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Abstract: Cadmium (Cd), as a heavy metal, presents substantial biological toxicity and has harmful
effects on human health. To lower the ingress levels of human Cd, it is necessary for Cd content
in food crops to be reduced, which is of considerable significance for ensuring food safety. This
review will summarize the genetic traits of Cd accumulation in rice and examine the mechanism of
Cd uptake and translocation in rice. The status of genes related to Cd stress and Cd accumulation
in rice in recent years will be summarized, and the genes related to Cd accumulation in rice will
be classified according to their functions. In addition, an overview of quantitative trait loci (QTLs)
mapping populations in rice will be introduced, aiming to provide a theoretical reference for the
breeding of rice varieties with low Cd accumulation. Finally, existing problems and prospects will be
put forward.

Keywords: cadmium accumulation; absorption and transport; QTL location; mapping population;
rice (Oryza sativa L.)

1. Introduction

Cadmium (Cd) is a soil contaminant and with a high mobility in living organisms, and is
characterized as a toxic heavy metal [1,2]. In China, about 2.786 × 109 m2 of agricultural land is
contaminated by Cd [3]. Frequent applications of nitrogen fertilizer in the agricultural land of many
areas of China have resulted in more acidic soil, and acidic soil means that cadmium is more easily
absorbed by plants [4]. Rice (Oryza sativa L.) is the main food for more than half of the world’s
population. Cd is easily transferred from soil to rice and accumulates in rice plants and grains [2,3],
and is then enriched in the human body through the food chain, thereby threatening human health [5–7],
and causing effects such as anemia, cancer, heart failure, hypertension, cerebral infarction, proteinuria,
severe lung damage, eye cataract formation, osteoporosis, emphysema, and renal insufficiency [8,9].
It is worth mentioning that Itai-itai disease, which occurred in Japan in the 1950s, was caused by the
long-term intake of cadmium-contaminated rice [10]. On average, weekly Cd accumulation was as
high as 3–4 mg kg−1 body weight in Japan at that time [11]. Between 1990 and 2015, the average
dietary Cd intake of the general population more than doubled in China [12,13]. Therefore, reducing
Cd uptake by crops, especially rice, is of great significance to food safety and human health.

The purpose of this review is to explore the mechanism of cadmium uptake and transport and
the genetic characteristics of Cd accumulation in rice, and to summarize the research status of genes
and QTLs related to cadmium stress and cadmium accumulation in rice. It has important guiding
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significance for breeding high-quality rice varieties with a low accumulation of Cd in grain and the
safe production of rice in mild and moderate Cd-contaminated soil.

2. Toxic Effects of Cadmium Exposure on Rice

Cd stress seriously affects rice germination and growth [2,3,14–18], and it was found that excessive
Cd exposure can not only significantly decrease the rice seed germination rate [14], but also cause
chlorosis and necrosis in rice plants during the vegetative stage [19,20]. Cd stress causes severe
physical and physiological changes in rice plants as it causes a reduction in the length; width; and
number of roots, shoots, and leaves. Furthermore, chlorophyll contents, stomatal conductance, and the
water use efficiency of rice are also significantly affected [3,17,18,21–23]. Cd also affects the absorption
and transport of essential nutrients in rice [15,16,18–20]. Additionally, Cd can be transported to rice
grains, reducing their yield, quality, and nutrients [15,16,24–27]. In general, Cd stress inhibits rice
growth [18,28–30].

Rice possesses some tolerance mechanisms to cadmium at physiological and molecular levels [31–35].
As root cell walls of the outermost layer have direct contact with the soil solution, this protects the
protoplasts against Cd toxicity [36–38]. Furthermore, plants reduce Cd translocation to the shoots by
immobilizing Cd in the cell walls and vacuoles of root cells, thus reducing their sensitivity and the
harm of Cd to another cellular organelle [39–42]. Several adenosine triphosphate (ATP)-binding cassette
(ABC) proteins have been reported to mediate vacuolar compartmentation of Cd-glutathione and/or
phytochelatin (PC) conjugates in Arabidopsis thaliana [43,44]. Rice OsPDR5/ABCG43 is likely to encode
ABC-type protein functions in Cd extrusion from the cytoplasm [45]. Overexpression of Cd transporter
OsHMA3 located in vacuole membranes in rice roots can increase the tolerance of rice to Cd and reduce
the accumulation of Cd in grains [46,47]. Exudates of roots contain metal chelators which play a role in
the adjustment of the rhizosphere pH and the metal chelating process [48]. Most of the chelated toxic
metals inside plants target vacuoles through metal detoxification processes [38,49]. Organic acids secreted
from roots, e.g., malate, citrate, etc., are involved in metal uptake, the long-distance transport of metal,
and the transport of metal into vacuoles [50,51]. It was found that chelators play a crucial role in keeping
Cd in the rice roots and form a barrier in Cd translocation [52].

