array was custom built in a 4 by 8 matrix of tungsten wires (25 μm, Califor-

nia Fine Wires) in a 35-Ga silica tubing (World Precision Instruments). They were then

attached via gold pins to an EIB-36-PTB board (Neuralynx, Bozeman, MT). The electrode

tips were gold-plated to 200–600 kO measured at 1 kHz (NanoZ, White Matter LLC, Seattle,

WA). Rats were anesthetized with isoflurane and prepared for surgery using previously

reported procedures [49, 55, 56]. Electrode arrays were slowly lowered into HPC and the

hemisphere was implanted randomly but counterbalanced between rats. A stainless steel

wire served as ground electrode and was soldered onto a jewelers’ screw, which was

threaded into the skull.

Electrophysiological data were acquired on a Digitalynx system (Cheetah acquisition soft-

ware, Neuralynx). Unit signals were recorded via a HS-36 unit gain headstage (Neuralynx)

mounted on animal’s head by means of lightweight cabling that passed through a commutator

(Neuralynx). Unit activity was amplified (1000–10000 times), sampled at 32 kHz and band-

pass filters at 600–6,000 Hz. To verify the stability of recording, unit activities were recorded

for about 30 min before baseline recording. The mean firing rates during baseline and the

reversal training were recorded. Data from only the last 6 trials of reversal learning and the

basal session was selected for further analysis.

After experiments, electrolytic lesions (10μA current for 10s) were applied to identify the

recoding sites with reference to The Rat Brain in Stereotaxic Coordinates (1997, third edition).

Only data from rats with probes located were used.

Spike sorting was performed offline with SpikeSort 3D, using a combination of KlustaK-

wik, followed by manual procedure (Klusters software package). Multiple parameters (spike

height, trough, and energy) were used to visualize the clustered waveforms (Fig 3A). Each

cluster was then checked manually to ensure that the cluster boundaries were well separated,

and waveform shapes were consistent with action potentials [57, 58]. Units were then graded

for quality and classified as pyramidal neurons and fast-spiking interneurons as previously

described [46, 47].

2.10 Statistical analysis

Data are expressed as mean ± SEM. All analyses were performed with Neuroexplorer, Matlab

(MathWorks), SPSS 17.0 software and Statistica software. Statistical analysis was conducted

using one-way or repeated analysis of variance (ANOVA), or binomial tests followed by

Tukey’s post hoc test. For the comparisons of strategy use between groups, Pearson χ2 analysis

was performed. Correlations of the region-specific overlapping levels were made using the

parametric Bravais-Pearson’s correlation test. Further details can also be found on the respec-

tive figures/results section. Differences were considered statistically significant when P<0.05.
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3. Results

3.1 Intra-hippocampal melamine injection impairs reversal ability and

reduces the use of place learning strategy

As shown in Fig 1A, the placements of the cannulae were placed just above dorsal CA1

region of the HPC. To detect if melamine affected behavioral performance in a dose-depen-

dent manner, low (200 mM/μL) or high (400 mM/μL) dose was injected 30 min before tests.

In the Y-maze task, rats in both low-dose and high-dose groups reached the criterion on the

reversal learning slower than control group (Fig 1B, one-way ANOVA, effect of treatment:

F(2,21) = 29.60, P<0.001; post-hoc, both P<0.05). The low-dose group reached the criterion

significantly fewer trials than high-dose one (P<0.05). Similar with previous studies [13,

41], no statistical differences in running speed were found (Fig 1C, one-way ANOVA, effect

of treatment: F(2,15) = 0.23, P>0.05). Furthermore, this impairment was not driven by a

change in motivation as all rats had a similar motivation behavior in press lever test (Fig 1D,

one-way ANOVA, effect of treatment: F(2,15) = 0.11, P>0.05). This experiment indicates that

melamine impairs the reversal performance in a dose-dependent manner. However, it was

uncertain whether melamine affected the learning mechanism and strategy to search the

baited location. For this reason, rats were subjected to training in the cross-maze task, and

testing in the probe test 30 min following the melamine infusion. Attentively, control rats

did not exhibit strategy preference while both melamine-treated rats displayed a strong pref-

erence for response strategy (Fig 1E, binomial test, both P<0.05). Compared with low-dose

group, high-dose group significantly reduced the number of rats that used the spatial strat-

egy (Fig 1E, Pearson χ2 test, P<0.05). Overall, our findings indicate that melamine sup-

presses the use of a spatial strategy resulting in the reversal impairment in the place-related

task.

