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C O N D E N S E D  M A T T E R  P H Y S I C S

Structure motif–centric learning framework 
for inorganic crystalline systems
Huta R. Banjade1†, Sandro Hauri2†, Shanshan Zhang2, Francesco Ricci3, Weiyi Gong1, 
Geoffroy Hautier3,4, Slobodan Vucetic2*, Qimin Yan1*

Incorporation of physical principles in a machine learning (ML) architecture is a fundamental step toward the 
continued development of artificial intelligence for inorganic materials. As inspired by the Pauling’s rule, we 
propose that structure motifs in inorganic crystals can serve as a central input to a machine learning framework. We 
demonstrated that the presence of structure motifs and their connections in a large set of crystalline compounds 
can be converted into unique vector representations using an unsupervised learning algorithm. To demonstrate 
the use of structure motif information, a motif-centric learning framework is created by combining motif informa-
tion with the atom-based graph neural networks to form an atom-motif dual graph network (AMDNet), which is 
more accurate in predicting the electronic structures of metal oxides such as bandgaps. The work illustrates the 
route toward fundamental design of graph neural network learning architecture for complex materials by incor-
porating beyond-atom physical principles.

INTRODUCTION
Machine learning (ML) methods, in combination with massive ma-
terial data, offer a promising route to accelerate the discovery and 
rational design of functional solid-state compounds by using a 
data-driven paradigm (1). Supervised learning has been effective in 
material property predictions, such as phase stability (2–4), crystal 
structure (5), effective potential for molecule dynamics simulations 
(6), and energy functionals for density functional theory–based 
simulations (7). With the recent progress in deep learning, ML has 
also been applied to inorganic crystal systems to learn from high- 
dimensional representations of crystal structures and to identify 
their complex correlations with materials properties. For instance, 
bandgaps of given classes of inorganic compounds have been pre-
dicted using deep learning (8), and ML has been applied on charge 
densities (9) and Hamiltonian data (10) to predict electronic prop-
erties. Recent development of graph convolutional network (GCN) 
(11, 12), when combined with domain knowledge, offers a powerful 
tool to create an innovative representation of crystal structures for 
inorganic compounds. Within the GCN framework, any type of 
grid and atomic structure can be successfully modeled and ana-
lyzed. The flexible graph network structure endows these learning 
frameworks (13) a large room for improvement by considering 
more node/edge interactions in the crystal graphs (14).

Whether ML can efficiently approximate the unknown nonlinear 
map between input and output relies on an effective representation 
of solid-state compound systems that capture structure-property 
relationships that form the basis of many design rules for functional 
materials. In inorganic crystalline materials with unit cells that 
satisfy the periodic boundary condition, bonding environments 

determined by local and global symmetry are essential components 
for the understanding of complex material properties (15). As stated 
in the Pauling’s first rule (16), a coordinated polyhedron of anions 
is formed about each cation in a compound, effectively creating 
structure motifs that behave as fundamental building blocks and are 
highly correlated with material properties.

Structure motifs in crystalline compounds play an essential role 
in determining the material properties in various scientific and 
technological applications. For instance, the identification of VO4 
functional motif enabled the discovery of 12 vanadate photoanode 
materials via high-throughput computations and combinatorial 
synthesis (17). In the field of complex oxide devices, MnO6 octahe-
dral motifs are correlated with small hole polarons that limit electri-
cal conductivity (18). In battery cathodes for energy storage, high 
ion mobility is explained by the local bonding environment of a 
multivalent ion (19). V4+ ion-related motifs and the connections 
between these motifs are found to be important determining fac-
tors for the selective oxidation of hydrocarbons (20–22). The pres-
ence of MO4 tetrahedra (M as Si or Al) can be used to identify the 
most promising synthetic candidates from the pool of hypothetical 
zeolites (23). When designing novel battery materials, it is found 
that the changing coordination pattern of a migrating ion can be 
used as a descriptor of ion mobility (24, 25).

