

Received: 10 May 2016 Accepted: 27 June 2016 Published: 22 July 2016

OPEN Ca(OH)₂-Catalyzed Condensation of Aldehydes with Methyl ketones in Dilute Aqueous Ethanol: A **Comprehensive Access to** α , β -Unsaturated Ketones

Lei Yu1, Mengting Han1, Jie Luan1, Lin Xu1,2, Yuanhua Ding1 & Qing Xu1

Cheap, abundant but seldom-employed Ca(OH)₂ was found to be an excellent low-loading (5-10 mol%) catalyst for Claisen-Schmidt condensation of aldehydes with methyl ketones under mild conditions. It was interesting that dilute aqueous ethanol (20 v/v%) was unexpectedly discovered to be the optimal solvent. The reaction was scalable at least to 100 mmol and calcium could be precipitated by CO2 and removed by filtration. Evaporation of solvent directly afforded the product in the excellent 96% yield with high purity, as confirmed by its ¹H NMR spectrum.

 α,β -Unsaturated ketones, including dimethylidene acetone derivatives, are not only important building blocks in organic synthesis, but also key chemicals in many fields including perfumery, biochemistry, agriculture, food chemistry, polymer and material science, and others¹⁻⁴. Therefore, the synthesis of these compounds is of great importance in both academic and industrial circles. Among reported works, Claisen-Schmidt condensation appears to be the most practical method to prepare α,β -unsaturated ketones owing to its directness, clean procedures and accessible starting materials. Despite being discovered over 100 years ago, the enthusiasm for Claisen-Schmidt condensations never reduces and in recent years, a series of novel catalysts have been developed for this reaction, such as solid bases^{5,6}, nano catalysts^{7,8}, ionic liquid catalysts⁹, fluorous based catalysts^{10,11}, metal-organic frame works (MOFs)¹² and organocatalysts^{13,14}. Nevertheless, cheap and abundant NaOH would be expected to be the most common catalyst for the reaction due to its availability in laboratory, and indeed this method is still widely employed up to the present¹⁵⁻¹⁷. But reactions performed in strong alkaline conditions are corrosive to equipment and generate unmanageable and corrosive solid waste. These drawbacks have limited the large-scale application of NaOH. Moreover, methods for the synthesis of dimethylidene acetone derivatives, especially for those dissymmetrically substituted compounds, have not been well documented yet. Thus, developing novel alternative synthetic methodologies with broad scope using mild and common base catalysts is not only desirable but timely for the field.

Calcium hydroxide is also a readily accessible base and compared with NaOH, it is much cheaper and less alkaline. Moreover, Ca(OH)₂ is easily neutralized and precipitated by CO₂, which is beneficial from the point of industrial use. However, despite several well-known applications in industrial production, examples of the employment of Ca(OH)₂ as a base catalyst in organic synthesis are rare¹⁸. As part of our continuing cooperative research projects with industrial partners to develop green synthetic methodologies 19-28, we reported an organoselenium-catalyzed green oxidation of α,β -unsaturated ketones to prepare vinyl esters, which serve as versatile copolymers in material science²⁴. To facilitate industrial application, a green and practical synthesis of α_{β} -unsaturated ketones (the starting material for vinyl ester synthesis) was desired. To that end, we investigated the $Ca(OH)_2$ -catalyzed Claisen-Schmidt condensations to prepare α,β -unsaturated ketones. During this work, dilute aqueous ethanol was unexpectedly found to be the optimal solvent and calcium could be precipitated by CO₂ and removed by filtration to afford high purity products after solvent evaporation. The method allows

¹Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002 China. ²Jiangsu Yangnong Chemical Group Co. Ltd., Yangzhou, Jiangsu, 225009, China. Correspondence and requests for materials should be addressed to L.Y. (email: yulei@yzu.edu.cn)

Ph H +
$$H_3$$
C CH₃ EtOH/H₂O, 50 °C, t, N₂, Ph CH₃

1a 2a 3a

Figure 1. Condensation of 1a with 2a.

Entry	EtOH/H ₂ O ^b	t/h	3a/% ^c
1	100:0	20	68
2	80:20	16	69
3	50:50	14	84
4	20:80	10	85
5	10:90	24	79
6	5:95	36	0
7	0:100	36	0

Table 1. Optimization of the reaction conditions^a. ^aReaction conditions: 1 mmol 1a, 3 mmol 2a, 0.1 mmol Ca(OH)₂ and 1 mL of solvent were employed. ^bVolume ratio of EtOH with water. ^cIsolated yields of 3a based on 1a.

$$R^{1} H + H_{3}C R^{2} \xrightarrow{\text{Cat. Ca(OH)}_{2}, (5-10 \text{ mol}\%)} R^{1} R^{2}$$

$$1 \qquad 2 \qquad EtOH/H_{2}O (20 \text{ v/v}\%) R^{1}$$

$$50 \text{ °C, t, N}_{2} \qquad 3$$

Figure 2. Substrate extension of the Ca(OH)₂-catalyzed Claisen-Schmidt condensation.

comprehensive access to versatile α,β -unsaturated ketones, including the challenging dissymmetrically substituted dimethylidene acetone derivatives. Herein, we wish to report our findings.

Results

We initially chose the $Ca(OH)_2$ -catalyzed Claisen-Schmidt condensation of benzaldehyde $\bf 1a$ with acetone $\bf 2a$ as the model reaction to find optimal conditions (Fig. 1). After heating $\bf 1a$, $\bf 2a$ and $\bf 10$ mol% of $Ca(OH)_2$ in EtOH at 50 °C for 20 h, the product benzylideneacetone $\bf 3a$ could be isolated in 68% yield (Table 1, entry 1). During the reaction process, we observed $Ca(OH)_2$ precipitation at the bottom of the tube, which implied the low efficiency of alkali utilization. Therefore, water was then added to increase the $Ca(OH)_2$ solubility. When the reaction was performed in $EtOH/H_2O$ (80:20), it was significantly accelerated and finished in 16 h, giving $\bf 3a$ in 69% yield (entry 2). The reaction was further accelerated and the product yields were enhanced greatly by increasing the proportional of water in the solvent (entries 3–4). Surprisingly, $EtOH/H_2O$ (20:80) as solvent gave the highest product yield in 85% (entry 4). Increased ratios of water in the solvent only resulted in reduced product yield and extended reaction times (entry 5), possibly due to the reduced substrate dissolution that inhibited the reaction. When the reactions were taken in highly diluted aqueous EtOH (entry 6) or pure water (entry 7), no product $\bf 3a$ was observed. It is notable that the combination of EtOH with water played a key role in this reaction. A series of parallel reactions showed that the effect of $EtOH/H_2O$ was not only solvent for both organic substrates and inorganic base, but it also activated the $Ca(OH)_2$. Experiments performed in acetone or acetone/EtOH resulted in very low product yields despite the reaction temperature. For details, please see the Supplementary Information.

With the optimized conditions in hand, a series of aldehydes **1** and ketones **2** were then employed to examine the scope of the reaction (Fig. 2). Results in Table 2 clearly show that the electron-enriched aldehydes had reduced reactivities for this reaction, which resulted in both extended reaction times and decreased product yields (Table 2, entries 2–5 *vs.* 1). For 4-methoxybenzaldehyde **1e**, the reaction should be carried out at room temperature with excess acetone, otherwise the dialkylated product (1*E*,4*E*)-1,5-bis(4-methoxyphenyl)penta-1,4-dien-3-one **4c** was obtained instead of the desired (*E*)-4-(4-methoxyphenyl)but-3-en-2-one **3e** (Table 2, entry 5). The electron-deficient aldehydes obviously had higher reactivities and their reactions were accelerated, but resulted in reduced product yields due to the generation of a series of unidentified byproducts (Table 2, entries 6–11). The reactions of electron-deficient aldehydes could be improved using milder conditions. For example, treating 2-chlorobenzaldehyde **1h** with acetone under the standard reaction conditions (50 °C) afforded the product **3h** in only 40% yield, but the yield could be improved of room temperature (ca. 25 °C), affording **3h** in 52% yield (Table 2, entry 8). Similarly, for 4-(trifluoromethyl)benzaldehyde **1j**, reaction with acetone under standard conditions gave **3j** in very low yield, but was also improved to 72% at room temperature (Table 2, entry 10). The reaction

