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Abstract
A novel class of chiral phosphanyl-oxazoline (PHOX) ligands with a conformationally rigid cyclopropyl backbone was synthe-

sized and tested in the intermolecular asymmetric Heck reaction. Mechanistic modelling and crystallographic studies were used to

predict the optimal ligand structure and helped to design a very efficient and highly selective catalytic system. Employment of the

optimized ligands in the asymmetric arylation of cyclic olefins allowed for achieving high enantioselectivities and significantly

suppressing product isomerization. Factors affecting the selectivity and the rate of the isomerization were identified. It was shown

that the nature of this isomerization is different from that demonstrated previously using chiral diphosphine ligands.
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Introduction
The asymmetric Heck reaction is one of the most powerful and

versatile processes for the enantioselective construction of new

carbon–carbon bonds. Intramolecular versions of this reaction

catalysed by palladium complexes with BINAP and related

diphosphine ligands [1,2] allow for efficient installation of

tertiary and quaternary chiral centres leading to a rapid increase

of molecular complexity [3-5]. To date, various modes of this

transformation are being successfully employed in the syn-

thesis of complex organic molecules [6-14].

Considerable achievements have also been made towards the

application of BINAP-type ligands in the intermolecular asym-

metric Heck reaction [15]. This reaction was pioneered by

Hayashi [16], who demonstrated the arylation of dihydrofuran

(1) with phenyl triflate (2a) (Scheme 1) in the presence of (R)-

BINAP [16-18] produced isomeric dihydrofurans 3a and 4a,

with the latter being the major product, due to substantial

isomerization of the double bond. Depending on the reaction

conditions, moderate to good selectivities toward formation of

http://www.beilstein-journals.org/bjoc/about/openAccess.htm
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Scheme 2: Mechanistic rationale of asymmetric Heck reaction.

Scheme 1: Intermolecular asymmetric Heck reaction by Hayashi [16].

4a were observed. Remarkably, the obtained products, “normal”

3a and “isomerized” 4a, had the opposite absolute configura-

tions of the stereogenic center at C2. Moreover, it was found

that the enantioselectivity improved during the reaction course.

The mechanistic rationale proposed by Hayashi [16] fully

accounts for the observed stereoselectivity change (Scheme 2).

The catalytic cycle begins with the oxidative addition of Pd(0)

species 5 into the aryl triflate 2 resulting in the formation of

cationic complex 6. The latter can coordinate to either of the

prochiral faces of dihydrofuran (1) affording diastereomeric

η2-complexes 7 and 10. Subsequent carbopalladation, followed

by β-hydride elimination, produces species 9 and 12, respective-

ly. It was proposed that the diastereomeric complex 12 has a

higher propensity toward further hydropalladation than 9.

Accordingly, the latter species releases the (S)-enantiomer of

2,5-dihydrofuran 3 (path I), while the former undergoes a series

of reversible hydropalladations and β-hydride eliminations,

resulting in the formation of a thermodynamically more

favoured η2-complex 14, which ultimately produces the (R)-

enantiomer of the isomeric product 4.

Later, a number of research groups pursued the design of alter-

native diphosphine ligands to achieve better regio- and enantio-

selectivity in the intramolecular Heck reaction. Several deriva-

tives of BINAP [19,20] and other chiral diphosphines [21-27]

including TMBTP [28-31], BIPHEP [32-34], BITIANP [30,35]

(Figure 1) were tested, some of which provided improved selec-

tivity. Nevertheless, in all cases predominant or exclusive for-

mation of the isomerized product 4 was observed.

Figure 1: Chiral diphosphine ligands used for intermolecular asym-
metric Heck reaction.

