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A B S T R A C T

The current study proposes a green synthesis method for silver nanoparticles (Ag NPs) using various concen-
trations of Flos Sophorae Immaturus extract as reducing and capping agents. The UV-Visible (UV-Vis) spectroscopy,
X-ray Diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), X-ray Photoelectron Spectroscopy
(XPS), Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM) were used to characterize
resulting brown nanopowder. The as-prepared Ag NPs had a high negative zeta potential value of ~ -38 mv,
indicating the existence of electrostatic stabilization. The average sizes of ~27.8 nm, 28.5 nm, 34.3 nm and 36.5
nm were measured by TEM. Moreover, FTIR and XPS analyses validated the production and chemical composition
of Ag NPs from silver nitrate. The antibacterial activity of Ag NPs was examined against E. coli, P. aeruginosa, and
S. aureus using agar well diffusion and the minimum inhibitory concentration (MIC) method. The antibacterial
activity of the as-prepared Ag NPs from 4 mL extract was excellent against E. coli, P. aeruginosa, and S. aureus and
the MIC values were 31.250, 15.625, and 31.250 mg/L, respectively. Based on these results, this study proposes a
practical approach for the synthesis of Ag NPs in the industry and medical fields.
1. Introduction

Multidrug-Resistant (MDR) infections of microorganism pathogens
are becoming common due to the abuse of antimicrobials and natural
selection in the environment. The MDR bacteria genetically and bio-
chemically overcome antibiotics stress, posing major challenges for the
treatment of hospital and community-acquired infectious diseases [1, 2,
3]. For instance, E. coli, P. aeruginosa and S. aureus are resistant to
methicillin and penicillin and can cause serious risks of burns, urinary
tract infections, and post-operative infections [4, 5, 6, 7]. Therefore, it is
necessary to explore novel viable strategies against MDR pathogens for
public health. Presently, the introduction of nanomaterials with unique
properties, particularly metal nanoparticles, offers new prospects to
eradicate and treat the aforementioned diseases.

Among the metal nanoparticles, Ag NPs have been widely used as
antibacterial agents because of their broad-spectrum bactericidal prop-
erties against some common bacteria and low minimum inhibitory con-
centration (MIC) [8, 9]. In general, reducing agents and surfactants are
frequently used during the chemical synthesis of Ag NPs, to reduce silver
ions and control the growth of Ag NPs [10]. However, due to the
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involvement of these toxic compounds, chemical methods suffer various
deficiencies. Therefore, it is crucial to make more effort to explore
environmentally friendly methods for preparing Ag NPs.

Researchers are increasingly interested in biosynthetic methods since
they avoid toxic chemicals and involve simple steps [11, 12]. In com-
parison to other chemical methods, biosynthetic methods can synthesize
Ag NPs with controlled size and shape without using hazardous sub-
stances [9, 13]. Fungi, algae, bacteria, and plants, among others, may
currently synthesize Ag NPs [14]. The plant extract has been a better
choice among the different bio-tools owing to their abundant compo-
nents that can act as reducing as well as stabilizing agents. Thymus
algeriensis, Jasminum subtriplinerve Blume, and Cinnamomum camphora leaf
extracts were used to biosynthesize Ag NPs with higher antibacterial
activity [15, 16, 17]. Furthermore, the Flos Sophorae Immaturus extract
contains numerous polyhydroxy flavonoids with strong antioxidant ac-
tivity, which can act as reducing agents in the production of Ag NPs [18].

The objective of this study is to develop a simple approach to the
biosynthesis of Ag NPs. We successfully synthesized Ag NPs of different
sizes using varying amounts of Flos Sophorae Immaturus extract as
reducing and capping agents. A series of characterization techniques
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including Ultraviolet-Visible (UV-Vis) spectroscopy, X-ray Diffraction
(XRD), X-ray Photoelectron Spectroscopy (XPS), Fourier Transform
Infrared spectroscopy (FTIR) and Transmission Electron Microscopy
(TEM), were used to validate the properties of the biosynthesized Ag NPs.
The agar well diffusion and MIC methods were used to evaluate the
antibacterial activities of Ag NPs against E. coli, P. aeruginosa, and
S. aureus. This study will provide a cost-effective and environmentally
friendly approach to the synthesis of Ag NPs.