Entry	1: R ¹ ; 2: R ²	3: t/h ^b , yield/% ^c
1	1a: Ph; 2a: Me	3a: 10 h, 85
2	1b : 4-MeC ₆ H ₄ ; 2a : Me	3b : 36 h, 83
3	1c: 3-MeC ₆ H ₄ ; 2a: Me	3c: 24 h, 67
4	1d: 2-MeC ₆ H ₄ ; 2a: Me	3d: 28 h, 60
5	1e : 4-MeOC ₆ H ₄ ; 2a : Me	3e : 48 h, 61 ^{d,e}
6	1f : 4-FC ₆ H ₄ ; 2a : Me	3f: 9h, 78
7	1g: 4-ClC ₆ H ₄ ; 2a: Me	3g: 10h, 72
8	1h : 2-ClC ₆ H ₄ ; 2a : Me	3h : 8h, 52 ^d
9	1i: 4-BrC ₆ H ₄ ; 2a: Me	3i: 10 h, 71
10	1j: 4-CF ₃ C ₆ H ₄ ; 2a: Me	3j : 24 h, 72 ^d
11	1k :4-NO ₂ C ₆ H ₄ ; 2a : Me	3k : 8 h, 50 ^d
12	1l :1-C ₁₀ H ₇ ; 2a : Me	3l: 36h, 58
13	1m: 2-C ₅ H ₄ N-; 2a: Me	3m: 24 h, 55 ^{d,f,g}
14	1n: 2-C ₄ H ₃ S-; 2a: Me	3n : 10 h, 90
15	10: E-PhCH = CH-; 2a: Me	3o : 30 h, 91
16	1p : <i>c</i> -C ₆ H ₁₁ ; 2a : Me	3p: 48 h, 30 ^{h,i}
17	1a: Ph; 2b: Ph	3q : 18 h, 71
18	1a: Ph; 2c: 4-MeC ₆ H ₄	3r: 48 h, 61 ^h
19	1a: Ph; 2d: 4-ClC ₆ H ₄	3s: 40 h, 68
20	1a: Ph; 2e: n-Bu	3t: 48 h, 54 ^{h,i}
21	1a: Ph; 2f: i-Pr	3u : 48 h, 60 ^h

Table 2. Substrate extension of the Ca(OH)₂-catalyzed Claisen-Schmidt condensation^a. ^aReaction conditions: without special instructions, 1 mmol of 1, 3 mmol of 2 and 0.1 mmol Ca(OH)₂ were heat in 1 mL of EtOH/H₂O (20 v/v%) at $50 \,^{\circ}\text{C}$. ^bReactions monitored by TLC (eluent: petroleum ether/EtOAc 9:1). ^cIsolated yields based on 1. ^dReaction performed at room temperature (ca. $25 \,^{\circ}\text{C}$). ^e10 mmol of acetone was employed. ⁱCa(OH)₂ loading was reduced to $5 \,^{\circ}\text{mol}$ %. ^g1 mL of acetone was employed. ^hReaction uncompleted. ⁱReaction performed at $120 \,^{\circ}\text{C}$ in a pressure tube.

Figure 3. Synthesis of symmetrically substituted dimethylidene acetone derivatives.

of 4-nitrobenzaldehyde 1k with acetone led to poor product yield, but this was improved at room temperature (Table 2, entry 11). Bulky aldehyde 1l was also tested, giving the desired product 3l in moderate yields (Table 2, entry 12). We were also interested in the synthesis of heterocycle containing α,β -unsaturated ketones because of their bioactivities and potential applications in medicinal chemistry. The reaction of picolinaldehyde 1m with acetone was tested, but gave 3m in very low yield. Fortunately, the reaction could be improved to give 3m in moderate yield under milder conditions using excess acetone (Table 2, entries 13). Interestingly, the reaction of thiophene-2-carbaldehyde 1m with acetone afforded 3m quickly in the excellent 90% yield under the standard conditions (Table 2, entry 14). The α,β -unsaturated aldehyde 1m0 was also good substrate for the reaction, giving 3m0 in 91% yield (Table 2, entry 15). The reaction of aliphatic aldehyde gave the product in low yield (Table 2, entry 16).

Besides acetone, other methyl ketones could also be employed. The reaction of acetophenone **2b** with benzaldehyde **1a** led to **3p** in 71% in 18 h (Table 2, entry 17). But the electron-riched substrate **2c** obviously had lower reactivity and the reaction did not complete even after 48 h (Table 2, entry 18). Reaction of the electron-deficient substrate **2d** with **1a** led to their product **3r** in 68% yield in 40 h, with a series of unidentified by-products observed by TLC (Table 2, entry 19). Reactions of the alkyl methyl ketones **2e** and **2f** with **1a** afforded the corresponding products **3s** and **3t** in moderate yields (Table 2, entries 20–21). A more detailed substrate expansion table was also given in the Supplementary Information.

The synthesis of the dimethylidene acetone derivatives was our next concern because of the great application potential of these bioactive compounds (Fig. 3). Fortunately, during the previous optimization study, we serendipitously found that the symmetrically substituted dibenzylidene acetone **4a** could be easily synthesized in good yield from **1a** and **2a** at 80 °C (Table 3, entry 1). As shown in Table 3, other symmetrically substituted dimethylidene acetone derivatives could be smoothly synthesized in this way. Obviously, the electron-enriched aldehydes **1b** and **1e** had poor reactivity for the reaction, giving **4b** and **4c** in only 31–39% yields (Table 3, entries 2–3). The electron-deficient aldehydes **1f** and **1j** were much more activated (Table 3, entries 4–5), and the reaction of **1j** with acetone even led to **4e** in excellent 92% yield (Table 3, entry 5). Heterocycle-substituted aldehydes were also

Entry	1: R	4: yield/% ^b
1	1a : Ph	4a: 84
2	1b: 4-MeC ₆ H ₄	4b : 39
3	1e: 4-MeOC ₆ H ₄	4c: 31
4	1f: 4-FC ₆ H ₄	4d: 78
5	1j: 4-CF ₃ C ₆ H ₄	4e : 92
6	1n: 2-C ₄ H ₃ S-	4f: 62
7	1p: 2-C ₄ H ₃ O-	4g: 80

Table 3. Synthesis of symmetrically substituted dimethylidene acetone derivatives^a. ^aReaction conditions: 2 mmol 1, 1 mmol 2 and $0.1 \text{ mmol } \text{Ca}(\text{OH})_2$ were heat in 1 mL of EtOH/H₂O (20 v/v%) at 80 °C. ^bIsolated yields based on 2a.

Multi-step: O R H + H 3C Ph EtOH/H EtOH/H 20 (20 v/v%) 80 °C, 48 h, N 4 One-pot: cat. Ca(OH) EtOH/H 80 °C, 48 h, N 4 One-pot: cat. Ca(OH) 80 °C, 48 h, N 1) EtOH/H 10 mol%) EtOH/H 20 (20 v/v%) 1) 50 °C, 10 h, N 2) Distillation of acetone and solvents 3) Addition of 1 mmol 1 in 1 mL of EtOH/H 20 (20 v/v%)

Figure 4. Synthesis of dissymmetrically substituted dimethylidene acetone derivatives.

80 °C, 48 h, N₂

		4: yield/% ^b	
Entry	1: R	Multi-step ^c	One-pot
1	1a : Ph	4a: 82 (70)	4a : 71
2	1b : 4-MeC ₆ H ₄	4h : 62 (53)	4h : 68
3	1e: 4-MeOC ₆ H ₄	4i: 52 (44)	4i : 46
4	1f: 4-FC ₆ H ₄	4j : 81 (69)	4j : 75
5	1j: 4-CF ₃ C ₆ H ₄	4k : 90 (77)	4k: 92
6	1n: 2-C ₄ H ₃ S-	4l : 68 (58)	4l : 61
7	1p: 2-C ₄ H ₃ O-	4m : 72 (61)	4m: 80
8	1 q : <i>c</i> -C ₆ H ₁₁ -	4n : 24 (20)	4n : 21

Table 4. Synthesis of dissymmetrically substituted dimethylidene acetone derivatives^a. ^aReactions were performed in 1 mL of EtOH/ H_2O (20 v/v%) catalysed by 0.1 mmol of Ca(OH)₂. ^bIsolated yields. ^cTotal yields from 1a and 2a in parentheses (×85%).

suitable substrates for the reaction, giving corresponding products in moderate to good yields (Table 3, entries 6–7).

We also tried to synthesize the dissymmetrically substituted dimethylidene acetone derivatives using this $Ca(OH)_2$ -catalyzed methodology (Fig. 4). Initially, the reaction of aldehyde $\bf 1a$ with a stoichiometric amount of $\bf 3a$ led to $\bf 4a$ in 82% yield (Table 4, entry 1). This two-step protocol was then employed to synthesize other dissymmetrically substituted dimethylidene acetone derivatives. Treating aldehydes $\bf 1b$ - $\bf q$ with $\bf 3a$ at 80°C in the presence of $Ca(OH)_2$ catalyst afforded the corresponding products $\bf 4h$ - $\bf 4n$ smoothly (Table 4). The electron-deficient aldehydes led to higher product yield than the electron-riched aldehydes (Table 4, entries 4–5 vs. 2–3).

Entry	Cat. (mol%)	3a yield/% ^b
1	NaOH (20)	47
2	NaOH (20) + CaCl ₂ (10)	78
3	Et ₃ N (20)	35
4	Et ₃ N (20) + CaCl ₂ (10)	53
5	LiOH (20)	71

Table 5. Control experiments^a. ^a1 mmol 1a, 3 mmol 2a, and 1 mL of solvent were employed. ^bMolar ration based on 1a in parentheses. ^cIsolated yields based on 1a.

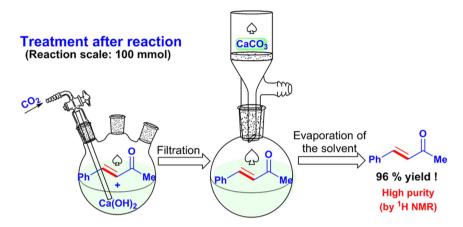


Figure 5. The simple separation procedure for the product.

Heterocycle-contained aldehydes **1n** and **1p** were also fit for the reaction (Table 4, entries 6–7), but the alkyl substrate **1q** resulted in poor product yield (Table 4, entry 8).