At the same time, several mixed hetereoatom ligands of the P–S

[36,37], P–O [38], and N–N [39,40] type have also been

explored in the intermolecular Heck arylation; however, they

demonstrated in most cases only marginal regio- and enantio-

selectivities. On the other hand, superior results were obtained
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Scheme 3: Synthetic scheme for preparation of PHOX ligands with chiral cyclopropyl backbone.

using chiral ligands of the P,N-type [15,41-44]. Particularly,

excellent enantioselectivities were achieved using different vari-

ations of phosphanyl-oxazoline (PHOX) ligands [45-52], origi-

nally introduced by Pfaltz (Figure 2) [53,54]. The remarkable,

yet not fully understood feature of PHOX ligands is their low

tendency to promote C=C-bond isomerization [45-52]. Thus, in

contrast to the diphosphines, PHOX ligands produced dihydro-

furan 3 with very high selectivity. Structural modification of the

flat ortho-phenylene tether in the Pfaltz ligand through the

incorporation of additional chirality elements into the ligand

backbone allowed for significant improvement of the enantio-

selectivity. Thus, ferrocene-based ligands introduced by Dai

and Hou [55,56], and Guiry [57,58] (Figure 2) were employed

in the asymmetric Heck reaction of different cyclic olefins.

Furthermore, Gilbertson demonstrated PHOX ligands featuring

apobornene backbone (Figure 2) exhibit outstanding activities

and selectivities in the arylation and alkenylation of different

cyclic substrates [59]. A highly efficient asymmetric arylation

in the presence of sugar-derived phosphite-oxazoline ligands

was reported by Diéguez and Pàmies [47,48].

Figure 2: Chiral phosphanyl-oxazoline (PHOX) ligands used for inter-
molecular asymmetric Heck reaction.

PHOX ligands are very appealing due to their high catalytic

potential and modular design, which permits easy preparation of

a series of analogues via the same synthetic route. To date,

however, general approach to the ligand design has been largely

empirical due to a poor understanding of the factors affecting

the activity of the corresponding catalytic systems and the oper-

ating modes of asymmetric induction imparted by the employed

chiral ligands. In our investigation, we decided to benefit from a

well-established strategy commonly used in medicinal chem-

istry. According to this approach conformationally constrained

cyclic analogues of biologically active molecules are employed

for elucidation of important mechanisms and identifying crit-

ical enzyme binding sites. Analogously, we anticipated that

incorporation of a three-membered cycle in the ligand structure

[60-63] would impart rigidity to the ligand backbone and

provide conformationally constrained systems with amplified

steric effects, which can be easily modelled and predicted. This,

in turn, could be used to rationally design the ligand structure en

route to more efficient catalytic systems. In 2008 we communi-

cated the design and synthesis of a novel series of PHOX

ligands featuring a chiral cyclopropyl backbone, as well as their

employment in the enantioselective intermolecular Heck aryl-

ation reaction [64]. Herein we describe the full account on this

investigation, including the results of the structure–activity

studies and provide our insight into the origins of the enantio-

selectivity of this transformation and factors controlling the rate

of isomerization reaction.

Results and Discussion
Our approach to the PHOX ligands with a chiral cyclopropyl

backbone is presented in Scheme 3. The synthesis began from

optically active 1-methyl-2,2-dibromocyclopropanecarboxylic

acid (15) [65] readily available in both enantiomeric forms. The

S-enantiomer of acid 15 was converted into acyl chloride (S)-
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Table 1: Selected results on optimization of the reaction conditions for asymmetric Heck arylation using L1.

Entry Pd cat. Base Solvent Time/Temp 3a:4a ee, %a conv, %b

1 Pd2dba3·CHCl3 EtN(iPr)2 benzene 3 d/70 °C 19:1 90 15
2 Pd2dba3·CHCl3 EtN(iPr)2 THF 20 h/85 °C 10:1 85 60
3 Pd(OAc)2 EtN(iPr)2 THF 20 h/85 °C 11:1 83 99
4 Pd(OAc)2 proton sponge THF 20 h/60 °C 10:1 88 45
5 Pd(OAc)2 proton sponge THF 70 h/60 °C >1:50c 85 99
6 Pd(OAc)2 proton sponge THF 20 h/90 °C >1:50c 82 99

aEe's of major regioisomers are listed. bConversion by GC. cFormation of small amounts of dihydrofuran 20a was observed.

16. Subsequent acylation of (R)-phenylglycinol with (S)-16

afforded amide 17, which was subjected to cyclization in the

presence of mesyl chloride and a base providing dihydrooxa-

zole 18. Diastereoselective partial reduction of the dibromo-

cyclopropane moiety with zinc dust in glacial acetic acid

produced a 1:4 mixture of trans- and cis-bromocyclopropanes

19, which were separated by column chromatography. Lithium

to halogen exchange followed by trapping of the resulting

cyclopropyllithium species with chlorophosphine produced

ligand L1 (Scheme 3).