Governing the structure-property relationship, structure motifs 
or coordination environments can be viewed as effective structural 
descriptors for crystals. The efforts for identification of local coor-
dination environments initially focused on structure types (26, 27) 
or preferential coordination numbers (28) based on simple rules 
(29). Very recently, owing to the development of data-driven 
approaches, systematic and robust approaches to automatically 
identify local environments have been developed (30, 31), which 
motivated the use of structure motif information for material de-
sign in a data-driven paradigm. For instance, structure motif infor-
mation has been used to define crystal structure similarity (32) for 
all the compounds in the Materials Project database (33). A recent 
work comprehensively evaluated the validity and suggested the lim-
ited predictive power of the Pauling rules (34). Recent analysis and 
the dataset of local environment and connectivity (30) provide a 
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novel set of material information that can serve as essential input 
for ML techniques in materials science.

In this work, we propose to incorporate structure motif informa-
tion in an ML framework. We show that the presence of structure 
motifs and their connections extracted from a material structure 
database can be used by unsupervised learning algorithms to define 
unique representations in a high-dimensional space. The dimension 
reduction process reveals strong clustering effects, representing the 
neighborhood properties of metal elements in the periodic table. By 
combining the motif information with graph convolutional neural 
networks, we develop a motif-centric deep learning architecture 
called the atom-motif dual graph neural network (AMDNet), whose 
accuracy surpasses that of the state-of-the-art atom-based graph 
network MatErials Graph Network (MEGNet) (12) for the prediction 
of electronic structures of inorganic crystalline materials.

RESULTS
Structure motifs clustering by unsupervised learning
In a recent work (35), it is shown that an unsupervised learning 
algorithm Atom2Vec can learn high-dimensional vector represen-
tations of atoms that encode basic properties of atoms by using an 
extensive database of chemical formulas. Clustering of atoms in the 
vector space classifies them into groups consistent with the periodic 
table. Furthermore, it is possible to use vector representations of 
atoms to calculate the similarities among materials and make prop-
erty predictions. In this work, we will enhance the previous devel-
opment by demonstrating that structure motifs encoded in crystal 
structures reveal useful information about structural properties and 
electronic structures of crystalline systems.

We focus on binary and ternary metal oxides that constitute a vast 
and diverse material space where crystal structures are well character-
ized by local environments through cation-oxygen coordination. The 
material set includes 22,606 complex oxides in the Materials Project 
database (33). We extract the structure motif information using the local 
environment identification method developed by Waroquiers et al. 
(30) as implemented in the pymatgen code (36), following the defini-
tion of structure motifs or coordination environments by the Inter-
national Union of Crystallography (37) and International Union of 
Pure and Applied Chemistry (38) as listed in 30.

We identify the connections between a motif and its neighbor-
ing motifs based on the number of oxygen atoms shared by those 
motifs. Three different types of connectivity may exist, from which 
we identify the connections as corner sharing (if only one atom is 
shared), edge sharing (if two atoms are shared), and face sharing (if 
three or more than three atoms are shared). Details on the motif 
type and connectivity are included in the notes S1 and S2. The motif 
environment is defined by the neighboring motifs and the type of 
connection a motif has. By iterating through all the structures in the 
dataset, motif-environment pairs are identified, and the motif envi-
ronment matrix is generated. Details on the motif environment ma-
trix are included in note S3.

Next, we propose the learning algorithm that is able to take advan-
tage of the above motif data collection process and convert each row of 
the motif environment matrix effectively into a high- dimensional vec-
tor that represents a unique structure motif. To create the vector rep-
resentations for structure motifs, we treat motifs as the basic building 
blocks and study their presence and motif-wise environment in 22,606 
oxide crystal structures extracted from the Materials Project database. 