The synthetic efficiency could be improved using a one-pot strategy. Although the product yields of the one-pot synthesis were reduced in some cases (Table 4, entries 1,3–4, 6–8), considering of the loss of the starting materials in **3a** preparation step (Table 2, entry 1, 85% yield), their total yields were higher than that of the multi-step methods (Table 4, entries 1–8).

The role of Ca(OH)₂ in the reaction was investigated through a series of control experiments. Using 20 mol% of NaOH as base afforded **3a** in only 47% yield (Table 5, entry 1). But with the addition of 10 mol% of the neutral CaCl₂, the yield of **3a** could be largely enhanced to 78% (Table 5, entry 5). Similar phenomena were also observed in reactions using organic bases (Table 5, entries 3 vs 4). LiOH, an alkali weaker than NaOH, but with a "hard" alkali metal, led to a significantly elevated **3a** yield (Table 5, entries 5 vs 1). These experimental results suggested that the "hard" Ca²⁺ is the key factor for the excellent catalytic performance.

Finally, to examine the practicability of the method, a 100 mmol scale reaction of **1a** with **2a** was performed. After the reaction, calcium was precipitated by CO₂ and removed through filtration. Evaporation of the solvent directly afforded **3a** in 96% yield with high purity (Fig. 5), as confirmed by its ¹H NMR spectrum (Fig. 6).

Conclusion

In conclusion, we have developed a practical synthesis of α , β -unsaturated ketones, including the symmetrically or dissymmetrically substituted dimethylidene acetone derivatives, which are promising compounds for medicinal chemistry. The method employed very low loading (5–10 mol%) Ca(OH) $_2$ catalyst, which could be removed by CO $_2$. The reactions were performed in cheap and benign dilute aqueous ethanol (20 v/v%). This work shows that Ca(OH) $_2$, the abundant but seldom employed base, might find further application in organic synthesis.

Methods

General Considerations. Aldehydes were purchased from the reagent merchant. The liquid aldehydes were distilled under vacuum before use, while the solid aldehydes were recrystallized in $EtOH-H_2O$ under N_2 before use. Ethanol was analytical pure (AR) and directly used without any special treatment. All reactions were carried out in N_2 and monitored by TLC. Melting points were measured by WRS-2A digital instrument. IR spectra were measured on Bruker Tensor 27 Infrared spectrometer. 1H and ^{13}C NMR spectra were recorded on a Bruker Avance 600/400 instrument (600 or 400 MHz for 1H and 150 MHz for ^{13}C NMR spectroscopy) using $CDCl_3$ as the solvent and Me_4Si (0 ppm) and J-values were shown in Hz. Mass spectra were measured on a Shimadzu GCMS-QP2010 Ultra spectrometer (EI).



Figure 6. ¹H NMR spectrum of the product 3a after the evaporation of solvent.

Typical procedure for the synthesis of 3. 0.1 mmol of Ca(OH) $_2$ (7.4 mg) was first added into a reaction tube, which was then charged with N $_2$. A solution of 1 mmol of aldehyde 1 and 3 mmol of methyl ketone 2 in EtOH/H $_2$ O (1 mL, 20 v/v%) was then injected into the reaction tube. The mixture was heat at 50 °C under N $_2$ protection and the reaction was monitored by TLC. When the reaction terminated, the solvent was evaporated under vacuum and the residue was purified by preparative TLC (eluent: petroleum ether/EtOAc, 2: 1 for 3m, 15: 1 for rest compounds).

Typical procedure for the synthesis of symmetrically substituted dimethylidene acetone derivatives 4. 0.1 mmo of Ca(OH)₂ (7.4 mg) was first added to a reaction tube, which was then charged with N₂. A solution of 2 mmol of aldehyde 1 and 1 mmol of acetone 2a in EtOH/H₂O (1 mL, 20 v/v%) was then injected into the reaction tube, which was then sealed under N₂ and heat at 80 °C for 48 h. The reaction mixture was isolated by preparative TLC (eluent: petroleum ether/EtOAc, 15: 1).

Typical procedure for the synthesis of dissymmetrically substituted dimethylidene acetone derivatives 4 (multi-step). $0.1 \,\mathrm{mmol}$ of $\mathrm{Ca(OH)_2}$ (7.4 mg) and 1 mmol of 3a were added into a reaction tube, which was then charged with $\mathrm{N_2}$. A solution of 1 mmol of aldehyde 1 in $\mathrm{EtOH/H_2O}$ (1 mL, 20 v/v%) was then injected into the reaction tube. The mixture was heat at 80 °C under $\mathrm{N_2}$ for 48 h and then isolated by preparative TLC (eluent: petroleum ether/ EtOAc , 15: 1).

Typical procedure for the synthesis of dissymmetrically substituted dimethylidene acetone derivatives 4 (one-pot). 0.1 mmol of $\text{Ca}(\text{OH})_2$ (7.4 mg) was first added into a 10 mL round bottom flask, which was then charged with N_2 . A solution of 1 mmol of aldehyde 1 and 3 mmol of methyl ketone 2 in EtOH/ $H_2\text{O}$ (1 mL, 20 v/v%) was then injected into the reaction tube. The mixture was heat at 50 °C under N_2 protection. After 10 h, the solvent was evaporated under vacuum and another solution of 1 mmol of aldehyde 1 in EtOH/ $H_2\text{O}$ (1 mL, 20 v/v%) was then injected. The mixture was heat at 80 °C under N_2 for 48 h and isolated by preparative TLC (eluent: petroleum ether/EtOAc, 15:1).

Procedure for the large-scale reaction. To a 250 mL three-neck flask, $10 \, \mathrm{mmol}$ of $\mathrm{Ca(OH)_2}$ (0.74 g) was added. The flask was then charged with $\mathrm{N_2}$. A solution of 100 mmol of benzaldehyde $\mathrm{1a}$ and 300 mmol of acetone $\mathrm{2a}$ in $100 \, \mathrm{mL}$ EtOH/H₂O ($20 \, \mathrm{v/v}$ %) was then injected. The mixture was stirred at 50 °C under $\mathrm{N_2}$ protection for $10 \, \mathrm{h}$ and then cooled to room temperature. $\mathrm{CO_2}$ was then charged into the liquid and the pH was controlled to 7.0 (monitored by a pH meter). The precipitated $\mathrm{CaCO_3}$ was removed by filtration and the filtrate was collected. After the evaporation of the solvent, $14.0 \, \mathrm{g}$ of the product $\mathrm{3a}$ was obtained in the excellent 96% yield. The product was directly sent to $^1\mathrm{H}$ NMR analysis without any further purification and the results in Fig. 2 confirmed its high purity.

Characterization of the products (For spectra of the compounds, please see the Supplementary Information). (E)-4-Phenylbut-3-en-2-one 3a. 124.3 mg, 85%; Solid, m. p. 40.4–40.9 °C (lit. 40–41 °C); IR (KBr): 3027, 2923, 1958, 1668, 1609, 1358, 1256, 975, 749, 690 cm $^{-1}$; 1 H NMR (600 MHz, CDCl $_{3}$, TMS): 8 7.53–7.38 (m, 5H), 7.50 (d, 9 J = 16.2 Hz, 1H), 6.71 (d, 9 J = 16.2 Hz, 1H), 2.37 (s, 3H); 13 C NMR (150 MHz, CDCl $_{3}$): 8 198.4, 143.5, 134.4, 130.6, 129.0, 128.3, 127.1, 27.5; MS (EI, 70 eV): 9 M/z (%) 147 (5) [M $^{+}$ +1], 146 (47) [M $^{+}$], 103 (100), 131 (85), 145 (58); 8 Mown compound²⁹.

(*E*)-4-(*p*-Tolyl)but-3-en-2-one 3b. 133.0 mg, 83%; Oil; IR (film): 3293, 3025, 2920, 1665, 1610, 1512, 1357, 1256, 977, 801, 601 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.46 (d, J = 16.2 Hz, 1H), 7.40 (d, J = 7.8 Hz, 2H), 7.16 (d, J = 7.8 Hz, 2H), 6.65 (d, J = 16.2 Hz, 1H), 2.34 (s, 3H), 2.33 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 198.4, 143.5, 141.0, 131.6, 129.7, 128.3, 126.2, 27.4, 21.5; MS (EI, 70 eV): m/z (%) 160 (14) [M⁺], 145 (100), 115 (48), 117 (35); *Known compound*³⁰.

(*E*)-4-(*m*-Tolyl)but-3-en-2-one 3c. 107.3 mg, 67%; Oil; IR (film): 3021, 2921, 1669, 1611, 1358, 1257, 977, 779, 691 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.46 (d, J = 16.8 Hz, 1H), 7.33–7.32 (m, 2H), 7.26 (t, J = 7.8 Hz, 1H), 7.18 (d, J = 7.8 Hz, 1H), 6.68 (d, J = 16.2 Hz, 1H), 2.35 (s, 6H, 2CH₃); ¹³C NMR (150 MHz, CDCl₃): δ 198.2, 143.5, 138.6, 134.4, 131.3, 128.9, 128.8, 127.0, 125.5, 27.4, 21.3; MS (EI, 70 eV): m/z (%) 161 (4) [M⁺ + 1], 160 (28) [M⁺], 145 (100), 115 (54); *Known compound*³¹.