Ligand L1 once obtained, was tested in the asymmetric aryl-

ation reaction of 2,3-dihydrofuran under various reaction condi-

tions (Table 1). It was found that the reaction proceeded effi-

ciently, yet with only moderate enantioselectivity, in the pres-

ence of palladium acetate and Hünig’s base (Table 1, entry 3).

Interestingly, the employment of proton sponge as a base

resulted in significant isomerization of product 3a into the more

thermodynamically stable dihydrofurans 4a and 20a. Close

monitoring of the reaction by chiral GC revealed, that the

initially formation of “normal” product 3a is observed (Table 1,

entry 4); however, by the time when starting material 1 was

completely consumed, the entire amount of 3a produced was

transformed into 4a (Table 1, entry 5). Remarkably, the

absolute configuration at C2 did not change at all through the

reaction course; moreover, the optical purity of both products

3a and 4a remained constant (Table 1, entries 4 and 5). This

feature makes this isomerization mechanistically distinct from

the one reported by Hayashi (vide supra).

To better understand the factors affecting the selectivity and

efficiency of the asymmetric arylation, we have prepared two

more analogues of L1: ligand L2, possessing a diphenylphos-

phanyl group and ligand L3 derived from tert-leucinol

(Figure 3). Not surprisingly, installation of the less hindered

phosphorus moiety in L2 negatively affected the asymmetric

induction: the corresponding product 3a was obtained in only

78–79% ee (Table 2, entries 3 and 4). However, in contrast to

L1 (Table 2, entries 1 and 2) the selectivity toward 3a in the

reaction using L2 remained high, regardless of the base used.

Figure 3: PHOX ligands with chiral cyclopropyl backbone employed in
this study.

Modification of the dihydrooxazole moiety by installation of a

bulky tert-butyl group was pursued in attempt to improve the

enantioinduction of our catalytic system. Indeed, a number of

previously reported PHOX ligands derived from tert-leucinol

were shown to provide superior enantioselectivities compared

to their analogues obtained from less bulky amino alcohols

[54,57,59]. However, the arylation carried out in the presence of
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Table 2: Screening of L1–L3 in the asymmetric Heck arylation of dihydrofuran 1.

Entry Ligand Base 3a:4a ee, %a conv, %b

1 L1c EtN(iPr)2 11:1 83 99
2 L1c proton sponge >1:50 82 99
3 L2 EtN(iPr)2 20:1 79 99
4 L2 proton sponge 15:1 78 99
5 L3 EtN(iPr)2 7:1 87 35
6 L3 proton sponge 1.4:1 84d 80

aEnantioselectivity of a major product. bConversions by GC. cResults from Table 1. dEnantioselectivity of product (R)-4a was 80%.

Figure 4: X-ray structures of complexes (L1)PdCl2 (left) and (L4)PdCl2 (right). These structures were originally communicated in [64].

L3 proceeded much more sluggishly (Table 2, entries 5 and 6),

and allowed for only insignificant improvement in enantio-

selectivity (84–87% ee). Most remarkably, the same (R)-enan-

tiomer of product 3 was obtained, despite the opposite absolute

configuration of L3 with respect to L1 (Figure 3). In other

words, switching from Ph to t-Bu substituent in the dihydrooxa-

zole ring of the ligand resulted in a reversal of enantio-

selectivity.

Such an unexpected change in the catalyst selectivity motivated

us to perform structural analysis of the key intermediate

complexes invoked in the catalytic cycle of the Heck arylation.