2. Materials and methods

2.1. Materials and chemicals

Flos Sophorae Immaturus was obtained from the traditional Chinese
medicine store, Chongqing. Rutin (>98.0%) was provided by Gelipu
Biotechnology Co. Ltd, Chengdu. Dimethyl sulfoxide (C2H6OS, DMSO)
was obtained from Titan Technology Co. Ltd, Shanghai. Methanol (HPLC
grade) was supplied by Honeywell Burdick & Jackson trading, Ltd,
Shanghai. Calcium hydroxide (Ca(OH)2) was supplied from Damao
Chemical Reagent Factory, Tianjin. Sodium tetraborate pentahydrate
(NaBH4⋅5H2O) and silver nitrate were purchased from Kelong Chemical
Reagent Factory, Chengdu. Agar was obtained from Chron Chemicals,
Ltd, Chengdu. Peptone, Beef extract, and Yeast extract were procured
from Aoboxing bio-tech Co. Ltd, Beijing. E. coli, P. aeruginosa, and
Figure 1. UV-Vis spectra of Ag NPs synthesized from different volumes
of extract.

Figure 2. XRD patterns (a), Zeta potential values (b) of Ag NP
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S. aureus bacterial strains were stored in our laboratory. Throughout the
experiments, double distilled water was used. All the reagents were used
without further purification.

2.2. Preparation of Flos Sophorae Immaturus extract and HPLC analysis

The dried Flos Sophorae Immaturuswere ground into a coarse powder.
A ratio of 20 g: 200 mL between Flos Sophorae Immaturus dosage and
freshly prepared 0.4% NaBH4 solution was used. After 1 h of simmering,
the pH of the mixture was adjusted to 8–9 with saturated Ca(OH)2 so-
lution. After cooling, the extract was vacuum filtered and stored at 4 �C
for further use. The main ingredient of the extract was detected by High
Performance Liquid Chromatography (HPLC). A reversed-phase column
(Sinopak, 5 μm C18, 150 mm � 4.6 mm, Elite, Dalian, China) was used
with an HPLC system (LC-20A, Shimadzu, Kyoto, Japan). The mobile
phase was methanol: water (40: 60 v/v) with acetic acid (1%) using
isocratic elution at 1.0 mL/min. Chromatograms were taken at 257 nm
with a run time of 20 min.

2.3. Biosynthesis of Ag NPs

Different volumes of Flos Sophorae Immaturus extract (4, 8, 12, 16 mL)
and 40 mL AgNO3 solution (4 mM) were added to beakers, respectively.
All reactions were performed at room temperature for 5 h in the dark.
The production of Ag NPs was noticed as the colloidal solution turned to
dark brown color. Subsequently, the samples were centrifuged at 10000
rpm for 3 min and the precipitate was dried in an oven.

2.4. Characterization of Ag NPs

UV-Vis spectroscopy, XRD, DLS, TEM, FTIR, and XPS were used to
characterize the structure, morphology, and elemental composition of
the as-prepared samples. Spectrophotometer UV 2600 (Tianmei Scien-
tific Instrument Co. Ltd, China) was used to measure UV-Vis spectra of Ag
NPs over a wavelength range of 330–800 nm. To investigate the crys-
tallographic character of Ag NPs, XRD patterns were obtained in the 2θ
range from 5� to 85� by an X-ray diffractometer (D8 ADVANCE, Bruker,
Germany) using Cu Ka radiation (λ ¼ 1.5406 Å). At room temperature,
the Zeta potential of Ag NPs was measured by Brookhaven 90 Plus Par-
ticle Size Analyzer (Brookhaven Instruments Corporation, American).
TEM (JEM2100, JEOL, Japan) was used to examine the morphology and
size of Ag NPs at an accelerating voltage of 200 kV. The surface
composition of Ag NPs was identified by FTIR (Spectrum Two, Perki-
nElmer, USA) in the range of 4000–400 cm�1 and XPS (ESCALAB 250Xi,
Thermo-VG Scientific, USA) using Al-Ka (1486.6 eV) radiation.
s synthesized from different additional volumes of extract.
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2.5. Antibacterial activity of Ag NPs