(*E*)-4-(*o*-Tolyl)but-3-en-2-one 3*d*. 96.1 mg, 60%; Oil; IR (film): 3057, 3022, 2964, 2926, 1824, 1670, 1612, 1360, 1257, 1176, 976, 752 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.81 (d, J = 16.2 Hz, 1H), 7.56 (d, J = 7.2 Hz, 1H), 7.28 (t, J = 7.2 Hz, 1H), 7.21 (t, J = 7.8 Hz, 2H), 6.64 (d, J = 16.2 Hz, 1H), 2.44 (s, 3H), 2.38 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 198.3, 140.8, 137.9, 133.4, 130.9, 130.2, 128.1, 126.5, 126.4, 27.8, 19.8; MS (EI, 70 eV): m/z (%) 160 (12) [M⁺], 145 (100), 115 (61), 117 (37), 116 (22); *Known compound*³².

(*E*)-4-(4-Methoxyphenyl)but-3-en-2-one 3e. 107.5 mg, 61%; Solid, m. p. 71.2–72.3 °C (*lit.* 71–72 °C); IR (KBr): 3067, 3047, 2977, 2943, 2848, 1682, 1587, 1423, 1359, 1022, 989, 819 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.50 (d, J = 8.8 Hz, 2H), 7.48 (d, J = 16.4 Hz, 1H), 6.93 (d, J = 8.8 Hz, 2H), 6.63 (d, J = 16.4 Hz, 1H), 3.85 (s, 3H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 198.4, 161.6, 143.2, 129.9, 127.0, 125.0, 114.4, 55.3, 27.4; MS (EI, 70 eV): m/z (%) 177 (5) [M⁺ + 1], 176 (45) [M⁺], 161 (100), 133 (51); *Known compound*³⁰.

(*E*)-4-(4-Fluorophenyl)but-3-en-2-one 3f. 128.1 mg, 78%; Oil; IR (film): 3298, 1668, 1598, 1509, 1232, 1160, 1097, 977, 910, 858, 817, 778, 602 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.55–7.52 (m, 2H), 7.48 (d, J= 16.2 Hz, 1H), 7.10–7.07 (m, 2H), 6.65 (d, J= 16.2 Hz, 1H), 2.38 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 198.0, 164.0 (d, J_{C-F} = 250.0 Hz), 141.9, 130.7 (d, J_{C-F} = 3.5 Hz), 130.1 (d, J_{C-F} = 8.6 Hz), 126.9 (d, J_{C-F} = 2.3 Hz), 116.1 (d, J_{C-F} = 21.9 Hz), 27.5; MS (EI, 70 eV): m/z (%) 165 (5) [M⁺ + 1], 164 (39) [M⁺], 149 (100), 121 (68), 101 (68); Known compound³³.

(*E*)-4-(*4*-*Chlorophenyl*)*but-3-en-2-one 3g.* 130.0 mg, 72%; Solid, m. p. 53.6–55.0 °C (*lit.* 54–55 °C); IR (KBr): 3284, 2924, 1659, 1490, 1406, 1362, 1254, 1092, 978, 808, 581 cm⁻¹; 1 H NMR (600 MHz, CDCl₃, TMS): δ 7.48–7.44 (m, 3H, 1C = C-H + 2Ar-H), 7.37 (d, J = 8.4 Hz, 2H), 6.70 (d, J = 16.8 Hz, 1H), 2.38 (s, 3H); 13 C NMR (150 MHz, CDCl₃): δ 198.0, 141.8, 136.4, 133.0, 129.4, 129.3, 127.5, 27.7; MS (EI, 70 eV): m/z (%) 181 (8) [M⁺ + 1], 180 (27) [M⁺], 165 (100), 102 (53), 137 (50); *Known compound*³⁴.

(*E*)-4-(2-Chlorophenyl)but-3-en-2-one 3h. 93.9 mg, 52%; Oil; IR (film): 2994, 2925, 1770, 1670, 1609, 1374, 1244, 1177, 1052, 975, 752, 695 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.94 (d, J = 16.4 Hz, 1H), 7.63 (dd, J = 1.6 Hz, J = 7.2 Hz, 1H), 7.42 (dd, J = 1.2 Hz, J = 7.6 Hz, 1H), 7.34–7.28 (m, 2H), 6.66 (d, J = 16.4 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 198.4, 139.2, 135.0, 132.6, 131.3, 130.2, 129.6, 127.6, 127.2, 27.2; MS (EI, 70 eV): m/z (%) 180 (9) [M⁺], 145 (100), 137 (26), 101 (25), 165 (23); *Known compound*³⁵.

(*E*)-4-(4-*Bromophenyl*)*but-3-en-2-one 3i.* 159.8 mg, 71%; Solid, m. p. 81.6–82.3 °C (*lit.* 81–83 °C). IR (KBr): 3021, 2921, 1658, 1419, 1360, 1259, 977, 803, 699 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.53 (d, J = 8.4 Hz, 2H), 7.44 (d, J = 16.2 Hz, 1H), 7.40 (d, J = 8.4 Hz, 2H), 6.70 (d, J = 16.2 Hz, 1H), 2.38 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 198.0, 141.9, 133.4, 132.3, 129.6, 127.6, 124.8, 27.7; MS (EI, 70 eV): m/z (%) 226 (15) [M⁺](⁸¹Br), 224 (15) [M⁺], 102 (100), 145 (55), 209 (48), 211 (46); *Known compound*³⁶.

(E)-4-(4-(Trifluoromethyl)phenyl)but-3-en-2-one 3j. 154.2 mg, 72%; Oil; IR (film): 2962, 2840, 1664, 1615, 1602, 1416, 1328, 1169, 1123, 978, 820 cm $^{-1}$; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.65 (s, 4H), 7.52 (d, J = 16.8 Hz, 1H), 6.78 (d, J = 16.2 Hz, 1H), 2.41 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 197.9, 141.3, 137.9, 131.9 (d, J_{CF} = 32.4 Hz), 129.1, 128.3, 125.9 (m), 123.8 (d, J_{CF} = 270.5 Hz), 27.9; MS (EI, 70 eV): m/z (%) 214 (21) [M $^{+}$], 199 (100), 151 (84), 171 (66); Known compound¹³.

(*E*)-4-(4-Nitrophenyl)but-3-en-2-one 3k. 103.2 mg, 54%; Solid, m. p. 116.1–117.7 °C (lit. 117–118 °C); IR (KBr): 3109, 3080, 2926, 1691, 1688, 1593, 1514, 1344, 1254, 1176, 1109, 982, 858, 825, 790, 748, 885 cm $^{-1}$; ¹H NMR (600 MHz, CDCl₃, TMS): δ 8.26 (d, J = 7.8 Hz, 2H), 7.70 (d, J = 7.8 Hz, 2H), 7.54 (d, J = 16.8 Hz, 1H), 6.82 (d, J = 16.2 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 197.5, 148.6, 140.7, 140.1, 130.4, 128.8, 124.2, 28.1; MS (EI, 70 eV): m/z (%) 191 (21) [M $^{+}$], 176 (100), 174 (60), 130 (58), 102 (51); *Known compound*³⁰.

(E)-4-(Naphthalen-1-yl)but-3-en-2-one 3l. 113.8 mg, 58%; Oil; IR (film): 3057, 3007, 2962, 2924, 1936, 1817, 1670, 1599, 1356, 1255, 1189, 974, 795, 773 cm $^{-1}$; 1 H NMR (600 MHz, CDCl $_{\! 3}$, TMS): δ 8.35 (d, J = 16.2 Hz, 1H), 8.16 (d, J = 8.4 Hz, 1H), 7.90–7.86 (m, 2H), 7.76 (d, J = 7.2 Hz, 1H), 7.58–7.46 (m, 3H), 6.80 (d, J = 16.2 Hz, 1H), 2.45 (s, 3H); 13 C NMR (150 MHz, CDCl $_{\! 3}$): δ 198.2, 140.1, 133.7, 131.7, 131.5, 130.8, 129.6, 128.9, 127.0, 126.3, 125.5, 125.2, 123.2, 28.0; MS (EI, 70 eV): m/z (%) 197 (7) [M $^{+}$ + 1], 196 (47) [M $^{+}$], 153 (100), 152 (86), 195 (53), 181 (46), 151 (34); Known compound 13 .

(E)-4-(Pyridin-2-yl)but-3-en-2-one 3m. 76.5 mg, 52%; Oil; IR (film): 3051, 3005, 2926, 2854, 1670, 1620, 1581, 1431, 1360, 1250, 980, 905, 766 cm $^{-1}$; 1 H NMR (600 MHz, CDCl₃, TMS): δ 8.66 (d, J = 4.2 Hz, 1H), 7.73 (t, J = 7.8 Hz, 1H), 7.53 (d, J = 16.2 Hz, 1H), 7.49 (d, J = 7.8 Hz, 1H), 7.30–7.29 (m, 1H), 7.14 (d, J = 16.2 Hz, 1H), 2.41 (s, 3H); 13 C NMR (150 MHz, CDCl₃): δ 198.4, 153.1, 150.1, 141.9, 136.8, 130.2, 124.3, 124.2, 28.0; MS (EI, 70 eV): m/z (%) 148 (4) [M $^{+}$ + 1], 147 (39) [M $^{+}$], 132 (100), 104 (61), 78 (50), 51 (25), 43 (16); Known compound 37 .