Figure 1 shows the high-level representation of the workflow used 
in the unsupervised learning algorithm. Material properties, such as 
orbital interactions within a crystal, are known to be related to bond 
lengths and bonding angles. We extract the following quantities to 
represent motif connections: (i) the distance between the cation center 
of a motif M1 and its neighboring motif center (M2) and (ii) the 
M1-O-M2 bonding angles for those oxygen atoms shared by the two 
motifs. The extracted motif connection information will be an essen-
tial input for the learning process using GCN as described below.

Our aim is to identify patterns and clustering information for 
these high-dimensional motif vectors that, in turn, influence the 
complex material properties of oxide compounds. By using various 
linear and nonlinear transformations, dimension reduction algo-
rithms serve this purpose by creating a low-dimensional represen-
tation (called embedding) that best preserves the overall variance of 
the original dataset. To demonstrate the clustering of the motif vec-
tors, we visualize the high dimensional data by using the t-distributed 
stochastic neighbor embedding (t-SNE) (39), a recently developed 
nonlinear dimensionality reduction technique. Before the t-SNE, 
we apply singular value decomposition (40) to project the original 
high-dimensional representation of materials to 60 dimensions, 
corresponding to the largest 60 singular values. The detailed proce-
dure for t-SNE is presented in note S4.

Figure 2 shows the projected motif vector data in two dimen-
sions obtained through the t-SNE process, where different motif 
types are represented by different colors. We observe that there ex-
ist distinct clusters based on the motif types. First, detailed analysis 
of those clusters shows that the chemical properties of the elements 
forming the motifs play an important role in the formation of clus-
ters. For instance, all the Lanthanide-based motifs formed different 
clusters on the basis of motif type (cluster 1 in Fig. 2 and cluster 9 in 
fig. S3  in note S4). Yttrium-based motifs always stay close to 
Lanthanide-based ones, as the chemical properties of Yttrium are 
known to be similar to Lanthanides. In addition, motifs associated 
with Zn and Mg always cluster together, which is consistent with 
the fact that Zn is chemically similar to Mg because both of them 
exhibit only one normal oxidation state (+2) and that their ions 
(Zn2+ and Mg2+) are similar in size.

As shown in Fig. 2, cluster 1 contains cubic motifs associated 
with Lanthanides, while the cuboctahedral motifs associated pri-
marily with main group elements appear in cluster 2. The clustering 
of motifs, determined by elements as described above, is in accord-
ance with the grouping pattern in the periodic table, although no 
information about the periodic table was used in the vectorization 
process. Octahedral motifs associated mostly with the transition 
metal elements occur together in cluster 3, while the tetrahedral and 
square planer motifs associated with transition metal elements are 
located but well separated in cluster 4. This motif cluster separation 
reveals that the vectorization process based on the matrix environ-
ment matrix is able to capture both local bonding environment 
information and elemental information. Additional motif clusters 
in Fig. 2 are presented in fig. S3 in note S4. These findings, achieved 
by unsupervised learning, strongly support our intuition that struc-
ture motifs can serve as essential input for crystalline compounds 
that carry both elemental and structural information.

Incorporation of motif information in graph neural networks
As above atomic–level building blocks of crystals, structure motifs 
and motif-wise interactions within a crystal strongly influence the 
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material properties. Structure motif information can be used as an 
essential input to a graph neural network (GNN) that predicts phys-
ical properties of materials. Following the standard notation used 
in the GNN framework (41), we represent an attributed graph as 
G = (V, E), where V = [vi]i = 1,2,….N

v is a set of nodes of cardinality Nv 
and vi is the node attribute vector of the ith node. E = [(ek, rk, sk)] 
k = 1,2,…,,N

e is a set of edges of carnality Ne, where ek is the attribute 
vector for edge k between nodes sk and rk. Several GNNs have been 
proposed (11, 12, 14) that formulate the task of predicting chemical 
properties of materials as learning a mapping f(G:W) → y, where W 
is a set of learnable parameters and y is a target property.