To detect if olfactory function involved in solving the task, two probe sessions were con-

ducted immediately after rats reached the criterion of the reversal learning. The first probe ses-

sion assessed if the scent guided choice by removing the reward from the bowl on a trial. If the

rat made a correct choice, the experimenter placed a reward in the bowl. The second probe

was implanted to assess if the rats marked the bowl when they examined previously. Therefore,

the bowl was replaced by new one. The rats’ performance was 100% accurate during either of

these probe sessions (Table 1).

Additionally, we also attempted to confirm the effect of melamine on learning behavior.

However, melamine-exposed rats did not exhibited learning deficits (total trials to criterion,

control: 17.13±0.44, melamine: 17.63±0.38). Actually, either strategy could be used to correctly

locate the food reward in two choices tasks. A shift from a HPC-dependent to striatum-depen-

dent learning strategy in melamine-treated rats might account for the fact that we did find an

attenuated performance during reversal training. Although either of the two available strate-

gies was sufficient to locate the food reward during training, there is a particular difference

between the systems underlying these two strategies in terms of flexibility.

Table 1. The performance in the two probe sessions following the reversal learning.

Group The accurate

The first odor probe The second bowl probe

Control 100% 100%

Melamine (200 mM/μL) 100% 100%

Melamine (400 mM/μL) 100% 100%

https://doi.org/10.1371/journal.pone.0245326.t001
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3.2 Melamine reduces learning-induced neuronal BDNF but not basal

expression

Previous studies reported that spatial-related training induced BDNF expression [53, 59] and

activated BDNF signaling in the HPC [39, 46, 49]. To confirm if the learning strategy shift

induced by melamine was accompanied by changes in the BDNF level, we detected BDNF

expression immediately after reversal training. Given that BDNF is expressed in microglia and

astrocytes cells [60, 61], we sought to detect the neuronal BDNF levels of pre-reversal (Fig 2A-

top) and post-reversal learning (Fig 2A-bottom), were indicated by the area of overlap between

BDNF and NeuN, a marker of neuronal nuclei. Melamine had no obvious effect on the neuro-

nal (Fig 2B, T-test, t14 = 0.2, P>0.05) or total (Fig 2C, T-test, t14 = 0.1, P>0.05) expression of

hippocampal BDNF in the pre-reversal learning condition. Melamine group showed signifi-

cantly less neuronal BDNF than control group following reversal training (Fig 2D, T-test, t14 =

4.0, P<0.01). A strongly negative correlation between trials to criterion and BDNF level was

observed (Fig 2E, Bravais-Pearson test, r = 0.56, P<0.001). In the post-reversal condition, the

total BDNF expression of melamine group was comparable with that of control group (Fig 2F,

T-test, t14 = 0.2, P>0.05). Overall, these results indicate that infusion of melamine into HPC

declines training-induced BDNF expression, but not basal, expression.

3.3 Exogenous BDNF reverses melamine-induced behavioral deficits and

neural activity

Given training-induced BDNF was inhibited by melamine, BDNF was infused into HPC 15

min before melamine treatment and then rescue the strategy bias. Training itself increased

neural excitability, which was regulated by BDNF, its cognate receptor, and other related can-

didate effectors [23, 49, 53]. Similarly, the deteriorated effects of melamine on reversal behav-

ior were observed as evidenced by the increase in trials to criterion (Fig 3A, one-way ANOVA,

effect of treatment: F(3,28) = 47.93, P<0.001; post-hoc, melamine vs. others, all P<0.05) and

abstain from using place strategy (Fig 3B, binomial test, P<0.05). However, rats that infused

with BDNF used fewer trials to the criterion than melamine-treated rats (Fig 3A, P<0.05). Fur-