- (*E*)-4-(*Thiophen-2-yl*)but-3-en-2-one 3n. 137.0 mg, 90%; Oil; IR (film): 3103, 3008, 2922, 1803, 1684, 1595, 1514, 1489, 1423, 1358, 1254, 1200, 1189, 986, 858, 818, 708 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.63 (d, J=15.6 Hz, 1H), 7.39 (d, J=4.2 Hz, 1H), 7.28 (d, J=3.6 Hz, 1H), 7.07–7.05 (m, 1H), 6.52 (d, J=16.2 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 197.7, 139.7, 135.7, 131.5, 128.9, 128.3, 125.8, 27.7; MS (EI, 70 eV): m/z (%) 153 (5) [M⁺+1], 152 (53) [M⁺], 137 (100), 109 (65), 65 (27), 43 (18), 69 (13); *Known compound* 1³.
- (3E,5E)-6-Phenylhexa-3,5-dien-2-one 3o. 156.7 mg, 91%; Solid, m. p. 63.3–64.8 °C (lit. 64 °C); IR (KBr): 3057, 3028, 2926, 1880, 1711, 1670, 1614, 1587, 1448, 1360, 1252, 1144, 997, 750, 892 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.48 (d, J=7.2 Hz, 2H), 7.37 (t, J=7.2 Hz, 2H), 7.33–7.27 (m, 2H), 6.97–6.86 (m, 2H), 6.26 (d, J=15.0 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 198.4, 143.4, 141.3, 136.0, 130.5, 129.2, 128.9, 127.3, 126.7, 27.4; MS (EI, 70 eV): m/z (%) 173 (10) [M⁺ + 1], 172 (70) [M⁺], 128 (100), 129 (91), 157 (56), 171 (35), 95 (22); Known compound³⁸.
- (*E*)-4-cyclohexylbut-3-en-2-one 3p. 45.8 mg, 30%, Oil; IR (film): 2927, 2853, 1675, 1624, 1449, 1359, 1254, 980cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 6.77–6.72 (m, 1 H), 6.02 (d, J = 16.2 Hz, 1 H), 2.25 (s, 3 H), 2.15–2.14 (m, 1 H), 1.78–1.76 (m, 4 H), 1.34–1.12 (m, 6 H); ¹³C NMR (150 MHz, CDCl₃): δ 199.3, 153.5, 128.8, 40.6, 31.8, 26.9, 25.9, 25.7; MS (EI, 70 eV): m/z (%) 152 (49) [M⁺], 94 (100), 109 (70), 83 (80). *Known compound*³⁹.
- (*E*)-Chalcone 3q. 147.9 mg, 71%; Solid, m. p. 55.3–56.8 °C (*lit*. 55–56 °C); IR (KBr): 3060, 3027, 2974, 2897, 1962, 1903, 1813, 1664, 1606, 1494, 1336, 1307, 1286, 1215, 1016, 980, 748 cm $^{-1}$; ¹H NMR (600 MHz, CDCl₃, TMS): δ 8.01 (s, 2H), 7.80 (d, J = 15.6 Hz, 1H), 7.62 (s, 2H), 7.55–7.48 (m, 4H), 7.39 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 190.6, 144.9, 138.3, 134.9, 132.8, 130.6, 129.0, 128.7, 128.5, 128.5, 122.1; MS (EI, 70 eV): m/z (%) 208 (55) [M $^{+}$], 207 (100), 77 (70), 45 (36), 103 (31), 131 (27); *Known compound*²⁹.
- (*E*)-3-Phenyl-1-p-tolylprop-2-en-1-one 3r. 135.6 mg, 61%; Solid, m. p. 73.7–75.1 °C (lit. 75 °C); IR (KBr): 3028, 2921, 1662, 1609, 1494, 1449, 1334, 1304, 1223, 1180, 1034, 980, 820, 760 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.95 (d, J = 8.4 Hz, 2H), 7.82 (d, J = 15.6 Hz, 1H), 7.65–7.67 (m, 2H), 7.55 (d, J = 15.6 Hz, 1H), 7.42 (t, J = 7.2 Hz, 3H), 7.31 (d, J = 7.8 Hz, 2H), 2.45 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 190.0, 144.4, 143.7, 135.7, 135.0, 130.5, 129.4, 129.0, 128.7, 128.4, 122.1, 21.7; MS (EI, 70 eV): m/z (%) 223 (9) [M⁺ + 1], 222 (62) [M⁺], 221 (100), 45 (47), 91 (41), 119 (40), 77 (27); *Known compound*⁴⁰.
- (*E*)-1-(4-Chlorophenyl)-3-phenylprop-2-en-1-one 3s. 165.0 mg, 68%; Solid, m. p. 92.7–93.8 °C (lit. 90–92 °C); IR (KBr): 1661, 1601, 1448, 1399, 1218, 1090, 982, 829, 762 cm $^{-1}$; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.95 (d, J = 8.4 Hz, 2H), 7.80 (d, J = 15.6 Hz, 1H), 7.62–7.64 (m, 2H), 7.49–7.46 (m, 3H), 7.40–7.42 (m, J = 6.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 189.2, 145.4, 139.3, 136.5, 134.7, 130.8, 129.9, 129.0, 128.9, 128.6, 121.5; MS (EI, 70 eV): m/z (%) 244 (18) [M $^{+}$](37 Cl), 243 (39) [M $^{+}$ + 1], 241 (100), 242 (58), 207 (51); *Known compound*⁴¹.
- (*E*)-1-Phenylhept-1-en-3-one 3t. 101.7 mg, 54%; Oil; IR (film): 3060, 3028, 2958, 2931, 2872, 1690, 1663, 1611, 1576, 1495, 1450, 1331, 1181, 1130, 978, 749, 691cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.45 (d, J = 16.00 Hz, 1H), 7.42–7.45 (m, 2H), 7.28–7.29 (m, 3H), 6.63 (d, J = 16.2 Hz), 2.56 (t, J = 7.5 Hz, 2H), 1.54–1.59 (m, 2H), 1.26–1.32 (m, 2H), 0.85 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 199.6, 141.2, 133.5, 129.3,127.9, 127.2, 125.2, 39.6, 25.4, 21.4, 12.9; MS (EI, 70 eV): m/z (%) 188 (11) [M⁺], 131 (100); *Known compound*⁴².
- (E)-5-methyl-1-phenylhex-1-en-3-one 3u. 113.0 mg, 60%; Oil; IR (film): 3061, 3028, 2957, 2871, 1688, 1657, 1610, 1576, 1450, 1366, 1189, 1061, 977, 749, 691 cm $^{-1}$; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.43 (m, 3H), 7.28–7.27 (m, 3H),6.63 (d, J = 16.2 Hz, 1H), 2.43 (d, J = 6.6Hz, 2H), 2.11–2.12 (m, 1H), 0.88 (d, J = 6.6 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 199.2, 141.3, 133.4, 129.4, 127.9, 127.2, 125.5, 48.8, 24.2, 21.7; MS (EI, 70 eV): m/z (%) 188 (11) [M $^+$], 131 (100); Known compound⁴³.
- (1E, 4E)-1,5-diphenylpenta-1,4-dien-3-one 4a. 196.8 mg, 84%; Solid, m. p. 120.6–121.9 °C (lit. 120–122 °C); IR (KBr): 3053, 3026, 1651, 1592, 1194, 982, 762 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.75 (d, J = 16.0 Hz, 2H), 7.63 (m, 4H), 7.42 (m, 6H), 7.09 (d, J = 16.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 188.9, 143.3, 134.7, 130.5, 128.9, 128.4, 125.4; MS (EI, 70 eV): m/z (%) 234 (38) [M⁺], 235 (7) [M⁺ + 1], 103 (100), 131 (59), 77 (40), 233 (34). Known compound⁴⁴.
- (1E,4E)-1,5-di-p-tolylpenta-1,4-dien-3-one 4b. 102.3 mg, 39%; Solid, m. p. 172.6–173.9 °C (lit. 174–176 °C).IR (KBr): 3025, 2921, 2850, 1652, 1593, 1111, 1068, 981, 695 cm⁻¹; 1 H NMR (400 MHz, CDCl₃, TMS): δ 7.72 (d, J= 16.0 Hz, 2H), 7.52 (d, J= 8.0 Hz, 4H), 7.22 (d, J= 8.0 Hz, 4H), 7.03 (d, J= 16.0 Hz, 2H), 2.39 (s, 6H); 13 C NMR (100 MHz, CDCl₃): δ 189.1, 143.2,140.9, 132.1, 129.7, 128.4, 124.5, 21.5; MS (EI, 70 eV): m/z (%) 262 (27) [M⁺], 115 (100), 117 (49), 83 (45), 91 (44); K Known compound⁴⁵.
- (1E,4E)-1,5-Bis(4-methoxyphenyl)penta-1,4-dien-3-one 4c. 92.3 mg, 31%; Solid, m. p. 119.3–120.7 °C (lit. 119–120 °C); IR (KBr): 2930, 2836, 1647, 1600, 1511, 1254, 1171, 1094, 1029, 984, 830, 777, 690 cm^{−1}; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.70 (d, J = 15.6 Hz, 2H), 7.57 (d, J = 8.4 Hz, 4H), 6.96 (d, J = 15.6 Hz, 2H), 6.93 (d, J = 8.4 Hz, 4H), 3.85 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 188.8, 161.6, 142.6, 130.1, 127.7, 123.6, 114.4, 55.4; MS (EI, 70 eV): m/z (%) 294 (87) [M⁺], 186 (100), 133 (99), 161 (73), 118 (53); Known compound⁴⁴.
- (1E,4E)-1,5-Bis(4-fluorophenyl)penta-1,4-dien-3-one 4d. 210.8 mg, 78%; Solid, m. p. 151.6–153.2 °C (lit. 152 °C); IR (KBr): 2956, 2924, 2853, 1652, 1507, 980, 831 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.68 (d,J= 16.0,

