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Ca(OH)2-Catalyzed Condensation 
of Aldehydes with Methyl ketones 
in Dilute Aqueous Ethanol: A 
Comprehensive Access to  
α,β-Unsaturated Ketones
Lei Yu1, Mengting Han1, Jie Luan1, Lin Xu1,2, Yuanhua Ding1 & Qing Xu1

Cheap, abundant but seldom-employed Ca(OH)2 was found to be an excellent low-loading (5–10 mol%) 
catalyst for Claisen-Schmidt condensation of aldehydes with methyl ketones under mild conditions. It 
was interesting that dilute aqueous ethanol (20 v/v%) was unexpectedly discovered to be the optimal 
solvent. The reaction was scalable at least to 100 mmol and calcium could be precipitated by CO2 and 
removed by filtration. Evaporation of solvent directly afforded the product in the excellent 96% yield 
with high purity, as confirmed by its 1H NMR spectrum.

α​,β​-Unsaturated ketones, including dimethylidene acetone derivatives, are not only important building blocks 
in organic synthesis, but also key chemicals in many fields including perfumery, biochemistry, agriculture, 
food chemistry, polymer and material science, and others1–4. Therefore, the synthesis of these compounds is of 
great importance in both academic and industrial circles. Among reported works, Claisen-Schmidt condensa-
tion appears to be the most practical method to prepare α​,β​-unsaturated ketones owing to its directness, clean 
procedures and accessible starting materials. Despite being discovered over 100 years ago, the enthusiasm for 
Claisen-Schmidt condensations never reduces and in recent years, a series of novel catalysts have been devel-
oped for this reaction, such as solid bases5,6, nano catalysts7,8, ionic liquid catalysts9, fluorous based catalysts10,11, 
metal-organic frame works (MOFs)12 and organocatalysts13,14. Nevertheless, cheap and abundant NaOH would 
be expected to be the most common catalyst for the reaction due to its availability in laboratory, and indeed this 
method is still widely employed up to the present15–17. But reactions performed in strong alkaline conditions are 
corrosive to equipment and generate unmanageable and corrosive solid waste. These drawbacks have limited the 
large-scale application of NaOH. Moreover, methods for the synthesis of dimethylidene acetone derivatives, espe-
cially for those dissymmetrically substituted compounds, have not been well documented yet. Thus, developing 
novel alternative synthetic methodologies with broad scope using mild and common base catalysts is not only 
desirable but timely for the field.

Calcium hydroxide is also a readily accessible base and compared with NaOH, it is much cheaper and less 
alkaline. Moreover, Ca(OH)2 is easily neutralized and precipitated by CO2, which is beneficial from the point 
of industrial use. However, despite several well-known applications in industrial production, examples of the 
employment of Ca(OH)2 as a base catalyst in organic synthesis are rare18. As part of our continuing coopera-
tive research projects with industrial partners to develop green synthetic methodologies19–28, we reported an 
organoselenium-catalyzed green oxidation of α​,β​-unsaturated ketones to prepare vinyl esters, which serve as 
versatile copolymers in material science24. To facilitate industrial application, a green and practical synthesis of 
α​,β​-unsaturated ketones (the starting material for vinyl ester synthesis) was desired. To that end, we investigated 
the Ca(OH)2-catalyzed Claisen-Schmidt condensations to prepare α​,β​-unsaturated ketones. During this work, 
dilute aqueous ethanol was unexpectedly found to be the optimal solvent and calcium could be precipitated 
by CO2 and removed by filtration to afford high purity products after solvent evaporation. The method allows 
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comprehensive access to versatile α​,β​-unsaturated ketones, including the challenging dissymmetrically substi-
tuted dimethylidene acetone derivatives. Herein, we wish to report our findings.

Results
We initially chose the Ca(OH)2-catalyzed Claisen-Schmidt condensation of benzaldehyde 1a with acetone 2a as 
the model reaction to find optimal conditions (Fig. 1). After heating 1a, 2a and 10 mol% of Ca(OH)2 in EtOH at 
50 °C for 20 h, the product benzylideneacetone 3a could be isolated in 68% yield (Table 1, entry 1). During the 
reaction process, we observed Ca(OH)2 precipitation at the bottom of the tube, which implied the low efficiency 
of alkali utilization. Therefore, water was then added to increase the Ca(OH)2 solubility. When the reaction was 
performed in EtOH/H2O (80:20), it was significantly accelerated and finished in 16 h, giving 3a in 69% yield 
(entry 2). The reaction was further accelerated and the product yields were enhanced greatly by increasing the 
proportional of water in the solvent (entries 3–4). Surprisingly, EtOH/H2O (20:80) as solvent gave the highest 
product yield in 85% (entry 4). Increased ratios of water in the solvent only resulted in reduced product yield and 
extended reaction times (entry 5), possibly due to the reduced substrate dissolution that inhibited the reaction. 
When the reactions were taken in highly diluted aqueous EtOH (entry 6) or pure water (entry 7), no product 3a 
was observed. It is notable that the combination of EtOH with water played a key role in this reaction. A series 
of parallel reactions showed that the effect of EtOH/H2O was not only solvent for both organic substrates and 
inorganic base, but it also activated the Ca(OH)2. Experiments performed in acetone or acetone/EtOH resulted in 
very low product yields despite the reaction temperature. For details, please see the Supplementary Information.

With the optimized conditions in hand, a series of aldehydes 1 and ketones 2 were then employed to exam-
ine the scope of the reaction (Fig. 2). Results in Table 2 clearly show that the electron-enriched aldehydes had 
reduced reactivities for this reaction, which resulted in both extended reaction times and decreased product yields 
(Table 2, entries 2–5 vs. 1). For 4-methoxybenzaldehyde 1e, the reaction should be carried out at room temper-
ature with excess acetone, otherwise the dialkylated product (1E,4E)-1,5-bis(4-methoxyphenyl)penta-1,4-dien-
3-one 4c was obtained instead of the desired (E)-4-(4-methoxyphenyl)but-3-en-2-one 3e (Table 2, entry 5).  
The electron-deficient aldehydes obviously had higher reactivities and their reactions were accelerated, but resulted 
in reduced product yields due to the generation of a series of unidentified byproducts (Table 2, entries 6–11). 
The reactions of electron-deficient aldehydes could be improved using milder conditions. For example, treating 
2-chlorobenzaldehyde 1h with acetone under the standard reaction conditions (50 °C) afforded the product 3h 
in only 40% yield, but the yield could be improved of room temperature (ca. 25 °C), affording 3h in 52% yield 
(Table 2, entry 8). Similarly, for 4-(trifluoromethyl)benzaldehyde 1j, reaction with acetone under standard condi-
tions gave 3j in very low yield, but was also improved to 72% at room temperature (Table 2, entry 10). The reaction 

Figure 1.  Condensation of 1a with 2a. 

Entry EtOH/H2Ob t/h 3a/%c

1 100:0 20 68

2 80:20 16 69

3 50:50 14 84

4 20:80 10 85

5 10:90 24 79

6 5:95 36 0

7 0:100 36 0

Table 1.   Optimization of the reaction conditionsa. aReaction conditions: 1 mmol 1a, 3 mmol 2a, 0.1 mmol 
Ca(OH)2 and 1 mL of solvent were employed. bVolume ratio of EtOH with water. cIsolated yields of 3a based on 1a.