Cd stress can induce plants to enhance their antioxidant defense system and regulate ion
homeostasis to improve their tolerance to Cd [32,53–58]. For example, Cd stress can induce plants
to increase the production of glutathione (GSH), abscisic acid (ABA), salicylic acid (SA), jasmonic
acid (JA), and nitric oxide (NO) [59–65]. Mitogen-activated protein kinase OsWJUMK1, OsMSRMK2,
OsMSRMK3, and OsMAPK2 can affect rice root growth under Cd stress by regulating auxin signal
changes [66–69]. Auxin transporter OsAUX1 has been reported to be involved in root development and
the Cd stress response in rice [34]. In addition, the concentration of iron and cadmium was positively
correlated during rice seedling growth [70]. It has been reported that increasing the supply of boron,
iron, zinc, silicon, or magnesium can reduce the accumulation and toxicity of cadmium in rice [71–76].

In addition, some genes related to Cd stress have been reported in rice (Table 1). OsHMA9 is a
copper efflux protein located in the plasma membrane, which may have a cadmium efflux function to
excrete Cd from root cells and reduce Cd accumulation in rice [77]. Knock-out of the low cadmium
gene (LCD) reduced the accumulation of cadmium and increased the growth of rice under the condition
of an excessive cadmium supply, and LCD may be a protein related to cadmium homeostasis [78].
Overexpression of OsCDT1 can increase the growth of Arabidopsis thaliana under cadmium treatment;
the cysteine-rich peptide encoded by OsCDT1 is possibly involved in rice Cd tolerance [79]. OsCLT1
probably mediates the export of γ-glutamylcysteine and glutathione from plastids to the cytoplasm,
which in turn affects As and Cd detoxification in rice [80].
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Table 1. Genes of Rice Reported to be Regulated During Cadmium (Cd)-Exposure.

Gene Chr. Physical Location (bp) Gene Name Function Reference

OsCDT3 1 4066623–4067218 Encoding a Cys-rich peptide Cd uptake inhibitor [79]

Ospdr9 1 24075065–24082181 Multidrug resistance ABC
transporter

Redox protection in Cd
stress [81]

OsWJUMK1 1 29398191–29402466 Mitogen-activated protein kinase Cd signal [82]

OsHsfA4a 1 31370413–31372729 Heat shock transcription factor gene Cd tolerance [83]

OsAUX1 1 36998334–37004685 Auxin transport protein Root development and Cd
stress response [34]

OsCLT1 1 42086484–42095424 CRT-like transporter 1 Cd tolerance [80]

OsLCD 1 42162592–42166462 Low cadmium Cd tolerance and
accumulation [78]

OsZIP1 1 42905566–42907474 Zinc- and iron-regulated transporter Cd and Zn transport [84,85]

ricMT 1 43047164–43047861 Metallothionein gene Cd tolerance [86]

OsCDT4 2 6078179–6079111 Encoding a Cys-rich peptide Cd uptake inhibitor [79]

OsNAAT1 2 11997094–12002633 Nicotinamide aminotransferase gene Cd accumulation [87]

CAL1 2 25190487–25191188 defensin-like protein Cd accumulation in leaf [88]

OsYSL2 2 26170387–26174970 Metal-nicotinamide transporter Cd translocation [89]

OsCd1 3 842577–846408 Major facilitator superfamily Cd uptake [90]

OsNramp2 3 5655157–5659147 Natural resistance-associated
macrophage protein

Cd transporter, Cd
accumulation [91]

OsMSRMK2 3 9847700–9850473 Mitogen-activated protein kinase Cd signal [67]

OsMTI-1b 3 9957335–9958362 Metallothionein-like protein 1B Cd tolerance [92]

PEZ1 3 20793053–20799805 Phenol efflux protein Cd accumulation [93]

OsCDT1/OsCCX2 3 25613825–25616179 Cation/calcium (Ca) exchanger 2 Cd tolerance and
translocation [79,94]

OsIRT2 3 26276301–26277206 Iron-regulated transporter Cd and Fe transporter [95]

OsIRT1 3 26286156–26292023 Iron-regulated transporter Cd and Fe transporter [95,96]
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Table 1. Cont.