2H), 7.59–7.56 (m, 4H), 7.10–7.00(m, 4H), 6.98 (d, $J = 16.0 \,\text{Hz}$, 2H); ^{13}C NMR (100 MHz, CDCl₃): δ 188.4, 164.0 (d, $J_{CF} = 250.6 \,\text{Hz}$), 142.0, 130.9 (d, $J_{CF} = 3.3 \,\text{Hz}$), 130.3 (d, $J_{CF} = 8.4 \,\text{Hz}$), 125.0 (d, $J_{CF} = 2.3 \,\text{Hz}$), 116.1 (d, $J_{CF} = 21.8 \,\text{Hz}$); MS (EI, 70 eV): m/z (%) 270 (38) [M⁺], 101 (100), 121 (80), 149 (55), 109 (50); Known compound⁴⁶.

(1E,4E)-1,5-Bis(4-(trifluoromethyl)phenyl)penta-1,4-dien-3-one 4e. 340.7 mg, 92%; Solid, m. p.128.9–129.7 °C (lit. 129–130 °C); IR (KBr): 1653, 1601, 1575, 981 cm $^{-1}$; 1 H NMR (400 MHz, CDCl $_{3}$, TMS): δ 7.78–7.67 (m, 10H), 7.14 (d, J = 16.0 Hz. 2H); 13 C NMR (100 MHz, CDCl $_{3}$): δ 188.1, 141.9, 137.9, 132.2, 131.9, 128.5, 127.1, 125.9(m); MS (EI, 70 eV): m/z (%) 370 (36) [M $^{+}$], 151 (100), 199 (60), 171 (58), 301 (37), 102 (31); K Known compoundK

(1E,4E)-1,5-Di(thiophen-2-yl)penta-1,4-dien-3-one 4f. 152.7 mg, 62%; Solid, m. p. 113.3-114.2 °C (lit. 113-114 °C). IR (KBr): 2955, 2923, 2870, 1603, 1141, 702 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.75 (d, J=15.6 Hz, 2H), 7.31 (d, J=5.2 Hz, 2H), 7.23 (d, J=3.6 Hz, 2H), 6.98 (t, J=4.4 Hz, 2H), 6.73 (d, J=15.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 187.6, 140.3,135.6, 131.8, 128.8, 128.3, 124.4; MS (EI, 70 eV): m/z (%) 246 (39) [M⁺], 109 (100), 97 (59), 137 (42), 162 (40); Known compound⁴⁷.

(1E,4E)-1,5-Di(furan-2-yl)penta-1,4-dien-3-one 4g. 171.4, 80%; Solid m. p. 58.8-59.9 °C (lit. 59-60 °C); IR (KBr): 2987, 2869, 1792, 1759, 1649, 1619, 1595, 1141, 1016, 747 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.51 (s, 2H), 7.49 (d, J= 15.6 Hz, 2H), 6.93 (d, J= 15.6 Hz, 2H), 6.68 (s, 2H), 6.49 (s, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 188.1, 151.5, 144.9, 129.2, 123.2, 115.9, 112.6; MS (EI, 70 eV): m/z (%) 214 (100) [M⁺], 215 (14) [M⁺ + 1], 121 (60), 129 (44); Known compound⁴⁸.

(1E,4E)-1-Phenyl-5-(p-tolyl)penta-1,4-dien-3-one 4h. 168.8 mg, 68%; Solid, m. p. 107.5–108.7 °C (lit. 107–108 °C); IR (KBr): 3025, 2956, 2924, 2854, 1652, 1617, 1449, 1336, 1179, 1095, 979 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.75 (d, J = 3.2 Hz, 1H), 7.71 (d, J = 3.2 Hz, 1H), 7.61 (d, J = 4.0 Hz, 2H), 7.51 (d, J = 8.0 Hz, 2H), 7.41 (s, 3H), 7.22 (d, J = 8.0 Hz, 2H), 7.11–7.03 (m, 2H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 188.9, 143.4, 143.0, 141.0, 134.8, 132.0, 130.4, 129.7, 128.9, 128.4, 128.3, 125.4, 124.5, 21.5; MS (EI, 70 eV): m/z (%) 248 (51) [M⁺], 115 (100), 233 (79), 103 (67), 91 (64); Known compound⁴⁹.

 $(1E,4E)-1-(4-Methoxyphenyl)-5-phenylpenta-1,4-dien-3-one\ 4i. 137.4\ mg,\ 52\%;\ Solid,\ m.\ p.88.0-89.2\ ^{\circ}C\ (lit.\ 85-89\ ^{\circ}C);\ IR\ (KBr):\ 2956,\ 2924,\ 2851,\ 1651,\ 1601,\ 1509,\ 1458,\ 1251,\ 1171\ cm^{-1};\ ^{1}H\ NMR\ (400\ MHz,\ CDCl_3,\ TMS):\ \delta\ 7.75-7.69\ (m,\ 2H),\ 7.63-7.60\ (m,\ 2H),\ 7.59-7.56\ (m,\ 2H),\ 7.42-7.39\ (m,\ 3H),\ 7.078\ (d,\ J=16.0\ Hz,\ 1H),\ 6.95\ (t,\ J=12.2\ Hz,\ 3H),\ 3.85\ (s,\ 3H);\ ^{13}C\ NMR\ (100\ MHz,\ CDCl_3):\ \delta\ 188.9,\ 161.6,\ 143.2,\ 142.8,\ 134.9,\ 130.4,\ 130.2,\ 128.9,\ 128.3,\ 127.5,\ 125.5,\ 123.3,\ 114.4,\ 55.4;\ MS\ (EI,\ 70\ eV):\ m/z\ (\%)\ 264\ (100)\ [M^+],\ 108\ (99),\ 103\ (97),\ 97\ (66),\ 83\ (64),\ 98\ (61);\ Known\ compound^{45}.$

(1E,4E)-1-(4-Fluorophenyl)-5-phenylpenta-1,4-dien-3-one 4j. 204.4 mg, 81%; Solid, m. p. 112.8–113.2 °C; IR (KBr): 2955, 2923, 2852, 1651, 1587, 1507, 982, 826, 756 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.71 (t,J= 15.6, 2H), 7.61–7.57 (m, 4H), 7.39 (t,J= 3.2, 3H), 7.10–7.06 (m, 2H), 7.02 (d,J= 5.6Hz, 1H), 6.98 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 188.7, 164.0 (d,J_{C,F}= 250.5 Hz), 143.4, 141.9, 134.7, 130.9 (d,J_{C,F}= 3.3 Hz), 130.6, 130.3 (d,J_{C,F}= 8.4 Hz), 128.9, 128.4, 125.4, 125.0 (d,J_{C,F}= 2.2 Hz), 116.1 (d,J_{C,F}= 21.8 Hz); MS (EI, 70 eV): m/z (%) 252 (84) [M⁺], 101 (100), 103 (88), 251 (73), 121 (59); Known compound⁵⁰.

 $(1E,4E)\text{-}1\text{-}Phenyl\text{-}5\text{-}(4\text{-}(trifluoromethyl)phenyl)penta\text{-}1,4\text{-}dien\text{-}3\text{-}one }4k. \quad 278.1\ \text{mg}, 92\%; \text{Solid}, \text{m. p. }142.4\text{-}143.2\ ^{\circ}\text{C} \ (lit. \ 142\text{-}143\ ^{\circ}\text{C}); \text{IR (KBr): }1652, 1593, 1324, 1110, 1068, 981, 826, 760, 695\ \text{cm}^{-1}; ^{1}\text{H NMR (}600\ \text{MHz}, \text{CDCl}_3, \text{TMS): }\delta 7.76\ (d, \textit{J} = 16.8\ \text{Hz}, 1\text{H}), 7.70\text{-}7.62\ (m, 5\text{H}), 7.42\ (s, 2\text{H}), 7.35\ (d, \textit{J} = 15.6\ \text{Hz}, 3\text{H}), 7.14\ (d, \textit{J} = 15.6\ \text{Hz}, 1\text{H}), 7.07\ (d, \textit{J} = 15.6\ \text{Hz}, 1\text{H}); ^{13}\text{C NMR (}150\ \text{MHz}, \text{CDCl}_3): \\\delta 188.5, 144.0, 141.2, 138.3, 134.6, 130.8, 129.0, 128.9, 128.5\ (d, \textit{J}_{C\text{-}F} = 4.2\ \text{Hz}), 128.4, 127.4\ (t, \textit{J}_{C\text{-}F} = 35.9\ \text{Hz}), 125.9\ (m), 125.3, 124.8\ (m); \text{MS (EI, }70\ \text{eV}): }m/z\ (\%)\ 302\ (56)\ [\text{M}^+], 103\ (100), 97\ (82), 83\ (73), 131\ (73), 98\ (73); \textit{Known compound}^{51}.$

(1E,4E)-1-Phenyl-5-(thiophen-2-yl)penta-1,4-dien-3-one 4l. 163.4, 68%; Solid, m. p. 87.8–88.9 °C; IR (KBr): 3306, 3217, 2988, 2870, 1648, 1612, 1577, 1392, 1141, 1096, 974, 854, 755 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.87 (d, J=15.0 Hz, 1H), 7.72 (d, J=16.2 Hz, 1H), 7.60 (s, 2H), 7.40 (s, 4H), 7.33 (s, 1H), 7.07 (s, 1H), 7.02 (d, J=15.6 Hz, 1H), 6.89 (d, J=15.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 188.3, 143.2, 140.3, 135.8, 134.8, 131.8,130.5, 128.9, 128.8, 128.4, 128.3, 125.6, 124.3; MS (EI, 70 eV): m/z (%) 240 (98) [M⁺], 109 (100), 97 (96), 103 (95), 211 (63), 128 (62), 137 (59); Known compound⁵².