First, we assessed the possibility of conformational equilibrium

for the six-membered arylpalladium species bearing L1

(Scheme 4). The non-planar six-membered palladacycle [66-69]

can potentially adopt one of two conformations: I1, in which

the syn-tert-butyl substituent at phosphorus assumes a pseudo-

equatorial position, whereas the anti-tert-butyl substituent is

Scheme 4: Conformational equilibrium in cationic arylpalladium(II)
complexes with chiral ligand L1.

pseudo-axial; and I2, where this relationship is reversed

(Scheme 4). Analysis of these two conformations suggests that

steric repulsions between the axial syn-substituent and the meth-

ylene group in cyclopropane makes conformation I2 thermody-

namically disfavored compared to I1. This hypothesis was also

supported by a single crystal X-ray analysis of (L1)PdCl2 com-

plex (Figure 4). The resolved crystal structure clearly shows

that the syn-(C14) and anti-substituent (C18) at phosphorus
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Scheme 5: For discussion on asymmetric induction imparted by chiral ligands L1 and L2 (originally published in [64]).

Scheme 6: For discussion on asymmetric induction imparted by chiral ligands L3 (originally published in [64]).

adopt a pseudo-equatorial and a pseudo-axial position, respect-

ively. It would be reasonable to assume that the strained and

rigid cyclopropyl backbone renders the six-membered pallada-

cycle particularly inflexible, thus significantly suppressing con-

formational fluctuations throughout the catalytic cycle. Further-

more, coordination of the soft π-ligand dihydrofuran should

take place predominantly trans to a soft phosphorus atom [70-

72] (Scheme 5). In this case, the re-face approach (I4) is

encumbered by a large pseudo-axial tert-butyl group, while the

si-face approach (I3) is also somewhat hindered by a pseudo-

axial syn-phenyl substituent in dihydrooxazole ring. As a result,

the (R)-enantiomer of the product was predominantly formed,

albeit with moderate enantioselectivity. Analogously, in the

intermediate I5 derived from chiral ligand L2, the less bulky

pseudo-axial phenyl substituent at phosphorus blocks the

re-face approach even less efficiently, which ultimately results

in a further decrease of enantioselectivity (Scheme 5).

The reversal of enantioselectivity observed in the reaction

carried out in the presence of L3 was explained in a similar

fashion (Table 2, entries 5 and 6, Scheme 6). Thus, a bulky tert-

butyl group in the dihydrooxazole ring creates the increased
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steric hindrance, which does not allow for the si-face approach

resulting in the reaction proceeding predominantly from the

re-face, providing the (S)-enantiomer of 3 (Scheme 6). The fact

that in both intermediates I7 and I8 dihydrofuran experiences

certain impediment on approach to palladium may also be re-

sponsible for the observed decrease in the reaction rate.

Based on this analysis, we rationalized that the “wrong” rela-

tive configuration of the stereogenic centers in ligands L1, L2

and L3 could be responsible for the observed marginal enantio-

selectivity of the corresponding catalytic systems. We envi-

sioned that inverting the absolute configuration of the asym-

metric center at C4 in the dihydrooxazole ring might poten-

tially help to improve the enantioselectivity of the arylation

reaction. Indeed, it is reasonable to propose that the inversion of

the stereogenic center in the dihydrooxazole ring should not

significantly affect the thermodynamic equilibrium of the

corresponding palladacycle conformations I9 and I10

(Scheme 7), as compared to I1 and I2 (Scheme 4). Thus, the

cationic palladacycle with (S,S,S)-ligand L4 would still predom-

inantly adopt conformation I9 to avoid the unfavorable steric

interaction between the pseudo-axial syn-tert-butyl group and

the methylene group of the cyclopropane (Scheme 7). Accord-

ingly, a synergistic steric effect of both the axial P–t-Bu group

and a bulky substituent at C4 in dihydrooxazolyl moiety

observed in the alternative (S,S,S)-configuration of the ligand

would now provide efficient blocking of the both bottom quad-

rants thereby completely averting the re-face attack (I12,

Scheme 8). On the other hand, the si-face attack should become

more favorable after the removal of a bulky group obstructing

the top right quadrant (I11, Scheme 8 vs I3, Scheme 5). Ulti-

mately, if the above assumptions are correct, this change should

result in enhanced enantioselectivity of the asymmetric aryl-

ation in the presence of ligand L4 in favor of the (R)-enan-

tiomer of the product 3.

Scheme 7: Conformational equilibrium in cationic arylpalladium(II)
complexes with chiral ligand L4.