Most of the graph networks applied to crystalline materials 
(11, 12, 14) are based on graphs on the atomic level   G 0  atom   as input 
for the network. These atomic graphs contain information about 
atoms (such as atomic number, electronegativity, and many others) 
and bonds. For instance, in the   G 0  atom   of atomic graph network 
MEGNet, vi is a vector representing the ith atom in a unit cell and is 
represented by the atomic number of the element. eij is a vector rep-
resenting a bond between atom i and atom j.

In this work, to enable a learning architecture that synthesize 
both atom-level and motif-level graph representation of materials, 
we propose that AMDNet can be constructed to enhance the learn-
ing process and improve the prediction accuracy for electronic 
structure properties of metal oxides. We follow the procedure intro-
duced in existing atomic graph networks (12, 42) to represent the 
edges, where two atoms are connected if they are no more than 5 Å 
apart. We propose to represent the metal oxides as motif graphs 
  G 0  motif  , where each motif in a crystal is represented by a node   ( v  i  )   G 0  motif    
and each connection between two motifs is represented by an edge 
  ( e  ij  )  

 G 0  motif 
    as shown in Fig. 3. Motif graphs represent the same mate-

rials with higher granularity than atom graphs, but more compre-
hensive information can be encoded in each motif node, such as 
local distortions and site symmetries. The motif graph uses the 
same edge representation as in the atom graph, and the motif-motif 
edge distances are measured from the center atom of one motif to 
that of a neighboring motif.

In the motif graph, a combination of atom-level and motif-level 
information is encoded in each node. We adopt the atom-level node 
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representations by combining two existing approaches to form a 
103-dimensional vector that uses the information of atoms within 
the motif. The first 86 dimensions represent the fractional encoding 
of the atoms proposed by Meredig et al. (43), and the next 17 di-
mensions are for physical properties proposed by Ward et al. (44). 
On the other hand, we define the motif fingerprints by order pa-
rameters (of dimension 61), which describe the numerical measure 
of the local environment around an atom relative to a target stan-
dard motif (31, 45). These 61-dimension vectors are then concate-
nated with 103-dimensional atom-based feature to form the final 
164-dimensional vector. Detailed descriptions about various types 
of order parameters and methods to compute these parameters are 
presented in the work by Zimmermann et al. (31). All the structural 
information used to construct the motif graph—including extended 
connectivity, angle, distance, and order parameters for each motif—
is computed by using the python package robocrystallography (46) 
combined with the pymatgen code. By combining atomic-level and 
motif-level information, we use a 164-dimensional vector to repre-
sent each motif in the graph.

AMDNet
A high-level illustration of our proposed AMDNet architecture is 
shown in Fig. 4. To incorporate the motif information acquired 
above into the graph network learning framework, the central con-
cept in the proposed architecture is to generate both motif graphs 
and atom graphs representing the same compounds, with different 
cardinality of edges and nodes, and combine the representation in-
formation before making predictions.

For each material, we generate an atom graph and a motif graph 
(Fig. 4). We adopt the convolution structure of the MEGNet pro-
posed by Chen et al. (12) when constructing the atom-level graph 
network. The choice of graph network structure is only for a bench-
mark purpose, and many other types of crystal graph convolution 
networks could be used to take advantage of the motif-level graph 
information (11, 14). As a preliminary test, we use the same archi-
tecture as that for the atom graphs in MEGNet to generate   G 0  motif   by 
using the 164-dimensional atom-motif-mixed vector input for the 
nodes in the network. Edges in   G 0  motif   are defined as the distances 

between the center atoms of any two motifs. Note that MEGNet can 
be interpreted as a neural network that encodes the whole crystal 
graph input to a low-dimensional vector of dimension 16, upon 
which a final single-value prediction is made. Taking advantage of 
this fixed-dimension representation of any MEGNet graph convo-
lution network, we can effectively combine the information from motif 
and atom dual graphs by concatenating the two low-dimensional 
representations generated from motif graph and atom graph, re-
spectively. This concatenated vector is then fed to a small feed-forward 
neural network for single-value predictions. More details are pre-
sented in Materials and Methods.