(1E, 4E)-1-Phenyl-5-(2-furyl)penta-1,4-dien-3-one 4m. 179.4 mg, 80%; Oil; IR (film): 3120, 3059, 2988, 2869, 1650, 1619, 1449, 1335, 1017, 977, 750 cm $^{-1}$; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.72 (d, J = 16.2 Hz, 1H), 7.60 (s, 2H), 7.52 (d, J = 15.0 Hz, 2H), 7.39 (s, 3H), 7.01 (s, 1H), 6.99 (s, 1H), 6.70 (s, 1H), 6.50 (s, 1H); 13 C NMR (150 MHz, CDCl₃): δ 188.6, 151.6, 144.9, 143.1, 134.9, 130.5, 129.5, 128.9, 128.4, 126.1, 122.5, 116.0, 112.7; MS (EI, 70 eV): m/z (%) 224 (100) [M $^{+}$], 131 (97), 103 (89), 167 (61), 121 (53), 83 (52); Known compound 52 .

 $\begin{array}{ll} (1E,4E)\text{-}1\text{-}Cyclohexyl\text{-}5\text{-}phenylpenta\text{-}1\text{,}4\text{-}dien\text{-}3\text{-}one\ 4n.} & \text{Solid, m. p.\ }44.5\text{-}46.2\ ^{\circ}\text{C}\ (lit.\ 42\text{-}46\ ^{\circ}\text{C});\ IR\ (KBr)\text{:}\ 2926, \\ 2852,\ 1659,\ 1627,\ 1600\ cm^{-1};\ ^{1}\text{H}\ NMR\ (600\ MHz,\ CDCl_3,\ TMS)\text{:}\ \delta\ 7.55\ (d,\ J=15.6\ Hz,\ 1H),\ 7.49\ (s,\ 2H),\ 7.29\ (s,\ 3H),\ 6.91\text{-}6.84\ (m,\ 2H),\ 6.29\ (d,\ J=15.6\ Hz,\ 1H),\ 2.12\ (d,\ J=3.0\ Hz,\ 1H),\ 1.74\text{-}1.59\ (m,\ 5H),\ 1.27\text{-}1.09\ (m,\ 5H);\ ^{13}\text{C}\ NMR\ (150\ MHz,\ CDCl_3)\text{:}\ \delta\ 189.8,\ 153.2,\ 142.9,\ 134.9,\ 130.3,\ 128.9,\ 128.3,\ 126.9,\ 124.9,\ 40.9,\ 31.9,\ 25.9,\ 25.8;\ MS\ (EI,\ 70\ eV):\ m/z\ (\%)\ 240\ (21)\ [M^+],\ 131\ (100),\ 103\ (44);\ \textit{Known compound}^{53}. \end{array}$

References

- Wei, Z.-Z. et al. Highly efficient and chemoselective hydrogenation of α,β-unsaturated carbonyls over Pd/N-doped hierarchically porous carbon. Catal Sci Technol 5, 397–404 (2015).
- Zhang, S.-Y. et al. Organocatalytic regioselective asymmetric Michael addition of azlactones to o-hydroxy chalcone derivatives. Org Biomol Chem 13, 5698–5709 (2015).
- 3. Yao, J., Zhang, B.-X., Ge, C.-P., Peng, S.-J. & Fang, J.-G. Xanthohumol, a polyphenol chalcone present in hops, activating Nrf2 enzymes to confer protection against oxidative damage in PC12 cells. *J Agr Food Chem* **63**, 1521–1531 (2015).
- 4. Ngaki, M. N. et al. Evolution of the chalcone-isomerase fold from fatty-acid binding to stereospecific catalysis. Nature 485, 530–533 (2012).
- 5. Yadav, G. D. & Yadav, A. R. Novelty of Claisen–Schmidt condensation of biomass-derived furfural with acetophenone over solid super base catalyst. *RSC Adv* **4**, 63772–63778 (2014).
- Ke, F., Qiu, L.-G. & Zhu, J.-F. Fe₃O₄@MOF core-shell magnetic microspheres as excellent catalysts for the Claisen-Schmidt condensation reaction. *Nanoscale* 6, 1596–1601 (2014).
- 7. Patil, A. B. & Bhanage, B. M. Novel and green approach for the nanocrystalline magnesium oxide synthesis and its catalytic performance in Claisen–Schmidt condensation. *Catal Commun* **36**, 79–83 (2013).
- 8. Bain, S.-W. *et al.* Synthesis of micrometer-sized nanostructured magnesium oxide and its high catalytic activity in the Claisen—Schmidt condensation reaction. *J Phys Chem C* **112**, 11340–11344 (2008).
- Qian, H. & Liu, D.-B. Synthesis of chalcones via Claisen-Schmidt reaction catalyzed by sulfonic acid-functional ionic liquids. Ind Eng Chem Res 50, 1146–1149 (2011).
- Zhu, Y.-W., Yi, W.-B. & Cai, C. A recyclable fluoroalkylated 1,4-disubstituted [1,2,3]-triazole organocatalyst for aldol condensation of aldehydes and ketones. J Fluorine Chem 132, 71–74 (2011).
- 11. Qiu, R.-H. *et al.* Highly efficient and selective synthesis of (*E*)-α,β-unsaturated ketones by crossed condensation of ketones and aldehydes catalyzed by an air-stable cationic organobismuth perfluorooctanesulfonate. *Adv Synth Catal* **352**, 153–162 (2010).
- 12. Dhakshinamoorthy, A., Alvaro, M. & Garcia, H. Claisen–Schmidt condensation catalyzed by metal-organic frameworks. *Adv Synth Catal* 352, 711–717 (2010)
- Zumbansen, K., Dohring, A. & List, B. Morpholinium trifluoroacetate-catalyzed Aldol condensation of acetone with both aromatic and aliphatic aldehydes. Adv Synth Catal 352, 1135–1138 (2010).
- 14. Chen, X., Liu, B.-K., Kang, H. & Lin, X.-F. A tandem Aldol condensation/dehydration co-catalyzed by acylase and N-heterocyclic
- compounds in organic media. *J Mol Catal B-Enzym* **68**, 71–76 (2011).
 15. Li, J. & He, J.-P. Synthesis of sequence-regulated polymers: Alternating polyacetylene through regioselective anionic polymerization
- of butadiene derivatives. ACS Macro Lett 4, 372–376 (2015). 16. Rahman, A. F. M. M., Ali, R., Jahng, Y. & Kadi, A. A. A facile solvent free Claisen-Schmidt reaction: Synthesis of α, α' -bis-
- (substituted-benzylidene)cycloalkanones and α, α' -bis-(substituted-alkylidene)cycloalkanones. *Molecules* 17, 571–583 (2012). 17. Cao, L.-P. *et al.* Novel and direct transformation of methyl ketones or carbinols to primary amides by employing aqueous ammonia.
- Org Lett 11, 3810–3813 (2009).