Figure 2.  Substrate extension of the Ca(OH)2-catalyzed Claisen-Schmidt condensation. 
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of 4-nitrobenzaldehyde 1k with acetone led to poor product yield, but this was improved at room temperature 
(Table 2, entry 11). Bulky aldehyde 1l was also tested, giving the desired product 3l in moderate yields (Table 2, 
entry 12). We were also interested in the synthesis of heterocycle containing α​,β​-unsaturated ketones because of 
their bioactivities and potential applications in medicinal chemistry. The reaction of picolinaldehyde 1m with 
acetone was tested, but gave 3m in very low yield. Fortunately, the reaction could be improved to give 3m in 
moderate yield under milder conditions using excess acetone (Table 2, entries 13). Interestingly, the reaction of 
thiophene-2-carbaldehyde 1n with acetone afforded 3n quickly in the excellent 90% yield under the standard con-
ditions (Table 2, entry 14). The α​,β​-unsaturated aldehyde 1o was also good substrate for the reaction, giving 3o in 
91% yield (Table 2, entry 15). The reaction of aliphatic aldehyde gave the product in low yield (Table 2, entry 16).

Besides acetone, other methyl ketones could also be employed. The reaction of acetophenone 2b with benza-
ldehyde 1a led to 3p in 71% in 18 h (Table 2, entry 17). But the electron-riched substrate 2c obviously had lower 
reactivity and the reaction did not complete even after 48 h (Table 2, entry 18). Reaction of the electron-deficient 
substrate 2d with 1a led to their product 3r in 68% yield in 40 h, with a series of unidentified by-products observed 
by TLC (Table 2, entry 19). Reactions of the alkyl methyl ketones 2e and 2f with 1a afforded the corresponding 
products 3s and 3t in moderate yields (Table 2, entries 20–21). A more detailed substrate expansion table was also 
given in the Supplementary Information.

The synthesis of the dimethylidene acetone derivatives was our next concern because of the great application 
potential of these bioactive compounds (Fig. 3). Fortunately, during the previous optimization study, we serendipi-
tously found that the symmetrically substituted dibenzylidene acetone 4a could be easily synthesized in good yield 
from 1a and 2a at 80 °C (Table 3, entry 1). As shown in Table 3, other symmetrically substituted dimethylidene 
acetone derivatives could be smoothly synthesized in this way. Obviously, the electron-enriched aldehydes 
1b and 1e had poor reactivity for the reaction, giving 4b and 4c in only 31–39% yields (Table 3, entries 2–3).  
The electron-deficient aldehydes 1f and 1j were much more activated (Table 3, entries 4–5), and the reaction of 1j 
with acetone even led to 4e in excellent 92% yield (Table 3, entry 5). Heterocycle-substituted aldehydes were also 

Entry 1: R1; 2: R2 3: t/hb, yield/%c

1 1a: Ph; 2a: Me 3a: 10 h, 85

2 1b: 4-MeC6H4; 2a: Me 3b: 36 h, 83

3 1c: 3-MeC6H4; 2a: Me 3c: 24 h, 67

4 1d: 2-MeC6H4; 2a: Me 3d: 28 h, 60

5 1e: 4-MeOC6H4; 2a: Me 3e: 48 h, 61d,e

6 1f: 4-FC6H4; 2a: Me 3f: 9h, 78

7 1g: 4-ClC6H4; 2a: Me 3g: 10 h, 72

8 1h: 2-ClC6H4; 2a: Me 3h: 8 h, 52d

9 1i: 4-BrC6H4; 2a: Me 3i: 10 h, 71

10 1j: 4-CF3C6H4; 2a: Me 3j: 24 h, 72d

11 1k:4-NO2C6H4; 2a: Me 3k: 8 h, 50d

12 1l:1-C10H7; 2a: Me 3l: 36 h, 58

13 1m: 2-C5H4N-; 2a: Me 3m: 24 h, 55d,f,g

14 1n: 2-C4H3S-; 2a: Me 3n: 10 h, 90

15 1o: E-PhCH =​ CH-; 2a: Me 3o: 30 h, 91

16 1p: c-C6H11; 2a: Me 3p: 48 h, 30h,i

17 1a: Ph; 2b: Ph 3q: 18 h, 71

18 1a: Ph; 2c: 4-MeC6H4 3r: 48 h, 61h

19 1a: Ph; 2d: 4-ClC6H4 3s: 40 h, 68

20 1a: Ph; 2e: n-Bu 3t: 48 h, 54h,i

21 1a: Ph; 2f: i-Pr 3u: 48 h, 60h

Table 2.  Substrate extension of the Ca(OH)2-catalyzed Claisen-Schmidt condensationa. aReaction 
conditions: without special instructions, 1 mmol of 1, 3 mmol of 2 and 0.1 mmol Ca(OH)2 were heat in 1 mL 
of EtOH/H2O (20 v/v%) at 50 °C. bReactions monitored by TLC (eluent: petroleum ether/EtOAc 9:1). cIsolated 
yields based on 1. dReaction performed at room temperature (ca. 25 °C). e10 mmol of acetone was employed. 
fCa(OH)2 loading was reduced to 5 mol%. g1 mL of acetone was employed. hReaction uncompleted. iReaction 
performed at 120 °C in a pressure tube.

Figure 3.  Synthesis of symmetrically substituted dimethylidene acetone derivatives. 
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suitable substrates for the reaction, giving corresponding products in moderate to good yields (Table 3, entries 
6–7).

We also tried to synthesize the dissymmetrically substituted dimethylidene acetone derivatives using this 
Ca(OH)2-catalyzed methodology (Fig. 4). Initially, the reaction of aldehyde 1a with a stoichiometric amount of 
3a led to 4a in 82% yield (Table 4, entry 1). This two-step protocol was then employed to synthesize other dissym-
metrically substituted dimethylidene acetone derivatives. Treating aldehydes 1b-q with 3a at 80 °C in the pres-
ence of Ca(OH)2 catalyst afforded the corresponding products 4h-4n smoothly (Table 4). The electron-deficient 
aldehydes led to higher product yield than the electron-riched aldehydes (Table 4, entries 4–5 vs. 2–3). 

Entry 1: R 4: yield/%b

1 1a: Ph 4a: 84

2 1b: 4-MeC6H4 4b: 39

3 1e: 4-MeOC6H4 4c: 31

4 1f: 4-FC6H4 4d: 78

5 1j: 4-CF3C6H4 4e: 92

6 1n: 2-C4H3S- 4f: 62

7 1p: 2-C4H3O- 4g: 80

Table 3.   Synthesis of symmetrically substituted dimethylidene acetone derivativesa. aReaction conditions: 
2 mmol 1, 1 mmol 2 and 0.1 mmol Ca(OH)2 were heat in 1 mL of EtOH/H2O (20 v/v%) at 80 °C. bIsolated yields 
based on 2a.

Figure 4.  Synthesis of dissymmetrically substituted dimethylidene acetone derivatives. 