With this idea in mind, we prepared a new series of ligands with

the (S,S,S)-absolute configuration using the synthetic approach

described above (Scheme 3), starting from acid chloride (S)-16

and (S)-phenylglycinol. Additional diversification of the ligand

structure was achieved by varying the chlorophosphine source.

Thus, employment of di-tert-butylchlorophosphine, chlorodicy-

clohexylphosphine, and chlorodiphenylphosphine at the last

step of the sequence provided ligands L4, L5, and L6, respect-

ively (Figure 3). Crystallographic data obtained for the

(L4)PdCl2 complex (Figure 4) completely confirmed the prefer-

ence of conformation I9 vs I10 (Scheme 7). It should be

pointed out, that the resolved crystal structure of (L4)PdCl2

complex shows four sets of crystallographically independent

molecules. However, all of them have nearly identical pallada-

cycle conformations with the molecule shown in Figure 4 [64].

An overlay of X-ray structures obtained for (L1)PdCl2 and

(L4)PdCl2 complexes demonstrated that all atoms of the

palladacycle, cyclopropyl ring, and both tert-butyl substituents

can be almost perfectly superimposed, which for both ligand

configurations, confirms the strong preference of a con-

formation in which the syn-tert-Bu substituent (C14) and the

anti-tert-Bu substituent (C18) at phosphorus assume pseudo-

equatorial and pseudo-axial positions, respectively. Remark-

ably, X-ray analysis has also demonstrated that the phenyl

substituent at C4 of dihydrooxazole ring adopts a pseudo-axial

position thereby completely blocking any potential re-face

attack (Scheme 8).

Ligands L4, L5, and L6 once obtained were tested in the asym-

metric arylation of dihydrofuran 1 (Table 3). Gratifyingly, right

along with our expectations, the entire series of (S,S,S)-ligands

L4–L6 not only provided a significant improvement in enantio-

selectivity, but also helped to suppress the unwanted isomeriza-

tion of 3 into 4, as compared to the diastereomeric ligand series

(L1–L3, Table 2). Remarkably, changing the absolute configur-

ation of the stereocenter in the dihydrooxazole ring did not

cause the change of the absolute configuration of the product.

This is in contrast to the reactions performed using most known

PHOX ligands, in which configuration of the oxazoline moiety

usually determines the stereochemical outcome of the reaction

(however, in the reactions using PHOX ligands bearing a very

bulky planar or axially chiral backbone, the enantiomeric

outcome is controlled by the absolute configuration of the back-

bone rather than that of the oxazoline ring; for discussion, see

[15]). Thus, employment of L4 and L5 afforded dihydrofuran

(R)-3 with very high enantioselectivity regardless of the base

used (Table 3, entries 1–6); however, the reactions proceeded

more sluggishly in the presence of Hünig’s base (Table 3,

entries 2 and 5). Employment of proton sponge helped boost the

reaction rate in the arylation catalyzed by both L4 and L5

(Table 3, entries 3 and 6). Yet, significant isomerization of 3

into 4 was observed with this base when the reaction catalyzed

by Pd/L4 complex was allowed to run for an additional 20 h

(Table 3, note c). Employment of the diphenylphosphanyl

ligand L6 provided lower enantioselectivity (Table 3, entries 7



Beilstein J. Org. Chem. 2014, 10, 1536–1548.

1543

Scheme 8: For discussion on asymmetric induction imparted by chiral ligands L4 (originally published in [64]).

Table 3: Screening of L4–L6 in the asymmetric Heck arylation reaction.

Entry Ligand Base 3a:4a ee (3a), % Conv, %a

1 L4 EtN(iPr)2 >50:1 98 53
2 L4 EtN(iPr)2 16:1 98 97b

3 L4 proton sponge >50:1c 98 74
4 L5 EtN(iPr)2 >50:1 94 71
5 L5 EtN(iPr)2 40:1 94 90b

6 L5 proton sponge 29:1 95 99
7 L6 EtN(iPr)2 16:1 88 76
8 L6 proton sponge >50:1 86 83

aConversions by GC. bConversion after 2 days at 85 °C. cWhen the reaction was allowed to stir for an additional 20 h, the product ratio changed to
2:1. The enantioselectivities of products (R)-3a and (R)-4a in this case were found to be 98% and 97%, respectively.

and 8), which can be attributed to decreased steric demands

created by phenyl groups at phosphorus as compared to the tert-

butyl (L4) and cyclohexyl (L5) substituents.