 18. Ca(OH)₂ has been widely employed in the industrial production of *Isophorone*. But it is rarely employed in organic reactions in academic research. There is only an example for the application of excess Ca(OH)₂ (3 equivalent) as promoter in the synthesis of
- academic research. There is only an example for the application of excess Ca(OH)₂ (3 equivalent) as promoter in the synthesis of polyhydroxy chalcones: Kulkarni, P. S., Swami, P. M. & Zubaidha, P. K. Calcium hydroxide is an efficient catalyst for synthesis of polyhydroxy chalcones. Synth React Inorg Met-Org Nano-Met Chem 43, 617 (2013).
- 19. Yu, L., Chen, F.-L. & Ding, Y.-H. Organoselenium-catalyzed oxidative ring expansion of methylenecyclopropanes with hydrogen peroxide. *ChemCatChem* **8**, 1033–1037 (2016).
- 20. $\hat{Y}u$, L. et al. Organoselenium-catalyzed selectivity-switchable oxidation of β -ionone. Catal Sci Technol 6, 1804–1809 (2016).
- 21. Zhang, X., Sun, J.-J., Ding, Y.-H. & Yu, L. Dehydration of aldoximes using PhSe(O)OH as the pre-catalyst in air. Org Lett 17, 5840–5842 (2015).
- 22. Yu, L. et al. Heck reactions catalyzed by ultrasmall and uniform Pd nanoparticles supported on polyaniline. J Org Chem 80, 8677–8683 (2015).
- 23. Yu, L., Ye, J.-Q., Zhang, X., Ding, Y.-H. & Xu, Q. Recyclable (PhSe)₂-catalyzed selective oxidation of isatin by H₂O₂: A practical and waste-free access to isatoic anhydride under mild and neutral conditions. *Catal Sci Technol* 5, 4830–4838 (2015).
- 24. Zhang, X. et al. Recyclable organoselenium-catalyzed Baeyer-Villiger oxidation of α , β -unsaturated ketones by H_2O_2 : A green access to vinyl esters. Adv Synth Catal 357, 955–960 (2015).
- Yu, L. et al. Organoselenium-catalyzed mild dehydration of aldoximes: An unexpected practical method for organonitrile synthesis. Org Lett 16, 1346–1349 (2014).
- 26. Yu, L. et al. Facile synthesis of 2-methylenecyclobutanones via Ca(OH)₂-catalyzed direct condensation of cyclobutanone with
- aldehydes and (PhSe)₂-catalyzed Baeyer-Villiger oxidation to 4-methylenebutanolides. *Green Chem* **16**, 287–293 (2014).

 27. Yu, L., Wu, Y.-L., Chen, T., Pan, Y. & Xu, Q. Direct synthesis of methylene-1,2-dichalcogenolanes via radical [3+2] cycloaddition of methylenecyclopropanes with elemental chalcogens. *Org Lett* **15**, 144–147 (2013).
- 28. Fan, L. et al. Pd @ aluminum foil: A highly efficient and environment-friendly "tea bag" style catalyst with high TON. Catal Sci Technol 2, 1136-1139 (2012).
- 29. Cacchi, S., La Torre, F. & Paolucci, G. Oxidation of allylic alcohols by 2,3-dichloro-5,6-dicyanobenzoquinone in a two-phase system. Synthesis 1978, 848–849 (1978).
- Paul S. & Gupta, M. A simple and efficient method for selective single Aldol condensation between arylaldehydes and acetone. Synth Commun 35, 213–222 (2005).
- Izquierdo, J., Ayats, C., Henseler, A. H. & Pericas, M. A. A polystyrene-supported 9-amino(9-deoxy)epi quinine derivative for continuous flow asymmetric Michael reactions. Org Biomol Chem 13, 4204–4209 (2015).
- 32. Della Ca', N., Motti, E., Mega, A. & Catellani, M. One-pot palladium-catalyzed synthesis of selectively substituted phenanthridines by sequential aryl-aryl and Heck couplings, aza-Michael and retro-Mannich reactions. *Adv Synth Catal* 352, 1451–1454 (2010).
- 33. Leung, P. S.-W., Teng, Y. & Toy, P. H. Chromatography-free Wittig reactions using a bifunctional polymeric reagent. *Org Lett* 12, 4996–4999 (2010).
- 34. Cacchi, S., Fabrizi, G. & Goggiamani, A. Phosphine ligands and nitrogen bases in the solvent-free Heck reaction of butenone with aryl iodides. A highly selective synthesis of benzalacetones. *ARKIVOC* **2003**, 58–66 (2003).
- 35. Li, X.-F. *et al.* Chemoselective conjugate reduction of α,β-unsaturated ketones catalyzed by rhodium amido complexes in aqueous media. *J Org Chem* **75**, 2981–2988 (2010).
- 36. Taylor, M. Š., Zalatan, D. N., Lerchner, A. M. & Jacobsen, E. N. Highly enantioselective conjugate additions to α,β-unsaturated ketones catalyzed by a (Salen)Al complex. *J Am Chem Soc* **127**, 1313–1317 (2005).
- 37. Gao, W.-M., He, Z.-Q., Qian, Y., Zhao, J. & Huang, Y. General palladium-catalyzed aerobic dehydrogenation to generate double bonds. *Chem Sci* 3, 883–886 (2012).
- 38. Jossang, P. & Molho, D. Chromatographie sur couches épaisses non liées des constituants du rhizome de Piper Methysticum: isolement de deux nouvelles cétones, cinnamalacétone et methylène dioxy-3,4 cinnamalacétone. *J Chromatograph* 31, 375–383 (1967).
- 39. Wang, W., Mei, Y.-J., Li, H. & Wang, J. A novel pyrrolidine imide catalyzed direct formation of α , β -unsaturated ketones from unmodified ketones and aldehydes. *Org Lett* **7**, 601–604 (2005).

- Stahl, I., Schomburg, S. & Kalinowski, H. O. Diastereomere cyclopropane aus benzylidensulfuranen und chalkonen. Chem Ber 117, 2247–2260 (1984).
- 41. Rezaie, R., Heidary, M., Rad, M. N. S. & Behrouz, S. KF-melamine formaldehyde resin (KF-MFR) as a versatile and efficient heterogeneous reagent for Aldol condensation of aldehydes and ketones under microwave irradiation. *Chin J Chem* **29**, 1221–1226 (2011).
- 42. Badioli, M. et al. Addition of organocerium reagents to morpholine amides: Synthesis of important pheromone components of achaea janata. J Org Chem 67, 8938–8942 (2002).
- 43. Kim, S., Bae, S. W., Lee, J. S. & Park, J. Recyclable gold nanoparticle catalyst for the aerobic alcohol oxidation and C–C bond forming reaction between primary alcohols and ketones under ambient conditions. *Tetrahedron* **65**, 1461–1466 (2009).
- 44. Fairlamb, I. J. S., Kapdi, A. R. & Lee, A. F. η2-dba Complexes of Pd(0): The substituent effect in Suzuki—Miyaura coupling. Org Lett 6, 4435–4438 (2004).
- 45. Weber, W. M., Hunsaker, L. A., Abcouwer, S. F., Decka, L. M. & Vander Jagt, D. L. Anti-oxidant activities of curcumin and related enones. *Bioorg Med Chem* 13, 3811–2820 (2005).
- Liang, G. et al. Synthesis, crystal structure and anti-inflammatory properties of curcumin analogues. Eur J Med Chem 44, 915–919 (2009).
- Miller, R. E. & Nord, F. F. Studies on the chemistry of heterocyclics. XVII. Thiophene polyene acids, aldehydes, and ketones. J Org Chem 16, 1720–1730 (1951).
- 48. de Jongh, H. A. P. & Wynberg, H. Spiranes–IV: Long range shielding effects by benzene, thiophene and furan rings in the proton magnetic resonance spectra of diarylspiroketones. *Tetrahedron* 21, 515–533 (1965).
- 49. Raiford, L. C. & Hill, E. L. Effect of constitution on the rearrangement of the phenylhydrazones of some unsymmetrically substituted dibenzalacetones. *J Am Chem Soc* **56**, 174–176 (1934).
- 50. Roman, B. I., Ryck, T. D., Verhasselt, S., Bracke, M. E. & Stevens, C. V. Further studies on anti-invasive chemotypes: An excursion from chalcones to curcuminoids. *Bioorg Med Chem Lett* 25, 1021–1025 (2015).
- 51. Gendron, T., Davioud-Charvet, E. & Müller, T. J. J. Versatile synthesis of dissymmetric diarylideneacetones via a Palladium-catalyzedcoupling-isomerization reaction. *Synthesis* 44, 3829–3835 (2012).
- 52. Sehnal, P. et al. Heteroaromatic analogues of dibenzylideneacetone (dba) and $Pd^0_2(het-dba)_3$ complexes: Effect of a thienyl moiety on the reactivity of $Pd^0(\eta^2-th_n-dba)(PPh_3)_2/Pd^0(PPh_3)_2$ (n=1 or 2) and $Pd^0(\eta^2-th_2-dba)(dppe)/Pd^0(dppe)$ in oxidative addition reactions with iodobenzene. Organometallics **28**, 824–829 (2009).
- 53. Sieber, J. D., Liu, S.-B. & Morken, J. P. Catalytic conjugate addition of allyl groups to styryl-activated enones. J Am Chem Soc 129, 2214–2215 (2007).

Acknowledgements

This work was supported by NNSFC (21202141), Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions, Yangzhou Nature Science Foundation (YZ2014040), the Innovation Foundation of Yangzhou University (2015CXJ009), the High Level Talent Support Project of Yangzhou University, the Opening Foundation of the Key Laboratory of Environmental Materials and Engineering of Jiangsu Province (K14010) and the Open Project Program of Jiangsu Key Laboratory of Zoonosis (R1509). We thank the analysis centre of Yangzhou University for assistances.

Author Contributions

L.Y. supervised the overall project. M.H., J.L. and L.X. performed the experiments. L.Y., Y.D. and Q.X. designed the experiments.

Additional Information

Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Yu, L. *et al.* Ca(OH)₂-Catalyzed Condensation of Aldehydes with Methyl ketones in Dilute Aqueous Ethanol: A Comprehensive Access to a,β-Unsaturated Ketones. *Sci. Rep.* **6**, 30432; doi: 10.1038/srep30432 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2016