thermore, the infusion of BDNF could effectively rescue the strategy bias induced by melamine

administration (Fig 3B, Pearson χ2 test, P<0.05). To better understand the effect of melamine

on the neural correlates of behavioral strategy, single-unit activity was assessed in the HPC

when rats performed the last 6 trials in the reversal learning task. One hundred and thirty-six

units were sorted (pyramidal neurons: 28 from control group, 32 from BDNF group, 29 from

melamine group, 30 from melamine+BDNF group; FS interneurons: 4 from control group, 5

from BDNF group, 4 from melamine group, 4 from melamine+BDNF group). The basal firing

rate of pyramidal neurons was comparable among groups. However, melamine markedly

diminished the firing frequency of pyramidal neurons during the reversal task (Fig 3C, one-

way ANOVA, effect of treatment: F(3,115) = 36.59, P<0.001; post-hoc, melamine vs. others, all

P<0.05). The infusion of BDNF resulted in a significant improvement (Fig 3C, P<0.05), even

turn back to the normal level. No significant difference was found in the firing rate of FS inter-

neurons (Fig 3D, one-way ANOVA, effect of treatment: F(3,13) = 0.47, P>0.05). Together, these

findings indicate that the infusion of BDNF into the HPC could reverse the disruptive effects

of melamine on neural correlate of place learning strategy.

4. Discussion

The purpose of the current investigation was to assess whether intra-hippocampal melamine

injection induces impairment of reversal learning and explore the underlying mechanism. Our
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findings demonstrate that the infusion of melamine into HPC leads to prefer response rather

than place learning strategy and results in reversal disability. The melamine-stimulated down-

regulation of learning-induced neuronal BDNF is attributed to the strategy bias. BDNF infused

into HPC could mitigate the response-strategy preference and reversal learning deficits

induced by intra-hippocampal injection of melamine. Meanwhile, the enhanced BDNF

expression in the HPC mitigates the suppressive effect of melamine on firing rate of pyramidal

neurons, but not FS interneurons, during the reversal test. Our findings for the first time pro-

vide evidence that melamine inhibits BDNF-mediated neural activity, which is closely related

to the disruption of behavioral strategy and flexibility.

Melamine (500 μg/mL) impaired action potential properties are related to the modulations

of both potassium and sodium channels [6]. Our previous findings showed that the inhibition

of long-term depression induced by 200 mM/μL melamine was not attributed to neurotrans-

mission dysfunction [17]. Furthermore, a higher dose of 500 μg/mL, but not 50 μg/mL,

increased the paired-pulse ratio [40], which is thought to reflect the Ca2+-dependent probabil-

ity of spike-dependent transmitter release. Similarly, Wang et al. reported that melamine (312

mM/mL) disrupted the homeostasis of Ca2+ [7]. Consistent with these findings, our results

indicate melamine doses of 200 mM/μL and 400 mM/μL disrupt hippocampus-dependent

cognitive and neural function. Specifically, the selected doses were also in the range of the con-

tents that detected in the contaminated dairy food products in the local area [62].

Reversal learning can be understood as a simple form of behavioral flexibility, which is the

ability to inhibit previously acquired association and learn the new choice. Our initial results

provide evidence that melamine-treated rats had more difficulty learning the new reward arm,

suggesting impaired reversal learning and a slower erasure of the previous memory. Similar to

other findings, rats displayed no deficits in locomotor and motivation behavior [17, 40], but

their performance deteriorated as there was a change in HPC-dependent reversal learning in

the water maze task [14]. Mental rigidity, perseveration, inability to shift, to adapt and to adjust

behaviors to the context are common features of synaptic function disorders such as schizo-

phrenia, depression, stress and aging [63–65]. The precise neurocellular mechanisms are still

debated, but activation of hippocampal NMDA receptors and the induction of multiple forms

of NMDA-dependent synaptic plasticity appear necessary. Our previous findings indicated

that melamine reduced the expression of NMDA-NR2B subtype and inhibited a form of hip-

pocampal synaptic depression [17], which may contribute to spatial reversal learning and

oppose behavioral perseveration [18]. Indeed, the action of LTD at particular synapses is not

simply a forgetting mechanism but is also required for cognitive flexibility to simultaneously

inhibit previously learned information and facilitate acquisition of new memory [66, 67].