Gene Chr. Physical Location (bp) Gene Name Function Reference

OsZIP3 4 31078200–31080734 Zinc- and iron-regulated transporter Cd accumulation [84]

OsMTP1 5 1675488–1679056 Metal tolerance protein gene Cd translocation [97]

OsZIP6 5 3807974–3810752 Zinc- and iron-regulated transporter Cd transport [98]

OsCDT5 5 4665325–4667853 Encoding a Cys-rich peptide Cd uptake inhibitor [79]

OsZIP7 5 6090801–6094068 Zinc- and iron-regulated transporter Cd and Zn accumulation [99]

OsPCS2 6 167367–174319 Plant chelatase synthase 2 Cd tolerance [100]

OsCDT2 6 2261681–2263972 Encoding a Cys-rich peptide Cd uptake inhibitor [79]

OsLCT1 6 22566775–22571982 Low affinity cation transporter Cd transporter in phloem [101,102]

OsHMA9 6 27517100–27523604 P-Type Heavy Metal ATPase Cd efflux [77]

OsMSRMK3 6 29398191–29402466 Mitogen-activated protein kinase Cd signal [82]

OsHMA2 6 29477949–29480905 P-Type Heavy Metal ATPase Cd and Zn translocation [103,104]

OsHMA3 7 7405745–7409553 P-Type Heavy Metal ATPase Sequestration of Cd in
root [46,47,105]

OsNramp5 7 8871436–8878905 Natural resistance-associated
macrophage protein

Cd, Mn, and Fe
transporters [106–110]

OsNramp1 7 8966025–8970882 Natural resistance-associated
macrophage protein Cd and Fe transporters [111–113]

OsABCG43 7 20214025–20218702 ATP-binding cassette transporter Cd compartmentalization [45]

OsMAPK2 8 3307520–3310590 Mitogen-activated protein kinase Cd signal [68]

OsHIR1 8 19011814–19015998 Heavy metal-induced RING E3 ligase
1 Cd uptake [114]

SISAP1 9 18760704–18761836 Subspecies indica stress-associated
protein gene Cd tolerance [115]

OsPCR1 10 826309–824623 Plant cadmium resistance 1 Cd tolerance [116]

rgMT 11 28827746–28828439 Metallothionein-like protein Cd tolerance [117]

RCS1 12 26698650–26703087 Cytosolic cysteine synthase gene Cd complexation via
sulfur [118]
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3. Uptake and Transport Pathway of Cd in Rice

Cadmium is transported from the roots to shoots and then to grains through four steps: (i) uptake
by roots; (ii) transportation to shoots through loading to the xylem; (iii) distribution and transportation
through nodes; and (iv) transportation to grains through the phloem from leaf blades (Figure 1).
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Figure 1. A schematic of cadmium transport from the soil to grains in rice. Cadmium is absorbed from
the soil by the roots, and OsNramp1, OsNramp5, and OsCd1 mediate this process. OsHMA3 plays a key
role in cadmium segregation to vacuoles in root cells and thus negatively regulates cadmium xylem
loading. OsHMA2, OsCCX2, and CAL1 regulate cadmium transport to the xylem. OsLCT1 contributes
to cadmium remobilization from leaf blades via the phloem and is likely to play a part in intervascular
cadmium transfer at nodes.