To examine the antibacterial activity of the as-prepared Ag NPs against
E. coli, P. aeruginosa, and S. aureus, the agarwell diffusionmethodwas used
Figure 3. TEM images of Ag NPs synthesized by 4 mL (a, b), 8 mL (c, d), 12 mL (e, f)
particles size distribution, counts ¼ 100.
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to culture E. coli and S. aureus grew in Luria-Bertani (LB) nutrient solution
and incubated at 37 �C for 6 h,whereasP. aeruginosawas grown inNutrient
Broth and incubated at 30 �C for 6 h. The bacteria were then diluted to a
5–8�107 colony-forming unit (CFU/mL) with sterilized water.
, and 16 mL (g, h) extract, the insets are the histograms of the corresponding Ag



Figure 5. FTIR spectra of extract (purple line) and Ag NPs synthesized by
adding 4 mL (black line), 8 mL (red line), 12 mL (blue line), and 16 mL (green
line) extract.
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The 100 μL bacterial suspensions (5–8 � 107 CFU/mL) of E. coli and
S. aureus were pipetted and spread on the surface of Petri plates con-
taining LB medium. Similarly, 100 μL bacterial suspensions (5–8 � 107

CFU/mL) of P. aeruginosa were swabbed on the surface of Petri plates
containing Nutrient Agar Broth medium. Then, wells with 8.0 mm
diameter were made on the plate, and 100 μL of Ag NPs solution (2 mg/
mL) and 50% DMSO (negative control) were added to respective wells.
After 12 h of incubation at 37 �C, the Zone of Inhibition (ZOI) was
measured using a Vernier caliper. All the experiments were repeated 5
times independently, and the data were calculated as means � SD.

The broth microdilution method was used to determine the minimum
inhibitory concentration (MIC) [19]. Serial dilutions of Ag NPs were
prepared using a broth medium. The 100 μL of various concentrations of
Ag NPs (500–3.75 μg/mL) were transferred into 96-well microplates and
then mixed with 10 μL of E. coli, P. aeruginosa, and S. aureus (5–8 � 105

CFU/mL) [20]. The mixed solutions were incubated at 37 �C for 16 h.
Finally, UV-Vis spectroscopy was used to measure the absorbance of
wells at 600 nm, and the OD600 measurement indicates the bacterial
growth kinetics in a broth medium [21]. The MIC was considered to be
the lowest concentration that inhibits visible bacterial growth, and all the
experiments were done in triplicate.

3. Results and discussion

3.1. Characterization

UV-Vis spectroscopy was used to monitor the formation of Ag NPs
from different amounts of extract (4, 8, 12, 16 mL). The single and strong
peak around 450 nm shown in Figure 1 indicates the bioreduction of Agþ

ions to Ag0 by extract [22, 23]. Moreover, when the additional volume
was more than 8 mL, the surface plasmon resonance (SPR) absorption
peaks of Ag NPs showed a slight red-shift (from 450 to 465 nm), which
can be ascribed to the increase in the size of Ag NPs [24]. It could be due
to the interaction between capping molecules attached to the surface of
particles and the secondary reduction process on the surface of the
accomplished nuclei [25].

Figure 2a shows the XRD patterns of the synthesized Ag NPs. It dis-
plays five distinct diffraction peaks at 81.61�, 77.42�, 64.33�, 44.35�, and
38.10�, corresponding to the diffractions of (222) (311) (220) (200), and
Figure 4. Chromatograms
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(111) lattice planes of face-centered cubic silver (JCPDS card No.
04–0783) [26]. The full width at half maximum (FWHM) of the (111)
lattice plane was determined by MDI Jade 6.5 software. When the extract
volume addition increased to 12 and 16 mL, FWHM become significantly
narrower. This may be attributed to the increase in size of Ag NPs, which
is consistent with the UV-Vis analysis [27].

The stability of Ag NPs was predicted by Zeta potential analysis. The
zeta potential values of the as-prepared Ag NPs are displayed in
Figure 2b, and it ranges from -37.89 � 0.12 mV to -38.77 � 0.31 mV,
confirming the negative-charged groups on the surface of Ag NPs. The
negatively charged surface aids in preventing the aggregation of Ag NPs
and controlling the shape and size of Ag NPs [22].

The size and morphology of nanoparticles were characterized by TEM
analysis. As illustrated in Figure 3, the images show the agglomeration of
small grains and some dispersed nanoparticles, which corresponds with
of rutin and extract.