Entry 1: R

4: yield/%b

Multi-stepc One-pot

1 1a: Ph 4a: 82 (70) 4a: 71

2 1b: 4-MeC6H4 4h: 62 (53) 4h: 68

3 1e: 4-MeOC6H4 4i: 52 (44) 4i: 46

4 1f: 4-FC6H4 4j: 81 (69) 4j: 75

5 1j: 4-CF3C6H4 4k: 90 (77) 4k: 92

6 1n: 2-C4H3S- 4l: 68 (58) 4l: 61

7 1p: 2-C4H3O- 4m: 72 (61) 4m: 80

8 1q: c-C6H11- 4n: 24 (20) 4n: 21

Table 4.  Synthesis of dissymmetrically substituted dimethylidene acetone derivativesa. aReactions were 
performed in 1 mL of EtOH/H2O (20 v/v%) catalysed by 0.1 mmol of Ca(OH)2. bIsolated yields. cTotal yields 
from 1a and 2a in parentheses (×85%).
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Heterocycle-contained aldehydes 1n and 1p were also fit for the reaction (Table 4, entries 6–7), but the alkyl 
substrate 1q resulted in poor product yield (Table 4, entry 8).

The synthetic efficiency could be improved using a one-pot strategy. Although the product yields of the 
one-pot synthesis were reduced in some cases (Table 4, entries 1,3–4, 6–8), considering of the loss of the start-
ing materials in 3a preparation step (Table 2, entry 1, 85% yield), their total yields were higher than that of the 
multi-step methods (Table 4, entries 1–8).

The role of Ca(OH)2 in the reaction was investigated through a series of control experiments. Using 20 mol% 
of NaOH as base afforded 3a in only 47% yield (Table 5, entry 1). But with the addition of 10 mol% of the neutral 
CaCl2, the yield of 3a could be largely enhanced to 78% (Table 5, entry 5). Similar phenomena were also observed 
in reactions using organic bases (Table 5, entries 3 vs 4). LiOH, an alkali weaker than NaOH, but with a “hard” 
alkali metal, led to a significantly elevated 3a yield (Table 5, entries 5 vs 1). These experimental results suggested 
that the “hard” Ca2+ is the key factor for the excellent catalytic performance.

Finally, to examine the practicability of the method, a 100 mmol scale reaction of 1a with 2a was performed. 
After the reaction, calcium was precipitated by CO2 and removed through filtration. Evaporation of the solvent 
directly afforded 3a in 96% yield with high purity (Fig. 5), as confirmed by its 1H NMR spectrum (Fig. 6).

Conclusion
In conclusion, we have developed a practical synthesis of α​,β​-unsaturated ketones, including the symmetrically or 
dissymmetrically substituted dimethylidene acetone derivatives, which are promising compounds for medicinal 
chemistry. The method employed very low loading (5–10 mol%) Ca(OH)2 catalyst, which could be removed by 
CO2. The reactions were performed in cheap and benign dilute aqueous ethanol (20 v/v%). This work shows that 
Ca(OH)2, the abundant but seldom employed base, might find further application in organic synthesis.

Methods
General Considerations.  Aldehydes were purchased from the reagent merchant. The liquid aldehydes were 
distilled under vacuum before use, while the solid aldehydes were recrystallized in EtOH-H2O under N2 before 
use. Ethanol was analytical pure (AR) and directly used without any special treatment. All reactions were car-
ried out in N2 and monitored by TLC. Melting points were measured by WRS-2A digital instrument. IR spectra 
were measured on Bruker Tensor 27 Infrared spectrometer. 1H and 13C NMR spectra were recorded on a Bruker 
Avance 600/400 instrument (600 or 400 MHz for 1H and 150 MHz for 13C NMR spectroscopy) using CDCl3 as 
the solvent and Me4Si as the internal standard. Chemical shifts for 1H and 13C NMR were referred to internal 
Me4Si (0 ppm) and J-values were shown in Hz. Mass spectra were measured on a Shimadzu GCMS-QP2010 Ultra 
spectrometer (EI).

Entry Cat. (mol%) 3a yield/%b

1 NaOH (20) 47

2 NaOH (20) +​ CaCl2 (10) 78

3 Et3N (20) 35

4 Et3N (20) +​ CaCl2 (10) 53

5 LiOH (20) 71

Table 5.  Control experimentsa. a1 mmol 1a, 3 mmol 2a, and 1 mL of solvent were employed. bMolar ration 
based on 1a in parentheses. cIsolated yields based on 1a.

Figure 5.  The simple separation procedure for the product. 
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Typical procedure for the synthesis of 3.  0.1 mmol of Ca(OH)2 (7.4 mg) was first added into a reaction 
tube, which was then charged with N2. A solution of 1 mmol of aldehyde 1 and 3 mmol of methyl ketone 2 in 
EtOH/H2O (1 mL, 20 v/v%) was then injected into the reaction tube. The mixture was heat at 50 °C under N2 
protection and the reaction was monitored by TLC. When the reaction terminated, the solvent was evaporated 
under vacuum and the residue was purified by preparative TLC (eluent: petroleum ether/EtOAc, 2: 1 for 3m, 15: 
1 for rest compounds).

Typical procedure for the synthesis of symmetrically substituted dimethylidene acetone deriv-
atives 4.  0.1 mmol of Ca(OH)2 (7.4 mg) was first added to a reaction tube, which was then charged with N2. A 
solution of 2 mmol of aldehyde 1 and 1 mmol of acetone 2a in EtOH/H2O (1 mL, 20 v/v%) was then injected into 
the reaction tube, which was then sealed under N2 and heat at 80 °C for 48 h. The reaction mixture was isolated by 
preparative TLC (eluent: petroleum ether/EtOAc, 15: 1).

Typical procedure for the synthesis of dissymmetrically substituted dimethylidene acetone 
derivatives 4 (multi-step).  0.1 mmol of Ca(OH)2 (7.4 mg) and 1 mmol of 3a were added into a reaction 
tube, which was then charged with N2. A solution of 1 mmol of aldehyde 1 in EtOH/H2O (1 mL, 20 v/v%) was then 
injected into the reaction tube. The mixture was heat at 80 °C under N2 for 48 h and then isolated by preparative 
TLC (eluent: petroleum ether/EtOAc, 15: 1).

Typical procedure for the synthesis of dissymmetrically substituted dimethylidene acetone 
derivatives 4 (one-pot).  0.1 mmol of Ca(OH)2 (7.4 mg) was first added into a 10 mL round bottom flask, 
which was then charged with N2. A solution of 1 mmol of aldehyde 1 and 3 mmol of methyl ketone 2 in EtOH/
H2O (1 mL, 20 v/v%) was then injected into the reaction tube. The mixture was heat at 50 °C under N2 protection. 
After 10 h, the solvent was evaporated under vacuum and another solution of 1 mmol of aldehyde 1 in EtOH/H2O 
(1 mL, 20 v/v%) was then injected. The mixture was heat at 80 °C under N2 for 48 h and isolated by preparative 
TLC (eluent: petroleum ether/EtOAc, 15:1).

Procedure for the large-scale reaction.  To a 250 mL three-neck flask, 10 mmol of Ca(OH)2 (0.74 g) was 
added. The flask was then charged with N2. A solution of 100 mmol of benzaldehyde 1a and 300 mmol of acetone 
2a in 100 mL EtOH/H2O (20 v/v%) was then injected. The mixture was stirred at 50 °C under N2 protection for 
10 h and then cooled to room temperature. CO2 was then charged into the liquid and the pH was controlled to 
7.0 (monitored by a pH meter). The precipitated CaCO3 was removed by filtration and the filtrate was collected. 
After the evaporation of the solvent, 14.0 g of the product 3a was obtained in the excellent 96% yield. The product 
was directly sent to 1H NMR analysis without any further purification and the results in Fig. 2 confirmed its high 
purity.