3.1. Functional Analysis of Related Genes

Cd can enter rice plants through the uptake mechanism of essential elements such as Mn, Zn,
and Fe, etc. [106,107,119]. Fe2+ transporters OsIRT1 and OsIRT2 display Cd2+ influx activity in
yeast, which indicates that OsIRT1 and OsIRT2 may play a role in cadmium uptake in the root
system [95,120]. Overexpression of OsIRT1 significantly increased the accumulation of Cd in roots
and shoots in Murashige & Skoog (MS) medium containing excess Cd, but no obvious phenotype
was observed under field conditions, suggesting that OsIRT1 may be involved in cadmium uptake in
roots, but its contribution is largely affected by environmental conditions [96]. Oryza sativa Natural
Resistance-Associated Macrophage Protein 5 (OsNramp5), located at the plasma membrane of root
cells, was found to be the major transporter of Cd uptake in rice roots, responsible for the transport
of Cd from the soil solution to the root cells [106,107]. OsNramp5 is also an Mn transporter, and the
knock-out of OsNramp5 can significantly reduce the uptake and accumulation of cadmium in grains,
but also lead to the decrease of growth and yield due to manganese deficiency [107–109]. Recently,
Liu et al. [121] located a major QTL, qGMN7.1, according to the Mn concentration in the grains of a
recombinant inbred line (RILS) crossed between 93–11 (low grain Mn) and PA64s (high grain Mn). Fine
mapping delimited qGMN7.1 to a 49.3 kb region containing OsNRAMP5, and sequence variations in
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the OsNRAMP5 promoter caused changes in its transcript level and in grain Mn levels. Tang et al. [110]
reported that a series of new indica rice lines with low cadmium accumulation were developed by
knocking out the metal transporter OsNramp5 using the CRISPR/CAS9 system. OsNRAMP1, located
on the plasma membrane, also exhibits the activity of Cd transport, and participates in the uptake
and transport of Cd in root cells [111,112]. OsZIP1, a zinc-regulated/iron-regulated transporter-like
protein, expression in yeast can enhance its sensitivity to Cd [84], and the overexpression of OsZIP6
can increase the Cd uptake in X. laevis oocytes [98].

After root absorption, xylem-mediated Cd translocation from the roots to shoots is the main factor
determining the cadmium accumulation in shoots [122]. OsHMA2 and OsHMA3 were reported to
play a role in this process [46,103,123,124]. OsHMA2 participates in the transport of Cd from the roots
to shoots and plays an important role in controlling the distribution of Cd through the phloem to
developing tissues [103,104,123]. Compared with wild-type (WT) samples, the Cd concentration in
the shoots of an oshma2 mutant was significantly lower [104]. OsHMA3 plays a role in the vacuolar
sequestration of Cd in root cells, the overexpression of OsHMA3 reduces the Cd load in the xylem and
Cd accumulation in shoots, and the functional deficiency of OsHMA3 results in very high root-to-shoot
Cd translocation in rice [46,47,105,125]. Recent reports showed that OsCCX2, a putative cation/calcium
(Ca) exchanger, was localized in the plasma membrane and plays an important role in Cd transport
by impacting Cd root-to-shoot translocation and the Cd distribution in the shoot tissues, and the
knock-out of OsCCX2 resulted in a significant Cd reduction in the grains [94]. Tan et al. [99] reported
that OsZIP7 plays a key role in xylem-loading in roots and inter-vascular transfer in nodes to deliver
Zn and Cd upward in rice.

Nodes are the central organ of Cd transport from the xylem to phloem, and play an important
role in Cd transport to grains [126–128]. OsLCT1 is a Cd-efflux transporter on the plasma-membrane
involved in phloem Cd transport [101]. OsLCT1 expression was higher in leaf blades and nodes during
the reproductive stage, especially in node I. Compared with wild-type (WT), the Cd concentration
in phloem exudates and in grains of OsLCT1 RNAi plants decreased significantly, although the Cd
concentration in xylem sap did not differ. These results suggest that OsLCT1 in leaf blades functions
in Cd remobilization by the phloem, and in node I, OsLCT1 is likely to play a part in intervascular
Cd transfer from enlarged large vascular bundles to diffused vascular bundles, which connect to the
panicle [101,102]). The positions of cloned cadmium stress-related genes in rice chromosomes are
shown in Figure 2.

Figure 2. Positions of cloned cadmium stress-related genes in rice chromosomes.
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3.2. Location of Related QTLs