Figure 6. XPS spectrum of Ag NPs synthesized from 4 mL extract. Survey scan of Ag NPs (a), XPS high-resolution spectrum of Ag3d region (b), O1s region (c) and C1s
region (d).

Figure 7. The mechanism for the greed synthesis of Ag NPs using Flos Sophorae Immaturus extract.

Table 1. Antibacterial activity of Ag NPs synthesized from different volumes of
extract.

Pathogenic
microorganisms

Zone of Inhibition (mm)

4 mL 8 mL 12 mL 16 mL

E. coli 16.28 � 0.55 15.56 � 0.91 15.42 � 0.88 14.06 � 0.83

S. aureus 16.28 � 0.77 13.82 � 1.25 13.44 � 1.34 12.28 � 0.74

P. aeruginosa 14.42 � 0.08 12.98 � 0.61 13.06 � 0.94 12.76 � 0.94
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the previous findings [28]. The average size of the synthesized Ag NPs
from 4mL, 8 mL, 12 mL, and 16 mL extracts are ~27.8 nm, 28.5 nm, 34.3
nm and 36.5 nm, respectively. The particle size gradually increased with
an increasing volume of the extract, confirming the response observed in
the SPR band, as shown in Figure 1.

The rutin was discovered to be the primary component in Flos Soph-
orae Immaturus [29]. In this study, HPLC was used to identify rutin in Flos
Sophorae Immaturus extract. Chromatograms of rutin and extract are
presented in Figure 4. At the same chromatographic condition, the
retention time of the main component in the extract is consistent with
rutin. Therefore, rutin was the main component of the Flos Sophorae
Immaturus extract.

Figure 5 shows the FTIR spectra of Flos Sophorae Immaturus extract
and the green synthesized Ag NPs by adding different volumes of extract.
5

According to the spectra of Ag NPs, the peak at 3269 cm�1, 2910 cm�1,
1628 cm�1 and 1009 cm�1 correspond to O–H stretching, C–H stretching
vibration of CH2, C¼O stretching, and C–O–C stretching, which consis-
tent with the spectrum of Flos Sophorae Immaturus extract. The FTIR
spectra suggest that rutin in extract acts as a capping and reducing agent.



Figure 8. The ZOI of the synthesized Ag NPs against E. coli, S. aureus, and
P. aeruginosa (Errors bars represent the standard deviation of the mean, n ¼ 5).

Table 2. Comparison of MIC of Ag NPs synthesized from different plants against
different pathogens.

Plants Diameter
(nm)

Pathogen MIC
(μg/mL)

References

Cacumen platycladi 60 E. coli 40 [38]

S. aureus 80

Decaspermum
parviflorum

8–15 E. coli 31.25 [22]

S. aureus 62.50

p. aeruginosa 15.62

Xanthostemon
chrysanthus

6–25 E. coli 31.25

S. aureus 15.62

p. aeruginosa 62.50

Syzygium
campanulatum

24–55 E. coli 31.25

S. aureus 62.50

p. aeruginosa 31.25

Carya illinoinensis
leaf

20.34 S. aureus 128 [39]

L. monocytogenes 64

E. coli 16

p. aeruginosa 32

Flos Sophorae
Immaturus

27.8 E. coli 31.250 This work

S. aureus 31.250

p. aeruginosa 15.625
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The detailed chemical states of the Ag NPs synthesized from 4 mL
extract were further analyzed by XPS. Some clear peaks are assigned to
Ag3d, C1s, and O1s as illustrated in Figure 6a. The high-resolution
spectra of Ag3d are shown in Figure 6b, and the binding energies of
Ag3d3/2 and Ag3d5/2 are 374.43 and 368.41 eV, respectively. The dif-
ference of ~6.0 eV between Ag3d3/2 and Ag3d5/2 indicates the formation
of Ag NPs [30, 31]. Additionally, the high-resolution O1s and C1s spectra
indicate the presence of biocompounds derived from the extract. The
high-resolution O1s spectrum (Figure 6c) displays a broad peak decon-
voluted into three subpeaks at ~531.60, ~532.58, and ~533.23 eV
corresponding to C¼O, C–OH, and C–O–C [32, 33]. These functional
groups are derived from the phytochemicals of Flos Sophorae Immaturus
extract. The C1s spectrum of the synthesized Ag NPs is deconvoluted into
four subpeaks, with binding energies of C¼C (sp2 carbon), C–C (sp3
carbon), C–O and C¼O are ~284.67, ~285.15, ~286.54, and ~288.28
eV, respectively (Figure 6d) [34, 35].