Characterization of the products (For spectra of the compounds, please see the Supplementary 
Information).  (E)-4-Phenylbut-3-en-2-one 3a.  124.3 mg, 85%; Solid, m. p. 40.4–40.9 °C (lit. 40–41 °C); IR 
(KBr): 3027, 2923, 1958, 1668, 1609, 1358, 1256, 975, 749, 690 cm−1; 1H NMR (600 MHz, CDCl3, TMS): δ​ 7.53–
7.38 (m, 5H), 7.50 (d, J =​ 16.2 Hz, 1H), 6.71 (d, J =​ 16.2 Hz, 1H), 2.37 (s, 3H); 13C NMR (150 MHz, CDCl3):  
δ​ 198.4, 143.5, 134.4, 130.6, 129.0, 128.3, 127.1, 27.5; MS (EI, 70 eV): m/z (%) 147 (5) [M+ +​ 1], 146 (47) [M+], 103 
(100), 131 (85), 145 (58); Known compound29.

(E)-4-(p-Tolyl)but-3-en-2-one 3b.  133.0 mg, 83%; Oil; IR (film): 3293, 3025, 2920, 1665, 1610, 1512, 1357, 1256, 
977, 801, 601 cm−1; 1H NMR (600 MHz, CDCl3, TMS): δ​ 7.46 (d, J =​ 16.2 Hz, 1H), 7.40 (d, J =​ 7.8 Hz, 2H), 7.16 (d, 
J =​ 7.8 Hz, 2H), 6.65 (d, J =​ 16.2 Hz, 1H), 2.34 (s, 3H), 2.33 (s, 3H); 13C NMR (150 MHz, CDCl3): δ​ 198.4, 143.5, 
141.0, 131.6, 129.7, 128.3, 126.2, 27.4, 21.5; MS (EI, 70 eV): m/z (%) 160 (14) [M+], 145 (100), 115 (48), 117 (35); 
Known compound30.

Figure 6.  1H NMR spectrum of the product 3a after the evaporation of solvent. 
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(E)-4-(m-Tolyl)but-3-en-2-one 3c.  107.3 mg, 67%; Oil; IR (film): 3021, 2921, 1669, 1611, 1358, 1257, 977, 779, 
691 cm−1; 1H NMR (600 MHz, CDCl3, TMS): δ​ 7.46 (d, J =​ 16.8 Hz, 1H), 7.33–7.32 (m, 2H), 7.26 (t, J =​ 7.8 Hz, 
1H), 7.18 (d, J =​ 7.8 Hz, 1H), 6.68 (d, J =​ 16.2 Hz, 1H), 2.35 (s, 6H, 2CH3); 13C NMR (150 MHz, CDCl3): δ​ 198.2, 
143.5, 138.6, 134.4, 131.3, 128.9, 128.8, 127.0, 125.5, 27.4, 21.3; MS (EI, 70 eV): m/z (%) 161 (4) [M+ +​ 1], 160 (28) 
[M+], 145 (100), 115 (54); Known compound31.

(E)-4-(o-Tolyl)but-3-en-2-one 3d.  96.1 mg, 60%; Oil; IR (film): 3057, 3022, 2964, 2926, 1824, 1670, 1612, 1360, 
1257, 1176, 976, 752 cm−1; 1H NMR (600 MHz, CDCl3, TMS): δ​ 7.81 (d, J =​ 16.2 Hz, 1H), 7.56 (d, J =​ 7.2 Hz, 
1H), 7.28 (t, J =​ 7.2 Hz, 1H), 7.21 (t, J =​ 7.8 Hz, 2H), 6.64 (d, J =​ 16.2 Hz, 1H), 2.44 (s, 3H), 2.38 (s, 3H); 13C NMR 
(150 MHz, CDCl3): δ​ 198.3, 140.8, 137.9, 133.4, 130.9, 130.2, 128.1, 126.5, 126.4, 27.8, 19.8; MS (EI, 70 eV): m/z 
(%) 160 (12) [M+], 145 (100), 115 (61), 117 (37), 116 (22); Known compound32.

(E)-4-(4-Methoxyphenyl)but-3-en-2-one 3e.  107.5 mg, 61%; Solid, m. p. 71.2–72.3 °C (lit. 71–72 °C); IR (KBr): 
3067, 3047, 2977, 2943, 2848, 1682, 1587, 1423, 1359, 1022, 989, 819 cm−1; 1H NMR (400 MHz, CDCl3, TMS): δ​ 
7.50 (d, J =​ 8.8 Hz, 2H), 7.48 (d, J =​ 16.4 Hz, 1H), 6.93 (d, J =​ 8.8 Hz, 2H), 6.63 (d, J =​ 16.4 Hz, 1H), 3.85 (s, 3H), 
2.36 (s, 3H); 13C NMR (100 MHz, CDCl3): δ​ 198.4, 161.6, 143.2, 129.9, 127.0, 125.0, 114.4, 55.3, 27.4; MS (EI, 
70 eV): m/z (%) 177 (5) [M+ +​ 1], 176 (45) [M+], 161 (100), 133 (51); Known compound30.

(E)-4-(4-Fluorophenyl)but-3-en-2-one 3f.  128.1 mg, 78%; Oil; IR (film): 3298, 1668, 1598, 1509, 1232, 1160, 
1097, 977, 910, 858, 817, 778, 602 cm−1; 1H NMR (600 MHz, CDCl3, TMS): δ​ 7.55–7.52 (m, 2H), 7.48 (d, 
J =​ 16.2 Hz, 1H), 7.10–7.07 (m, 2H), 6.65 (d, J =​ 16.2 Hz, 1H), 2.38 (s, 3H); 13C NMR (150 MHz, CDCl3): δ​ 198.0, 
164.0 (d, JC-F =​ 250.0 Hz), 141.9, 130.7 (d, JC-F =​ 3.5 Hz), 130.1 (d, JC-F =​ 8.6 Hz), 126.9 (d, JC-F =​ 2.3 Hz), 116.1 
(d, JC-F =​ 21.9 Hz), 27.5; MS (EI, 70 eV): m/z (%) 165 (5) [M+ +​ 1], 164 (39) [M+], 149 (100), 121 (68), 101 (68); 
Known compound33.

(E)-4-(4-Chlorophenyl)but-3-en-2-one 3g.  130.0 mg, 72%; Solid, m. p. 53.6–55.0 °C (lit. 54–55 °C); IR (KBr): 
3284, 2924, 1659, 1490, 1406, 1362, 1254, 1092, 978, 808, 581 cm−1; 1H NMR (600 MHz, CDCl3, TMS): δ​ 7.48–7.44 
(m, 3H, 1C =​ C-H +​ 2Ar-H), 7.37 (d, J =​ 8.4 Hz, 2H), 6.70 (d, J =​ 16.8 Hz, 1H), 2.38 (s, 3H); 13C NMR (150 MHz, 
CDCl3): δ​ 198.0, 141.8, 136.4, 133.0, 129.4, 129.3, 127.5, 27.7; MS (EI, 70 eV): m/z (%) 181 (8) [M+ +​ 1], 180 (27) 
[M+], 165 (100), 102 (53), 137 (50); Known compound34.