We use 22,606 binary and ternary metal oxides from the Materials 
Project database to evaluate the effectiveness of our proposed 
model and focus on the prediction of bandgaps which is one of the 
complex electronic structure problems. Metal oxides are a class of 
solid-state compounds that are challenging for both ab initio quan-
tum simulations and ML in general, which is verified by our exper-
iments on different datasets as presented in note S5. For the purpose 
of comparison, we create a motif graph network model, MNet, 
which use motif graphs (  G 0  motif  ) as the only input to the network. 
Table 1 shows a comparison between MEGNet, MNet, and our pro-
posed AMDNet on the prediction accuracy of bandgaps, formation 
energy, and the metal (compounds with bandgaps less than 0.2 eV 
in the Materials Project database) versus nonmetal (compounds 
with bandgaps 0.2 eV or greater) classification for all the metal 
oxides in our dataset. Additional data and discussions are provided 
in note S5.

The results show that, given the same training and test data, 
AMDNet shows its superiority in the bandgap prediction task com-
pared to the state-of-the-art baseline model. The motif graph repre-
sentation MNet performs worse than MEGNet, which is expected 
because it uses a much smaller graph representation. The combina-
tion of atom and motif graph AMDNet outperforms MEGNet on 
the bandgap prediction task, which illustrates that the motif repre-
sentations enhance the effective learning of material properties. 
Figure 4B shows the comparison of the predicted bandgaps on the 
test dataset with the actual bandgaps. Bandgaps of a large portion 
of the compounds are clustered close to the diagonal, indicating a 

Motif-level fingerprints:
Order parameters

Edge information:
M-M center distance

[MnO6]1

[VO4]2

[VO4]1

[MnO6]2

Atom-level representations
Motif graph

Inorganic crystal

Fig. 3. Construction of a motif graph based on both atom-level and motif-level information encoded in an inorganic crystal. 
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good performance of our model on the bandgap prediction task. In 
addition, our model shows superior performance in the metal ver-
sus nonmetal classification task. As shown in Table 1, the classifica-
tion accuracy is 82.1% for AMDNet, while for MEGNet, it is only 
75.3%. On the other hand, the formation energy prediction shows 
almost identical performance with MEGNet, indicating that atom 
graph alone is sufficient for the formation energy prediction task, 
which is considered a simpler task compared to the bandgap predic-
tion task. The comparison between predicted (by AMDNet) and 

actual formation energies is shown in Fig. 4C, and the comparison 
of prediction accuracy given by various models is shown in Table 1. 
We also perform additional training and test using another state-of-
the-art atom-based GNN model, crystal graph convolutional neural 
networks (CGCNN) (11), based on the same material dataset. AMDNet 
outperforms both CGCNN and MEGNet in general for all the 
three learning tasks (see note S6 and table S3 for details).

Note that the root mean square errors for bandgap predictions 
are larger than the mean absolute errors (see Table 1), which is 
demonstrated as the existence of outliers in Fig. 4B. Similar trend is 
observed using both AMDNet and MEGNet, indicating that this 
is originated from the complexity of material-property relationships 
for bandgaps of solid-state systems. Therefore, the deep learning of 
electronic band structure–related properties in solids naturally goes 
beyond atomic bonds and motifs. Novel and higher-level material 
information such as orbital interactions determined by local site 
symmetries (irreducible representations), which is out of the scope 
of this work, should be incorporated in the learning framework to 
improve the prediction performance. Despite this, we would like to 
emphasize that the inclusion of motif information in the AMDNet 
adds another tier of important material information that is helpful 
to distinguish the electronic structures of several representative set 
of oxide materials. The analysis of graph embeddings from motif 
neural networks in the AMDNet can capture the essential correla-
tions between the motif types/connections in crystals and the 
electronic band structures of solid-state materials (see note S7 for 
details). Therefore, AMDNet serves as one of the initial efforts to 
incorporate higher-level material information in deep learning 
models for solid-state materials.