The different tendencies of Pd/L1 and Pd/L4 catalyst systems to

promote isomerization of product 3 into 4 can be rationalized as

follows. As discussed above (Scheme 2), the isomerization

process involves reversible hydropalladation of the double bond

of product 3. The migration of the double bond can be realized

only when hydropalladation of 3 occurs with addition of palla-

dium to C4 (Scheme 9, path A), whereas the opposite regiose-

lectivity of hydropalladation would ultimately lead, after the

subsequent β-hydride elimination, back to compound 3

(Scheme 9, path B). The diastereoselectivity of the hydropalla-

dation of 3 by Pd/L1 hydride species I13 is controlled as shown

in Scheme 10. Thus, it seems impossible to realize the si-face

approach of palladium hydride species I13 to the double bond

of 3 due to severe steric hindrance between the di(tert-

butyl)phospanyl group of the ligand and the aryl substituent in 3

on one side, and between the phenyl substituent in dihydrooxa-

zole ring and C5-methylene of dihydrofuran 3 on the other (I15,

Scheme 10). However, the absence of any significant steric

interference upon alternative re-face approach makes this alter-

native mechanistic channel available for isomerization (I14,

Scheme 10).

Two potential pathways for hydropalladation of 3 by the

diastereomeric Pd/L4 hydride species I16 are shown in

Scheme 11. In conjunction with L1-derived complex I15

(Scheme 10), complex I18 produced via the si-face approach
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Scheme 9: Mechanism of migration of C=C double bond leading to isomerization of product 3 into product 4.

Scheme 10: For discussion on isomerization 3→4 imparted by Pd/L1 complex (originally published in [64]).

Scheme 11: For discussion on isomerization 3→4 imparted by Pd/L4 complex (originally published in [64]).

should be highly disfavored (Scheme 11). In this case, however,

an alternative complex I17 resulting from the re-face attack

should also experience steric repulsion between the C5-meth-

ylene of dihydrofuran 3 and a pseudo-equatorial phenyl

substituent in dihydrooxazole ring (Scheme 11). Accordingly,

complex I17 should be much more unfavorable compared to

L1-derived complex I14, where such interaction does not occur

(Scheme 10). As a result, both mechanistic channels for isomer-

ization of compound 3 into 4 should be suppressed in this case.

It should be mentioned, however, that electronic density at the

phosphine moiety of the ligand also notably affects the propen-

sity of the corresponding catalyst to promote the isomerization.

Thus, our experiments indicate that in the series of di(tert-

butyl)-, dicyclohexyl-, and diphenylphosphanyl-containing

ligands (L4→L6), the former has the highest tendency to in-

duce isomerization while the latter has the lowest (Table 3). A
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Table 4: Asymmetric arylation of dihydrofuran with aryl tiflates.

Entry Aryl Ligand/Base Time, h 3:4 ee (3), % Conv, %a

1 p-Me-C6H4 2b L4/Hünig’s base 48 16:1 99 96
2 p-MeO-C6H4 2c L4/Hünig’s base 20 17:1 98 98
3 p-CF3-C6H4 2d L4/Hünig’s base 48 >50:1 98 58
4 1-Nphth 2e L4/Hünig’s base 48 18:1 98 70b

5 2-Nphth 2f L4/Hünig’s base 20 >50:1 98 32b

6 p-Me-C6H4 2b L5/proton sponge 6 39:1 95 93
7 p-MeO-C6H4 2c L5/proton sponge 6 35:1 92 99
8 p-CF3-C6H4 2d L5/proton sponge 20 42:1 91 95
9 1-Nphth 2e L5/proton sponge 6 31:1 96 94b

10 2-Nphth 2f L5/proton sponge 20 17:1 87 100c

aConversion by GC. bFormation of ca.10% of naphthalene was observed. cFormation of ca. 20% of naphthalene was observed.

Table 5: Evaluation of Ligands L1–L6 in the intermolecular asymmetric Heck reaction of phenyl triflate (2a) with cyclopentene (19).