(E)-4-(2-Chlorophenyl)but-3-en-2-one 3h.  93.9 mg, 52%; Oil; IR (film): 2994, 2925, 1770, 1670, 1609, 1374, 1244, 
1177, 1052, 975, 752, 695 cm−1; 1H NMR (400 MHz, CDCl3, TMS): δ​ 7.94 (d, J =​ 16.4 Hz, 1H), 7.63 (dd, J =​ 1.6 Hz, 
J =​ 7.2 Hz, 1H), 7.42 (dd, J =​ 1.2 Hz, J =​ 7.6 Hz, 1H), 7.34–7.28 (m, 2H), 6.66 (d, J =​ 16.4 Hz, 1H), 2.42 (s, 3H); 13C 
NMR (100 MHz, CDCl3): δ​ 198.4, 139.2, 135.0, 132.6, 131.3, 130.2, 129.6, 127.6, 127.2, 27.2; MS (EI, 70 eV): m/z 
(%) 180 (9) [M+], 145 (100), 137 (26), 101 (25), 165 (23); Known compound35.

(E)-4-(4-Bromophenyl)but-3-en-2-one 3i.  159.8 mg, 71%; Solid, m. p. 81.6–82.3 °C (lit. 81–83 °C). IR (KBr): 
3021, 2921, 1658, 1419, 1360, 1259, 977, 803, 699 cm−1; 1H NMR (600 MHz, CDCl3, TMS): δ​ 7.53 (d, J =​ 8.4 Hz, 
2H), 7.44 (d, J =​ 16.2 Hz, 1H), 7.40 (d, J =​ 8.4 Hz, 2H), 6.70 (d, J =​ 16.2 Hz, 1H), 2.38 (s, 3H); 13C NMR (150 MHz, 
CDCl3): δ​ 198.0, 141.9, 133.4, 132.3, 129.6, 127.6, 124.8, 27.7; MS (EI, 70 eV): m/z (%) 226 (15) [M+](81Br), 224 
(15) [M+], 102 (100), 145 (55), 209 (48), 211 (46); Known compound36.

(E)-4-(4-(Trifluoromethyl)phenyl)but-3-en-2-one 3j.  154.2 mg, 72%; Oil; IR (film): 2962, 2840, 1664, 1615, 1602, 
1416, 1328, 1169, 1123, 978, 820 cm−1; 1H NMR (600 MHz, CDCl3, TMS): δ​ 7.65 (s, 4H), 7.52 (d, J =​ 16.8 Hz, 1H), 
6.78 (d, J =​ 16.2 Hz, 1H), 2.41 (s, 3H); 13C NMR (150 MHz, CDCl3): δ​ 197.9, 141.3, 137.9, 131.9 (d, JC-F =​ 32.4 Hz), 
129.1, 128.3, 125.9 (m), 123.8 (d, JC-F =​ 270.5 Hz), 27.9; MS (EI, 70 eV): m/z (%) 214 (21) [M+], 199 (100), 151 
(84), 171 (66); Known compound13.

(E)-4-(4-Nitrophenyl)but-3-en-2-one 3k.  103.2 mg, 54%; Solid, m. p. 116.1–117.7 °C (lit. 117–118 °C); IR (KBr): 
3109, 3080, 2926, 1691, 1688, 1593, 1514, 1344, 1254, 1176, 1109, 982, 858, 825, 790, 748, 885 cm−1; 1H NMR 
(600 MHz, CDCl3, TMS): δ​ 8.26 (d, J =​ 7.8 Hz, 2H), 7.70 (d, J =​ 7.8 Hz, 2H), 7.54 (d, J =​ 16.8 Hz, 1H), 6.82 (d, 
J =​ 16.2 Hz, 1H), 2.43 (s, 3H); 13C NMR (150 MHz, CDCl3): δ​ 197.5, 148.6, 140.7, 140.1, 130.4, 128.8, 124.2, 28.1; 
MS (EI, 70 eV): m/z (%) 191 (21) [M+], 176 (100), 174 (60), 130 (58), 102 (51); Known compound30.

(E)-4-(Naphthalen-1-yl)but-3-en-2-one 3l.  113.8 mg, 58%; Oil; IR (film): 3057, 3007, 2962, 2924, 1936, 1817, 
1670, 1599, 1356, 1255, 1189, 974, 795, 773 cm−1; 1H NMR (600 MHz, CDCl3, TMS): δ​ 8.35 (d, J =​ 16.2 Hz, 1H), 
8.16 (d, J =​ 8.4 Hz, 1H), 7.90–7.86 (m, 2H), 7.76 (d, J =​ 7.2 Hz, 1H), 7.58–7.46 (m, 3H), 6.80 (d, J =​ 16.2 Hz, 1H), 
2.45 (s, 3H); 13C NMR (150 MHz, CDCl3): δ​ 198.2, 140.1, 133.7, 131.7, 131.5, 130.8, 129.6, 128.9, 127.0, 126.3, 
125.5, 125.2, 123.2, 28.0; MS (EI, 70 eV): m/z (%) 197 (7) [M+ +​ 1], 196 (47) [M+], 153 (100), 152 (86), 195 (53), 
181 (46), 151 (34); Known compound13.

(E)-4-(Pyridin-2-yl)but-3-en-2-one 3m.  76.5 mg, 52%; Oil; IR (film): 3051, 3005, 2926, 2854, 1670, 1620, 1581, 
1431, 1360, 1250, 980, 905, 766 cm−1; 1H NMR (600 MHz, CDCl3, TMS): δ​ 8.66 (d, J =​ 4.2 Hz, 1H), 7.73 (t, 
J =​ 7.8 Hz, 1H), 7.53 (d, J =​ 16.2 Hz, 1H), 7.49 (d, J =​ 7.8 Hz, 1H), 7.30–7.29 (m, 1H), 7.14 (d, J =​ 16.2 Hz, 1H), 2.41 
(s, 3H); 13C NMR (150 MHz, CDCl3): δ​ 198.4, 153.1, 150.1, 141.9, 136.8, 130.2, 124.3, 124.2, 28.0; MS (EI, 70 eV): 
m/z (%) 148 (4) [M+ +​ 1], 147 (39) [M+], 132 (100), 104 (61), 78 (50), 51 (25), 43 (16); Known compound37.
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(E)-4-(Thiophen-2-yl)but-3-en-2-one 3n.  137.0 mg, 90%; Oil; IR (film): 3103, 3008, 2922, 1803, 1684, 1595, 
1514, 1489, 1423, 1358, 1254, 1200, 1189, 986, 858, 818, 708 cm−1; 1H NMR (600 MHz, CDCl3, TMS): δ​ 7.63 (d, 
J =​ 15.6 Hz, 1H), 7.39 (d, J =​ 4.2 Hz, 1H), 7.28 (d, J =​ 3.6 Hz, 1H), 7.07–7.05 (m, 1H), 6.52 (d, J =​ 16.2 Hz, 1H), 2.33 
(s, 3H); 13C NMR (150 MHz, CDCl3): δ​ 197.7, 139.7, 135.7, 131.5, 128.9, 128.3, 125.8, 27.7; MS (EI, 70 eV): m/z 
(%) 153 (5) [M+ +​ 1], 152 (53) [M+], 137 (100), 109 (65), 65 (27), 43 (18), 69 (13); Known compound13.