Rice varieties show obvious genetic variation in terms of their cadmium accumulation ability,
which is a valuable resource for dissecting functional alleles and genetic improvement [19,20,25].
However, only a few quantitative trait loci (QTLs) related to cadmium accumulation in rice have been
reported. OsHMA3, CAL1 (Cd Accumulation in Leaf 1), and OsCd1 are the only Cd-related QTLs
cloned so far. OsHMA3 encodes a cadmium transporter located in the vacuole membrane, which
transports cadmium into vacuoles for sequestration [105]. Loss of OsHMA3 function significantly
increased cadmium transport to rice shoots and grains [101,129]. On the other hand, the overexpression
of OsHMA3 can increase the tolerance of rice to Cd and reduce Cd accumulation in grains [46,105,119].
CAL1 (cadmium accumulation in leaf 1) was identified and cloned by Luo et al. [88] as a quantitative
trait locus (QTL) in rice, which explained 13% of the variation in leaf cadmium concentration in a
doubled haploid population. CAL1 regulates the root-to-shoot translocation of cadmium via the xylem
vessels, and knockout mutants of CAL1 significantly reduced the concentration of cadmium in rice
leaves [88]. Yan et al. [90] discovered that the gene OsCd1 belongs to the major facilitator superfamily
through genome-wide association studies (GWAS), which was associated with divergence in rice grain
Cd accumulation. Interestingly, the natural variation OsCd1V449 in Japonica, which is associated with a
reduced Cd transport ability and decreased grain Cd accumulation, shows a potential value in low-Cd
rice selection [90].

A series of QTLs related to rice varieties that control the Cd concentration in rice have been
reported (Table 2). Ishikawa et al. [130] obtained a mapping population consisting of 85 back-cross
inbred lines (BIL) from hybridization between a low-cadmium-accumulation variety of Japonica rice
(Sasanishiki) and a high-cadmium-accumulation variety of Indica rice (Habataki). Two QTLs were
located on chromosomes 2 and 7, separately, with an increased cadmium concentration in grains.
qGCd7 plays an important role in increasing the cadmium concentration in grains, which can explain
35.5% of phenotypic variation [130]. Kashiwagi et al. [131] identified two QTLs, known as qcd4–1 and
qcd4–2, affecting the cadmium concentration in shoots. Sato et al. [132] reported two QTLs controlling
the cadmium concentration in brown rice: qLCdG11 explained 9.4%–12.9% of phenotypic variation and
qLCdG3 explained 8.3%–13.9% of phenotypic variation. Yan et al. [133] constructed an recombinant
inbred lines (RIL) population of F7 to identify Cd accumulation and distribution. A total of five
main effect QTLs (scc10 was correlated with Cd accumulation in shoots; gcc3, gcc9, and gcc11 with Cd
accumulation in grains; and sgr5 with the Cd distribution ratio in shoots and roots) were detected.
Among them, sgr5 had the greatest effect on the distribution of Cd in grains. Abe et al. [134] used a
population consisting of 46 chromosome segment substitution lines (CSSL) to identify eight QTLs
related to the grain cadmium content by single-label analysis using ANOVA. The result showed that
qlGCd3 had a high F-test value. A recombinant inbred population derived from Xiang 743/Katy was
grown in Cd-polluted fields and used to map the QTLs for Cd accumulation in rice grains, and two
QTLs, qCd-2 and qCd-7, were identified in 2014 and 2015 [135]. Liu et al. [136] used 276 accessions with
416 K single nucleotide polymorphisms (SNPs) and performed a genome-wide association analysis of
grain Cd concentrations in rice grown in heavily multi-contaminated farmlands, and 17 QTLs were
found to be responsible for the grain Cd concentration.
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Table 2. Quantitative Trait Loci (QTLs) of Rice Reported to be Regulated during Cadmium (Cd)-Exposure.

Stage Parent Sources Population Marker Trait Chr. QTL Reference

Seedling stage Tainan1/Chunjiang06 119 DH, 3651
BC3F3 RFLP Cd accumulation in leaves 2 CAL1 [88]

Seedling stage Nipponbare/Anjana Dhan 965 F2 SSR Cd concentration in
shoots 7 OsHMA3 [105]

Seedling stage SNU-SG1/Suwon490 91 RIL 124 SSR Cd concentration in
shoots 10 scc10 [133]

Seedling stage Koshihikari/LAC23 46 CSSLs 345 SNP Cd concentration in
shoots 3 glGCd3 [134]

Seedling stage Anjana Dhan/Nipponbare 177 F2 SSR Root-to-shoot Cd
translocation 7 qCdT7 [137]

Seedling stage Badari Dhan/Shwe War 184 F2 141 SSR Cd concentration in
shoots 2,5,11 — [138]

Seedling stage JX17/ZYQ8 127 DH 160 RFLP,83 SSR Shoot/root rate of Cd
concentration 3 qSRR3 [139]

Seedling stage JX17/ZYQ8 127 DH 160 RFLP,83 SSR Cd concentration in roots
and shoots 6,7 qCDS7, qCDR6.1,

qCDR6.2 [139]