3.2. Mechanism for the green synthesis of Ag NPs

The green synthesized Ag NPs can reduce the use of organic solvents
as well as avoid the production of toxic waste. Rutin is the primary
component in Flos Sophorae Immaturus extract as per HPLC and FTIR
studies, and it acts as a capping and reducing agent during the green
synthesis of Ag NPs. Previous research found that the –OH groups in
flavonoids may reduce silver ions to Ag NPs [36, 37]. Figure 7 depicts a
schematic of the proposed mechanism for the Ag NPs synthesis by Flos
Sophorae Immaturus extract. Firstly, the tautomeric transformation of
flavonoids from enols to ketones can release active hydrogen atoms,
which are responsible for the reduction of silver ions to silver nuclei.
Subsequently, cumulative reactions on these nuclei lead to the formation
of larger Ag NPs.

3.3. Antibacterial activity

The agar well diffusion method was used to assess the antibacterial
activity of the synthesized Ag NPs against gram-negative (E. coli and
P. aeruginosa) and gram-positive (S. aureus) bacteria. The Zone of Inhi-
bition (ZOI) for Ag NPs at the concentration of 2 mg/mL is summarized in
Table 1 and Figure 8. The maximum ZOI was observed in the synthesized
Ag NPs from 4 mL extract, with the inhibition zone diameters of 16.28 �
0.55 mm, 16.28 � 0.77 mm and 14.42 � 0.08 mm against E. coli,
S. aureus, and P. aeruginosa, respectively. Furthermore, the synthesized
Ag NPs from 16 mL extract has the lowest antibacterial activity against
E. coli, S. aureus, and P. aeruginosa, with ZOI ~14.06� 0.83 mm, 12.28�
0.74 mm and 12.76 � 0.94 mm, respectively. The results show that the
synthesized Ag NPs from various amounts of extract had a significant
inhibitory effect on both Gram-negative and Gram-positive bacteria. The
antibacterial activity of Ag NPs is closely related to the particle size, with
smaller Ag NPs having higher activity than larger ones.

The MIC of the synthesized Ag NPs from 4 mL extract is defined as the
minimum concentration of Ag NPs that inhibits the growth of bacteria.
The brothmicrodilution method was used to calculate theMIC for Ag NPs
against these three tested bacteria (Figure 8 inset) in this study. The MIC
for P. aeruginosawas found to be 15.625mg/L, whereas theMIC for E. coli
and S. aureuswas 31.250mg/L. A comparison of the antibacterial activity
of the green synthesized Ag NPs with other antibacterial Ag NPs is
summarized in Table 2. The Ag NPs synthesized by Flos Sophorae
Immaturus extract appear to have a higher bactericidal effect against
E. coli, S. aureus, and P. aeruginosa.

The antibacterial mechanism of biosynthesized Ag NPs has not been
fully understood. Recent studies have reported the generalized mecha-
nisms such as (i) the interactions between Agþ and sulfur-/phosphate-
rich proteins in the cell membrane and wall can enhance the permeability
leading to breakage of the bacterial cells, and (ii) Agþ penetrates the
bacterial cells and accelerate the generation of ROS, causing cell mem-
brane disruption and DNA modification [26, 40, 41].
6

4. Conclusion

We proposed a cost-effective and environmentally friendly method
for the synthesis of Ag NPs in this study using various amounts of Flos
Sophorae Immaturus extract as effective reducing and stabilizing agents.
The synthesized Ag NPs were characterized by multiple techniques. The
formation of Ag NPs was confirmed by UV-Vis spectroscopy, XRD and
XPS. The morphology of nanoparticles is generally spherical, with an
average size ranging from 25 to 40 nm, and the high negative zeta po-
tential values indicated that Ag NPs have good stability. The resulting Ag
NPs also demonstrated excellent antibacterial activity against gram-
negative (E. coli and P. aeruginosa) and gram-positive (S. aureus) bacte-
ria, with antibacterial activities increasing as the size of the nanoparticles
decreased. These biosynthesized Ag NPs have a broad spectrum of anti-
microbial activities for bacteria and have the potential to be good anti-
bacterial agents in multiple fields.
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