(3E,5E)-6-Phenylhexa-3,5-dien-2-one 3o.  156.7 mg, 91%; Solid, m. p. 63.3–64.8 °C (lit. 64 °C); IR (KBr): 3057, 
3028, 2926, 1880, 1711, 1670, 1614, 1587, 1448, 1360, 1252, 1144, 997, 750, 892 cm−1; 1H NMR (600 MHz, 
CDCl3, TMS): δ​ 7.48 (d, J =​ 7.2 Hz, 2H), 7.37 (t, J =​ 7.2 Hz, 2H), 7.33–7.27 (m, 2H), 6.97–6.86 (m, 2H), 6.26 (d, 
J =​ 15.0 Hz, 1H), 2.32 (s, 3H); 13C NMR (150 MHz, CDCl3): δ​ 198.4, 143.4, 141.3, 136.0, 130.5, 129.2, 128.9, 127.3, 
126.7, 27.4; MS (EI, 70 eV): m/z (%) 173 (10) [M+ +​ 1], 172 (70) [M+], 128 (100), 129 (91), 157 (56), 171 (35), 95 
(22); Known compound38.

(E)-4-cyclohexylbut-3-en-2-one 3p.  45.8 mg, 30%, Oil; IR (film): 2927, 2853, 1675, 1624, 1449, 1359, 1254, 
980cm-1; 1H NMR (600 MHz, CDCl3, TMS): δ​ 6.77–6.72 (m, 1 H), 6.02 (d, J =​ 16.2 Hz, 1H), 2.25 (s, 3H), 2.15–2.14 
(m, 1 H), 1.78–1.76 (m, 4 H), 1.34–1.12 (m, 6 H); 13C NMR (150 MHz, CDCl3): δ​ 199.3, 153.5, 128.8, 40.6, 31.8, 
26.9, 25.9, 25.7; MS (EI, 70 eV): m/z (%) 152 (49) [M+], 94 (100), 109 (70), 83 (80). Known compound39.

(E)-Chalcone 3q.  147.9 mg, 71%; Solid, m. p. 55.3–56.8 °C (lit. 55–56 °C); IR (KBr): 3060, 3027, 2974, 2897, 1962, 
1903, 1813, 1664, 1606, 1494, 1336, 1307, 1286, 1215, 1016, 980, 748 cm−1; 1H NMR (600 MHz, CDCl3, TMS): δ​ 
8.01 (s, 2H), 7.80 (d, J =​ 15.6 Hz, 1H), 7.62 (s, 2H), 7.55–7.48 (m, 4H), 7.39 (s, 3H); 13C NMR (150 MHz, CDCl3): 
δ​ 190.6, 144.9, 138.3, 134.9, 132.8, 130.6, 129.0, 128.7, 128.5, 128.5, 122.1; MS (EI, 70 eV): m/z (%) 208 (55) [M+], 
207 (100), 77 (70), 45 (36), 103 (31), 131 (27); Known compound29.

(E)-3-Phenyl-1-p-tolylprop-2-en-1-one 3r.  135.6 mg, 61%; Solid, m. p. 73.7–75.1 °C (lit. 75 oC); IR (KBr): 3028, 
2921, 1662, 1609, 1494, 1449, 1334, 1304, 1223, 1180, 1034, 980, 820, 760 cm−1; 1H NMR (600 MHz, CDCl3, 
TMS): δ​ 7.95 (d, J =​ 8.4 Hz, 2H), 7.82 (d, J =​ 15.6 Hz, 1H), 7.65–7.67 (m, 2H), 7.55 (d, J =​ 15.6 Hz, 1H), 7.42 (t, 
J =​ 7.2 Hz, 3H), 7.31 (d, J =​ 7.8 Hz, 2H), 2.45 (s, 3H); 13C NMR (150 MHz, CDCl3): δ​ 190.0, 144.4, 143.7, 135.7, 
135.0, 130.5, 129.4, 129.0, 128.7, 128.4, 122.1, 21.7; MS (EI, 70 eV): m/z (%) 223 (9) [M+ +​ 1], 222 (62) [M+], 221 
(100), 45 (47), 91 (41), 119 (40), 77 (27); Known compound40.

(E)-1-(4-Chlorophenyl)-3-phenylprop-2-en-1-one 3s.  165.0 mg, 68%; Solid, m. p. 92.7–93.8 °C (lit. 90–92 °C); IR 
(KBr): 1661, 1601, 1448, 1399, 1218, 1090, 982, 829, 762 cm−1; 1H NMR (600 MHz, CDCl3, TMS): δ​ 7.95 (d, 
J =​ 8.4 Hz, 2H), 7.80 (d, J =​ 15.6 Hz, 1H), 7.62–7.64 (m, 2H), 7.49–7.46 (m, 3H), 7.40–7.42 (m, J =​ 6.6 Hz, 3H); 
13C NMR (150 MHz, CDCl3): δ​ 189.2, 145.4, 139.3, 136.5, 134.7, 130.8, 129.9, 129.0, 128.9, 128.6, 121.5; MS (EI, 
70 eV): m/z (%) 244 (18) [M+](37Cl), 243 (39) [M+ +​ 1], 241 (100), 242 (58), 207 (51); Known compound41.

(E)-1-Phenylhept-1-en-3-one 3t.  101.7 mg, 54%; Oil; IR (film): 3060, 3028, 2958, 2931, 2872, 1690, 1663, 1611, 
1576, 1495, 1450, 1331, 1181, 1130, 978, 749, 691cm-1; 1H NMR (600 MHz, CDCl3, TMS): δ​ 7.45 (d, J =​ 16.00 Hz, 
1H), 7.42–7.45 (m, 2H), 7.28–7.29 (m, 3H), 6.63 (d, J =​ 16.2 Hz), 2.56 (t, J =​ 7.5 Hz, 2H), 1.54–1.59 (m, 2H), 
1.26–1.32 (m, 2H), 0.85 (t, J =​ 7.2 Hz, 3H); 13C NMR (150 MHz, CDCl3): δ​ 199.6, 141.2, 133.5, 129.3,127.9, 127.2, 
125.2, 39.6, 25.4, 21.4, 12.9; MS (EI, 70 eV): m/z (%) 188 (11) [M+], 131 (100); Known compound42.

(E)-5-methyl-1-phenylhex-1-en-3-one 3u.  113.0 mg, 60%; Oil; IR (film): 3061, 3028, 2957, 2871, 1688, 1657, 
1610, 1576, 1450, 1366, 1189, 1061, 977, 749, 691 cm−1; 1H NMR (600 MHz, CDCl3, TMS): δ​ 7.43 (m, 3H), 7.28–
7.27 (m, 3H),6.63 (d, J =​ 16.2 Hz, 1H), 2.43 (d, J =​ 6.6Hz, 2H), 2.11–2.12 (m, 1H), 0.88 (d, J =​ 6.6 Hz, 6H); 13C 
NMR (150 MHz, CDCl3): δ​ 199.2, 141.3, 133.4, 129.4, 127.9, 127.2, 125.5, 48.8, 24.2, 21.7; MS (EI, 70 eV): m/z (%) 
188 (11) [M+], 131 (100); Known compound43.