Entry Ligand 22:23 ee (22), % Conv, %a Yield, %b

1 L1 12:1 81 99 85
2 L2 15:1 86 95 80
3 L3 13:1 82 15 ND
4 L4 27:1 92 32 ND
5 L5 44:1 89 96 80
6 L6 40:1 80 60 ND

aConversion by GC. bIsolated yields, obtained by standard aqueous work-up of the reaction mixture, followed by fractionation.

similar electronic effect was previously observed in the asym-

metric Heck arylation in the presence of diphosphine-oxazoline

ferrocenyl ligands [56].

Next, the most efficient ligands L4 and L5 were tested in the

asymmetric arylation of dihydrofuran 1 against various aryl

triflates (Table 4). It was found that all reactions catalyzed by

Pd/L4 provided excellent enantioselectivities (98–99%) regard-

less of the nature of the aryl triflate (Table 4, entries 1–5).

However, the reactions carried out in the presence of L4/

Hünig’s base combination proceeded much more sluggishly; as

a result, the selectivity toward formation of 3 was slightly lower

in these cases. Reactions performed in the presence of Pd/L5

catalyst and proton sponge proceeded much faster, albeit

providing somewhat lower ee's (Table 4, entries 6–10). In

contrast to the Pd/L4-catalyzed reactions, enantioselectivities in

this case varied slightly depending on the aryl triflate used, with

the highest value obtained from 1-naphthyl triflate (96%,

Table 4, entry 9) and the lowest from 2-naphthyl triflate (87%,

Table 4, entry 10). Interestingly, the electronic nature of the aryl

triflate had a pronounced effect on the reaction rate, which is

best seen in the Pd/L5 series of catalyzed reactions. Thus, elec-

tron-rich aryl triflates (Table 4, entries 6, 7, and 9) reacted much

faster than the electron-poor analog 2d (Table 4, entry 8).

Furthermore, a remarkable difference between the reactivity of

1- and 2-naphthyl triflates was also observed, suggesting the

reaction is also sensitive to sterics (Table 4, entries 9 and 10).

We also tested all new ligands L1–L6 in the asymmetric Heck

arylation of cyclopentene (Table 5). Initial experiments
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conducted under the conditions optimized for arylation of dihy-

drofuran 1 provided no reaction with cyclopentene 21. Addi-

tional optimization revealed that reasonable reaction rates can

be achieved only in the presence of Pd(dba)2 catalyst and proton

sponge. It should be mentioned that employment of

Pd2(dba)3·CHCl3 catalyst in place of Pd(dba)2 provided no

reaction. Generally, the enantioselectivities obtained in this

transformation (Table 5) were somewhat lower than those

obtained in the arylation of dihydrofuran (Table 2 and Table 3)

for all ligands tested except L4. Notably, similarly to the aryl-

ation of dihydrofuran (Table 2 and Table 3), the isomerization

rates (22→23) in this transformation were significantly lower in

the reactions carried out in the presence of ligands with the

(S,S,S) absolute configuration (L4–L6, Table 5, entries 4–6), as

compared to the ligands in the diastereomeric series (L1–L3,

Table 5, entries 1–3).

Conclusion
In conclusion, a series of novel PHOX ligands featuring a chiral

cyclopropyl backbone have been synthesized and examined in

the intermolecular asymmetric Heck arylation of cyclic olefins.

By lowering degrees of freedom in the catalyst structure

through the introduction of additional conformation constrains,

we have created a model catalytic system with predictable,

tuneable and easily adjustable properties. Structure–activity

relationship studies allowed for identifying the key topological

and stereochemical features of the ligands, responsible for

achieving high enantioselectivity and for suppressing product

isomerization. This has resulted in the development of efficient

catalytic systems demonstrating excellent enantioselectivities in

the asymmetric arylation of dihydrofuran with various aryl

triflates. It was also shown that the product isomerization in the

presence of these ligands has a different nature from that

reported previously using chiral diphosphine ligands. Further-

more, a number of factors were shown to affect the isomeriza-

tion rate including the absolute configuration of the ligand, its

electronic properties, and the base employed.
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