A B

C

Predicted band gap (eV)
AtomNet block [64, 64]

AtomNet block [64, 64]

AtomNet block [64, 64]

Concatenate

Dense [32]

Dense [16]

set2set(E) set2set(V)

MotifNet block [64, 64]

MotifNet block [64, 64]

MotifNet block [64, 64]

Concatenate

Dense [32]

Dense [16]

set2set(V)set2set(E)

Concatenate

Dense [16]

Dense [1]

Atom graph

Mn1

Mn2

V1O1

O2 O3

O4

O5O6

O7

[MnO6]1

[VO4]2

[VO4]1

[MnO6]2

Motif graph

V2

A
ct

ua
l b

an
dg

ap
 (e

V
)

Predicted formation energy (eV/atom)

A
ct

ua
l f

or
m

at
io

n 
en

er
gy

 (e
V

/a
to

m
)

Fig. 4. AMDNet architecture and materials property predictions. (A) Demonstration of the learning architecture of the proposed atom-motif dual graph network (AMDNet) 
for the effective learning of electronic structures and other material properties of inorganic crystalline materials. (B) Comparison of predicted and actual bandgaps [from 
density functional theory (DFT) calculations] and (C) comparison of predicted and actual formation energies (from DFT calculations) in the test dataset with 4515 compounds.

Table 1. Performance comparison between various graph 
architectures for the learning and prediction of electronic bandgaps, 
formation energy per atom, and metal versus nonmetal classification 
accuracy for the metal oxides (trained on 18,091 compounds and 
tested on 4515 compounds). Both mean absolute error (MAE) and root 
mean square error (RMSE) are given for the purpose of comparison. 

Model Bandgap MAE/
RMSE (eV)

Formation 
energy MAE/

RMSE (eV/
atom)

Metal versus 
nonmetal 

classification 
accuracy

MEGNet (atom 
graph) 0.54 / 0.82 0.047 / 0.104 75.3%

MNet (motif 
graph) 0.64 / 1.03 0.121 / 0.236 74.7%

AMDNet 
(motif-atom 
dual graph)

0.44 / 0.78 0.047 / 0.100 82.1%
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DISCUSSION
We demonstrate in this work how structure motifs in crystal struc-
tures can be combined with both unsupervised and supervised ML 
techniques to enhance the effective representation of solid-state 
material systems. Motif vectors learned from motif environments in 
22,606 metal oxides using unsupervised learning effectively capture 
the motif similarities and their clustering properties. To enhance 
the learning of solid-state crystalline systems for complex electronic 
structures, structure motif and connection information are incor-
porated as essential input in an AMDNet model, which outper-
forms the state-of-the-art atom GNN model for the prediction of 
electronic bandgaps and metal versus nonmetal classification task. 
In addition, AMDNet model is able to predict formation energy 
in close agreement with the existing state-of-the-art atom graph–
based models. Furthermore, AMDNet outperforms the existing 
atom-based model for the prediction of metal oxidation states in 
complex oxides such as Cr-based systems (see note S8 for details). 
This experiment, together with the outstanding performance of a 
recent motif information–enhanced shallow learning model for 
oxidation states in metal-organic frameworks (47), clearly demon-
strates that structure motif is an essential layer of material informa-
tion to achieve advanced learning models that can predict material 
properties beyond the state-of-the-art.