(1E,4E)-1,5-diphenylpenta-1,4-dien-3-one 4a.  196.8 mg, 84%; Solid, m. p. 120.6–121.9 °C (lit. 120–122 °C); IR 
(KBr): 3053, 3026, 1651, 1592, 1194, 982, 762 cm−1; 1H NMR (400 MHz, CDCl3, TMS): δ​ 7.75 (d, J =​ 16.0 Hz, 2H), 
7.63 (m, 4H), 7.42 (m, 6H), 7.09 (d, J =​ 16.0 Hz, 2H); 13C NMR (100 MHz, CDCl3): δ​ 188.9, 143.3, 134.7, 130.5, 
128.9, 128.4, 125.4; MS (EI, 70 eV): m/z (%) 234 (38) [M+], 235 (7) [M+ +​ 1], 103 (100), 131 (59), 77 (40), 233 
(34).Known compound44.

(1E,4E)-1,5-di-p-tolylpenta-1,4-dien-3-one 4b.  102.3 mg, 39%; Solid, m. p. 172.6–173.9 °C (lit. 174–176 °C).IR 
(KBr): 3025, 2921, 2850, 1652, 1593, 1111, 1068, 981, 695 cm−1; 1H NMR (400 MHz, CDCl3, TMS): δ​ 7.72 (d, 
J =​ 16.0 Hz, 2H), 7.52 (d, J =​ 8.0 Hz, 4H), 7.22 (d, J =​ 8.0 Hz, 4H), 7.03 (d, J =​ 16.0 Hz, 2H ), 2.39 (s, 6H); 13C NMR 
(100 MHz, CDCl3): δ​ 189.1, 143.2,140.9, 132.1, 129.7, 128.4, 124.5, 21.5; MS (EI, 70 eV): m/z (%) 262 (27) [M+], 
115 (100), 117 (49), 83 (45), 91 (44); Known compound45.

(1E,4E)-1,5-Bis(4-methoxyphenyl)penta-1,4-dien-3-one 4c.  92.3 mg, 31%; Solid, m. p. 119.3–120.7 °C (lit. 
119–120 °C); IR (KBr): 2930, 2836, 1647, 1600, 1511, 1254, 1171, 1094, 1029, 984, 830, 777, 690 cm−1; 1H NMR 
(600 MHz, CDCl3, TMS): δ​ 7.70 (d, J =​ 15.6 Hz, 2H), 7.57 (d, J =​ 8.4 Hz, 4H), 6.96 (d, J =​ 15.6 Hz, 2H), 6.93 (d, 
J =​ 8.4 Hz, 4H), 3.85 (s, 6H); 13C NMR (150 MHz, CDCl3): δ​ 188.8, 161.6, 142.6, 130.1, 127.7, 123.6, 114.4, 55.4; 
MS (EI, 70 eV): m/z (%) 294 (87) [M+], 186 (100), 133 (99), 161 (73), 118 (53); Known compound44.

(1E,4E)-1,5-Bis(4-fluorophenyl)penta-1,4-dien-3-one 4d.  210.8 mg, 78%; Solid, m. p. 151.6–153.2 °C (lit. 152 °C); 
IR (KBr): 2956, 2924, 2853, 1652, 1507, 980, 831 cm−1; 1H NMR (400 MHz, CDCl3, TMS): δ​ 7.68 (d,J =​ 16.0, 
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2H), 7.59–7.56 (m, 4H), 7.10–7.00(m, 4H), 6.98 (d, J =​ 16.0 Hz, 2H); 13C NMR (100 MHz, CDCl3): δ​ 188.4, 
164.0 (d, JC-F =​ 250.6 Hz), 142.0, 130.9 (d, JC-F =​ 3.3 Hz), 130.3 (d, JC-F =​ 8.4 Hz), 125.0 (d, JC-F =​ 2.3 Hz), 116.1 (d, 
JC-F =​ 21.8 Hz); MS (EI, 70 eV): m/z (%) 270 (38) [M+], 101 (100), 121 (80), 149 (55), 109 (50); Known compound46.

(1E,4E)-1,5-Bis(4-(trifluoromethyl)phenyl)penta-1,4-dien-3-one 4e.  340.7 mg, 92%; Solid, m. p.128.9–129.7 °C 
(lit. 129–130 °C); IR (KBr): 1653, 1601, 1575, 981 cm−1; 1H NMR (400 MHz, CDCl3, TMS): δ​ 7.78–7.67 (m, 10H), 
7.14 (d, J =​ 16.0 Hz. 2H); 13C NMR (100 MHz, CDCl3): δ​ 188.1, 141.9, 137.9, 132.2, 131.9, 128.5, 127.1, 125.9(m); 
MS (EI, 70 eV): m/z (%) 370 (36) [M+], 151 (100), 199 (60), 171 (58), 301 (37), 102 (31); Known compound44.

(1E,4E)-1,5-Di(thiophen-2-yl)penta-1,4-dien-3-one 4f.  152.7 mg, 62%; Solid, m. p. 113.3–114.2 °C (lit. 
113–114 °C). IR (KBr): 2955, 2923, 2870, 1603, 1141, 702 cm−1; 1H NMR (400 MHz, CDCl3, TMS): δ​ 7.75 (d, 
J =​ 15.6 Hz, 2H), 7.31 (d, J =​ 5.2 Hz, 2H), 7.23 (d, J =​ 3.6 Hz, 2H), 6.98 (t, J =​ 4.4 Hz, 2H), 6.73 (d, J =​ 15.6 Hz, 2H); 
13C NMR (100 MHz, CDCl3): δ​ 187.6, 140.3,135.6, 131.8, 128.8, 128.3, 124.4; MS (EI, 70 eV): m/z (%) 246 (39) 
[M+], 109 (100), 97 (59), 137 (42), 162 (40); Known compound47.

(1E,4E)-1,5-Di(furan-2-yl)penta-1,4-dien-3-one 4g.  171.4, 80%; Solid m. p. 58.8–59.9 °C (lit. 59–60 °C); IR 
(KBr): 2987, 2869, 1792, 1759, 1649, 1619, 1595, 1141, 1016, 747 cm−1; 1H NMR (600 MHz, CDCl3, TMS): δ​ 7.51 
(s, 2H), 7.49 (d, J =​ 15.6 Hz, 2H), 6.93 (d, J =​ 15.6 Hz, 2H), 6.68 (s, 2H), 6.49 (s, 2H); 13C NMR (150 MHz, CDCl3): 
δ​ 188.1, 151.5, 144.9, 129.2, 123.2, 115.9, 112.6; MS (EI, 70 eV): m/z (%) 214 (100) [M+], 215 (14) [M+ +​ 1], 121 
(60), 129 (44); Known compound48.

(1E,4E)-1-Phenyl-5-(p-tolyl)penta-1,4-dien-3-one 4h.  168.8 mg, 68%; Solid, m. p. 107.5–108.7 °C (lit. 107–
108 °C); IR (KBr): 3025, 2956, 2924, 2854, 1652, 1617, 1449, 1336, 1179, 1095, 979 cm−1; 1H NMR (400 MHz, 
CDCl3, TMS): δ​ 7.75 (d, J =​ 3.2 Hz, 1H), 7.71 (d, J =​ 3.2 Hz, 1H), 7.61 (d, J =​ 4.0 Hz, 2H), 7.51 (d, J =​ 8.0 Hz, 2H), 
7.41 (s, 3H ), 7.22 (d, J =​ 8.0 Hz, 2H), 7.11–7.03 (m, 2H), 2.39 (s, 3H); 13C NMR (100 MHz, CDCl3): δ​ 188.9, 143.4, 
143.0, 141.0, 134.8, 132.0, 130.4, 129.7, 128.9, 128.4, 128.3, 125.4, 124.5, 21.5; MS (EI, 70 eV): m/z (%) 248 (51) 
[M+], 115 (100), 233 (79), 103 (67), 91 (64); Known compound49.