Seedling stage Azucena/Bala 79 RIL 164 SSR Cd concentration in leaves 1,3,6 qCd1, qCd3, qCd6, [140]

Bfore heading Kasalath/Nipponbare 98 BILs RFLP and SSR Cd concentration in leaves
and culms 4,11 qcd4–1, qcd4–2, qcd11 [131]

Mature period Sasanishiki/Habataki 85 BIL SSR Cd accumulation in grains 2,7 qGCd7 [130]

Mature period Fukuhibiki/LAC23 126 RIL 454 SNP Cd accumulation in grains 3,11 gLCdG3, gLCdG11 [132]

Mature period SNU-SG1/Suwon490 91 RIL 124 SSR Cd accumulation in grains 3,5,9,11 gcc3, sgr5, gcc9, gcc11 [133]

Mature period Xiang 743/Katy 115 RIL, SSR Cd accumulation in grains 2,7 qCd-2, qCd-7 [135]

Mature period Kasalath/Koshihikari 39CSSL 129 RFLP Cd accumulation in grains 3,6,8 — [141]

Mature period Koshihikari/Jarjan 103 BIL 169 SSR Cd accumulation in grains 7 — [142]

Mature period JX17/ZYQ8 127 DH 160 RFLP,83 SSR Cd accumulation in grains 3,6 gCdc3, gCdc6 [143]

Mature period 127 rice cultivars GWAS Cd accumulation in grains 3 OsCd1 [90]

Mature period 378 rice cultivars GWAS Cd accumulation in grains 3, 5 qCd3, qCd5.1, qCd5.2 [144]
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4. Future Perspectives

Cadmium is a kind of heavy metal that presents extreme biological toxicity. Cd accumulated
in rice can enter the food chain, thereby threatening human health [5–7]. Cadmium in rice can
be reduced by agronomic practices (including soil amendments, fertilizer management, water
management, and tillage management) and bioremediation (including phytoremediation and microbial
remediation) [18,145–150]. In addition, understanding the mechanism of cadmium translocation
and the factors affecting cadmium accumulation in rice are also important for formulating effective
strategies to reduce cadmium accumulation in rice. In recent years, some genes related to cadmium
transport in rice have been studied, and significant progress has been made in understanding the
mechanism of cadmium uptake and transport. In order to understand the mechanism of cadmium
transport in rice, it is necessary to identify more unknown transporters or other molecules.

Biotechnology offers a promising approach to reducing the Cd content in rice grains. Mutations
of the OsNramp5 gene result in obvious decreases in Cd uptake in roots and Cd accumulation in rice
grains [106,108,151]. Using the CRISPR/Cas9 gene editing technology to knock out OsNramp5 in both
parental lines, Tang et al. [110] generated a hybrid rice cultivar that accumulated very low levels of Cd
in the grain. Another target for gene editing is OsLCT1, which is involved in the phloem transport
of Cd from the vegetative tissues to the grains [101]. Knockdown of this gene by RNAi reduced
the grain Cd concentration by 30%–50% [101]. Overexpression of functional OsHMA3 in Nipponbare
decreased Cd translocation and Cd accumulation in rice grains [46,105]. Overexpression of OsHMA3
is a highly effective method for reducing Cd accumulation in Indica rice, and rice grains produced
using this approach are almost Cd-free, with little effect on the grain yield or essential micronutrient
concentrations [152].

However, commercial transgenic rice is not commonly accepted by the general public and
prohibited in many countries. Ishikawa et al. [151] produced three rice mutants by carbon
ion-beam irradiation, where cadmium was hardly detected in mutant seeds when planted in
cadmium-contaminated paddy fields and there was no significant difference between the mutant and
wild-type (WT) in agronomic traits, which could be directly applied to breeding projects. Another
possible strategy is marker-assisted breeding, which uses molecular markers to track the genetic
composition of rice and bred rice varieties. For example, identifying a low-cadmium-related QTL and
then introducing it into high-cadmium cultivars might be a viable approach [122]. However, only
a few of QTLs related to cadmium accumulation in rice have been cloned [90,105], and the natural
allele variation of grain cadmium accumulation differences among rice varieties has not been fully
explored. Further research is necessary to clone more QTLs for controlling grain Cd accumulation, thus
providing tools for the marker-assisted molecular breeding of rice cultivars with a low accumulation
of Cd in grains.
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