Additionally, disturbing the calcium homeostasis [7] and presynaptic Ca2+ release [9, 17],

which are considered to be involved in the selective action of melamine in suppressing the

excitability of pyramidal neurons, and thereby learning, memory and other physiological pro-

cesses. Interestingly, rats with bilaterally intra-hippocampal melamine infusions preferred to

use an egocentric response strategy but not an allocentric place strategy. Intact animals can use

either place or response strategies, showing an individual preference for one or the other when

both strategies are effective. Actually, the most effective strategy is dependent on task demands

[28, 29]. When either the dorsal stratum or hippocampus was lesioned, the behavior was oper-

ated by the undamaged system [22, 27]. In comparison with the HPC, the dorsal striatum

generates more stereotypical and less flexible responses that are more difficult to adapt to

changing conditions [30, 68]. In agreement with this, rats using a response strategy in a T-

maze learning paradigm have more difficulties learning the novel location of the food reward

during reversal training [69]. Thus, our results implied that after a place strategy or rule was
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learned during the previous learning phase, melamine ruined the expression of the place strat-

egy in the reversal task, leading to impair reversal phenotype.

There is increasing behavioral evidence indicating that BDNF expression is induced in the

HPC following contextual and spatial learning and that this mechanism is essential for normal

learning and memory [39, 70]. Similarly, BDNF has been shown to contribute to neuronal

activity-dependent processes [53, 71], indicating its role in memory consolidation [72, 73].

Notably, our data suggests that the behavioral effects of melamine may result from reduced

training-induced BDNF in the HPC. BDNF can activate BDNF-TrkB (tyrosine kinase B recep-

tor) signaling that increases the expression of GluR1 and GluR2/3 AMPA receptor subunits

[74] and the phosphorylation of the NMDA receptors [75, 76], leading to enhance neuronal

excitability. Consistent with this, BDNF Val66Met polymorphism resulted in reduced NMDA

receptor neurotransmission in the CA1 pyramidal neurons and impaired memory extinction

[77, 78]. Studies in rats have shown that the formation of memory is related to prolonged phos-

phorylation and activation of hippocampal CREB, which by binding to a critical Ca2+ response

element within the BDNF gene activates BDNF transcription to modulate synaptic transmis-

sion [79, 80]. In a recent study, we showed that activation of PKA/CREB/BDNF signaling

involves functional couplings between HPC and striatum in spatial learning processing and

strategy selection [46, 47]. Altogether, the impairment of cognitive flexibility induced by mela-

mine is due to the reduction in learning-induced BDNF levels in HPC neurons leading to inhi-

bition of neural activity.

Although spatial memory acquisition depends critically on the HPC, prefrontal cortex

(PFC) function is also required for this process [81]. Spatial information generated in the HPC

is relayed to the PFC via the CA1-PFC projection [82, 83]. Training-induced BDNF expression

may influence behavioral flexibility by controlling the flow of information from the hippocam-

pal CA1 to the PFC [84]. It cannot exclude that PFC region plays an additional role in the

reversal learning of melamine-treated rats. Given that disruption of this circuit may lead to

impairments in reversal learning [83, 85], future experiments should examine whether a dis-

rupted HPC to PFC information flow is linked to the deficits observed in melamine-treated

animals.

In conclusion, our findings extend the understanding of the ffeffects of intra-hippocampal

melamine on cognitive flexibility, which are mostly attributed to its disruptive effect on place

strategy. The learning-induced BDNF expression has correlated with the trials to criterion

observed in reversal learning, with a lower BDNF level in melamine-treated rats. Furthermore,

the deteriorated flexible behavior could be attributed to the interference by BDNF-mediated

neuronal excitability during reversal performance. This provided an important insight into the

neurotoxicity of melamine and a potential new avenue for treatment of spatial learning deficit

and related disorders.
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