(1E,4E)-1-(4-Methoxyphenyl)-5-phenylpenta-1,4-dien-3-one 4i.  137.4 mg, 52%; Solid, m. p.88.0–89.2 °C (lit. 
85–89 °C); IR (KBr): 2956, 2924, 2851, 1651, 1601, 1509, 1458, 1251, 1171 cm−1; 1H NMR (400 MHz, CDCl3, 
TMS): δ​ 7.75–7.69 (m, 2H), 7.63–7.60 (m, 2H), 7.59–7.56 (m, 2H), 7.42–7.39 (m, 3H), 7.078 (d, J =​ 16.0 Hz, 1H), 
6.95 (t, J =​ 12.2 Hz, 3H), 3.85 (s, 3H); 13C NMR (100 MHz, CDCl3): δ​ 188.9, 161.6, 143.2, 142.8, 134.9, 130.4, 130.2, 
128.9, 128.3, 127.5, 125.5, 123.3, 114.4, 55.4; MS (EI, 70 eV): m/z (%) 264 (100) [M+], 108 (99), 103 (97), 97 (66), 
83 (64), 98 (61); Known compound45.

(1E,4E)-1-(4-Fluorophenyl)-5-phenylpenta-1,4-dien-3-one 4j.  204.4 mg, 81%; Solid, m. p. 112.8–113.2 °C; 
IR (KBr): 2955, 2923, 2852, 1651, 1587, 1507, 982, 826, 756 cm−1; 1H NMR (400 MHz, CDCl3, TMS): δ​ 7.71 
(t,J =​ 15.6, 2H), 7.61–7.57 (m, 4H), 7.39 (t, J =​ 3.2, 3H), 7.10–7.06 (m, 2H ), 7.02 (d, J =​ 5.6Hz, 1H), 6.98 (s, 1H); 
13C NMR (100 MHz, CDCl3): δ​ 188.7, 164.0 (d, JC-F =​ 250.5 Hz), 143.4, 141.9, 134.7, 130.9 (d, JC-F =​ 3.3 Hz), 130.6, 
130.3 (d, JC-F =​ 8.4 Hz), 128.9, 128.4, 125.4, 125.0 (d, JC-F =​ 2.2 Hz), 116.1 (d, JC-F =​ 21.8 Hz); MS (EI, 70 eV): m/z 
(%) 252 (84) [M+], 101 (100), 103 (88), 251 (73), 121 (59); Known compound50.

(1E,4E)-1-Phenyl-5-(4-(trifluoromethyl)phenyl)penta-1,4-dien-3-one 4k.  278.1 mg, 92%; Solid, m. p. 142.4–
143.2 °C (lit. 142–143 °C); IR (KBr): 1652, 1593, 1324, 1110, 1068, 981, 826, 760, 695 cm−1; 1H NMR (600 MHz, 
CDCl3, TMS): δ​ 7.76 (d, J =​ 16.8 Hz, 1H), 7.70–7.62 (m, 5H), 7.42 (s, 2H), 7.35 (d, J =​ 15.6 Hz, 3H), 7.14 (d, 
J =​ 15.6 Hz, 1H), 7.07 (d, J =​ 15.6 Hz, 1H); 13C NMR (150 MHz, CDCl3): δ​ 188.5, 144.0, 141.2, 138.3, 134.6, 130.8, 
129.0, 128.9, 128.5 (d, JC-F =​ 4.2 Hz), 128.4, 127.4 (t, JC-F =​ 35.9 Hz), 125.9 (m), 125.3, 124.8 (m); MS (EI, 70 eV): 
m/z (%) 302 (56) [M+], 103 (100), 97 (82), 83 (73), 131 (73), 98 (73); Known compound51.

(1E,4E)-1-Phenyl-5-(thiophen-2-yl)penta-1,4-dien-3-one 4l.  163.4, 68%; Solid, m. p. 87.8–88.9 °C; IR (KBr): 
3306, 3217, 2988, 2870, 1648, 1612, 1577, 1392, 1141, 1096, 974, 854, 755 cm−1; 1H NMR (600 MHz, CDCl3, 
TMS): δ​ 7.87 (d, J =​ 15.0 Hz, 1H), 7.72 (d, J =​ 16.2 Hz, 1H), 7.60 (s, 2H), 7.40 (s, 4H), 7.33 (s, 1H), 7.07 (s, 1H), 
7.02 (d, J =​ 15.6 Hz, 1H), 6.89 (d, J =​ 15.6 Hz, 1H); 13C NMR (150 MHz, CDCl3): δ​ 188.3, 143.2, 140.3, 135.8, 134.8, 
131.8,130.5, 128.9, 128.8, 128.4, 128.3, 125.6, 124.3; MS (EI, 70 eV): m/z (%) 240 (98) [M+], 109 (100), 97 (96), 103 
(95), 211 (63), 128 (62), 137 (59); Known compound52.

(1E,4E)-1-Phenyl-5-(2-furyl)penta-1,4-dien-3-one 4m.  179.4 mg, 80%; Oil; IR (film): 3120, 3059, 2988, 2869, 
1650, 1619, 1449, 1335, 1017, 977, 750 cm−1; 1H NMR (600 MHz, CDCl3, TMS): δ​ 7.72 (d, J =​ 16.2 Hz, 1H), 7.60 
(s, 2H), 7.52 (d, J =​ 15.0 Hz, 2H), 7.39 (s, 3H), 7.01 (s, 1H), 6.99 (s, 1H), 6.70 (s, 1H), 6.50 (s, 1H); 13C NMR 
(150 MHz, CDCl3): δ​ 188.6, 151.6, 144.9, 143.1, 134.9, 130.5, 129.5, 128.9, 128.4, 126.1, 122.5, 116.0, 112.7; MS 
(EI, 70 eV): m/z (%) 224 (100) [M+], 131 (97), 103 (89), 167 (61), 121 (53), 83 (52); Known compound52.

(1E,4E)-1-Cyclohexyl-5-phenylpenta-1,4-dien-3-one 4n.  Solid, m. p. 44.5–46.2 °C (lit. 42–46 °C); IR (KBr): 2926, 
2852, 1659, 1627, 1600 cm−1; 1H NMR (600 MHz, CDCl3, TMS): δ​ 7.55 (d, J =​ 15.6 Hz, 1H), 7.49 (s, 2H), 7.29  
(s, 3H), 6.91–6.84 (m, 2H), 6.29 (d, J =​ 15.6 Hz, 1H), 2.12 (d, J =​ 3.0 Hz, 1H), 1.74–1.59 (m, 5H), 1.27–1.09 (m, 
5H); 13C NMR (150 MHz, CDCl3): δ​ 189.8, 153.2, 142.9, 134.9, 130.3, 128.9, 128.3, 126.9, 124.9, 40.9, 31.9, 25.9, 
25.8; MS (EI, 70 eV): m/z (%) 240 (21) [M+], 131 (100), 103 (44); Known compound53.
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