Although our work is limited to structure motifs that are identi-
fied in metal oxides by using domain knowledge, the general appli-
cability of the model can be realized. First of all, the automatic motif 
identification approach (31) we used in this work was applied in the 
original work to identify the structure motifs in all the inorganic 
compounds in the Materials Project database, including diverse 
classes of materials that go far beyond oxides. This indicates that the 
proposed motif-centric learning model can be readily expanded to 
all the inorganic crystalline materials. In addition, the general appli-
cability of motif-centric models can be further enhanced by using 
the technologies that are under development in the field of GNNs. 
There has been a recent exciting development to train GNNs in a 
self-supervised manner to automatically extract graph motifs from 
large graph datasets of molecules (48). The self-supervised learn-
ing-guided graph analysis can be applied to crystal graphs to enable 
a general learning architecture for automatic motif identification in 
crystal structures and its consequent use in graph-based neural net-
works for various downstream tasks. Therefore, our work provides 
the important initial step toward a general motif-centric GNN 
learning model that can be applied to arbitrary crystal systems.

AMDNet is a general learning framework for solid-state atomis-
tic systems that can be used to predict other materials properties, 
such as mechanical and excited state properties, and applied to 
other motif-based systems including two-dimensional materials and 
metal-organic frameworks. Several directions related to the motif- 
centric learning methods here are worthy to explore in the future. 
Although we perform the test on perfect crystalline systems, 
through the addition of extra types of local motif information, the 
motif-enhanced graph network framework can be expanded for the 
learning and prediction of surface and defective material systems. 
Besides the use of a dual graph network architecture, motif infor-
mation and the physical principles behind it can be incorporated 
into a learning framework in other manners, such as through a 
motif-enhanced convolutional process in an atom-based GCN or 
other novel algorithms that are actively developing in the graph 
theory including graph attention.

MATERIALS AND METHODS
Training process for atom motif dual GNN
In the AMDNet with L layers, the module generates a sequence 
of atomic graph representation  ( G 1  atom ,  G 2  atom , … .,  G L  atom )  and motif 
graph representations  ( G 1  motif ,  G 2  motif , … .,  G L  motif ) , where each graph 
has the same number of nodes and edges as in the input graphs 
  G 0  atom   and   G 0  motif  , respectively. Through a graph convolutional pro-
cess called AtomNet block for atom graphs and MotifNet block for 
motif graphs, information of each edge and its respective connect-
ing nodes are passed through a dense neural network with a nonlin-
ear activation function (we use the shifted softplus function), which 
creates a new edge representation. To generate the new node repre-
sentation, the node information, together with the information of 
the new incident edges, is passed through a separate dense neural 
network with the same nonlinear activation function.

Each graph convolutional block has a hidden dimension of 64 
for both node and edge convolution. In our work, we use three 
graph convolutional blocks to apply the graph convolution, which 
creates an output graph representation. The graph representation is 
transformed into vector form by averaging over all nodes and edges, 
respectively, which is denoted as set2set(E) and set2set(V) in 
Fig. 4A. These set2set vectors are concatenated before going through 
two densely connected layers as shown in Fig. 4A. This results in 
a low-dimensional vector representation of the original atom and 
motif graph representation of the crystal. These representations are 
concatenated again and passed through two densely connected 
layers to make a single real-valued prediction.

For the training and test process, we choose a 60-20-20 train 
validation test splits. We initialize the hyperparameters based on 
the best values from MEGNet to train our neural network. All deep 
models are trained with Adam optimizer (49) with initial learning 
rate  = 0.001. Training formation energy prediction was slower 
to converge to the best solutions than for the bandgap prediction; 
therefore, we adjusted some parameters to adapt to each prediction 
task. We stop training when the validation error does not improve 
for 20 and 100 epochs to train bandgap prediction and formation 
energy prediction, respectively. We save the model with the lowest 
observed validation error and use it to evaluate the models on the 
test data. We use 64 compounds per minibatch for bandgap predic-
tion and 32 compounds per minibatch for formation energy predic-
tion. Note that in the network setup of AMDNet, it is possible that 
the model predicts negative bandgaps. We truncate the negative 
bandgap values to 0 for evaluation purposes. The procedure we 
apply here is the same as what was used by the atom-based model 
MEGNet. This treatment allows the use of the same model for both 
formation energy and bandgap predictions.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/17/eabf1754/DC1
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