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Recent advances in methodology enable effective coarse-grained modeling of

deoxyribonucleic acid (DNA) based on underlying atomistic force field simulations.

The so-called bottom-up coarse-graining practice separates fast and slow dynamic

processes in molecular systems by averaging out fast degrees of freedom represented by

the underlying fine-grained model. The resulting effective potential of interaction includes

the contribution from fast degrees of freedom effectively in the form of potential of mean

force. The pair-wise additive potential is usually adopted to construct the coarse-grained

Hamiltonian for its efficiency in a computer simulation. In this review, we present a

few well-developed bottom-up coarse-graining methods, discussing their application

in modeling DNA properties such as DNA flexibility (persistence length), conformation,

“melting,” and DNA condensation.

Keywords: DNA condensation, coarse-grained model, molecular renormalization group, inverse Monte Carlo,

multi-scale coarse-graining, force matching, relative entropy, persistence length

1. INTRODUCTION

Deoxyribonucleic acid (DNA) is the genetic information carrier of higher living organisms. To
pass the encoded information from generation to generation, it has to allow efficient duplication
and compaction. We still lack a full understanding of many fundamental aspects of DNA physics
that determine DNA properties and function. To name a few, double-helical DNA encounters
topological difficulties during replication (Postow et al., 2001) and compaction (Schiessel, 2003).
Physically, curvature and elasticity of the DNA double helix are crucial for DNA compaction into
chromatin and chromosomes, which is essential to cell division and gene expression regulation.
Additionally, the conformational dynamics of DNA is crucial to its interaction with other
macromolecules in the cell (Stelzl et al., 2017).

Furthermore, DNA-based nanoscale materials have attracted a large amount of attention
in recent years. Particularly, the programmable design of DNA origami has found promising
application in many fields, such as cancer therapy (Rajagopalan and Yakhmi, 2017). Hence, the
knowledge of how DNA mechanics operates from atomistic level (nanometer) to macromolecule
level (micrometer) will undoubtedly advance our understanding of the machinery of living
organisms and grant us more control in designing nanomaterials and nanomachines based
on DNA.

As an indispensable tool in DNA study, molecular modeling has advanced considerably in
the past two decades. Developers continuously improve the extensively used all-atom (AA) force
field models. Many AA force field deficiencies were exposed and subsequently corrected after
microsecond-long AA simulations become available (Hart et al., 2012; Galindo-Murillo et al., 2016).
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With extensive simulations, we have gained atomic-level insights
on DNA dynamics (Lavery et al., 2009), DNA flexibility (Minhas
et al., 2020), and other physical properties of DNA.

Despite the success of AA DNA models in studying DNA
dynamics, flexibility, and binding properties, many important
questions, such as nucleosome organization within chromatin
that package DNA in the eukaryotic cell nucleus, are still out
of their reach. With recent advances in multi-microsecond AA
simulations, partial DNA unwrapping from the histone core of
the nucleosome can be characterized in detail (Shaytan et al.,
2016). However, other important relative motion between DNA
and the histone proteins of the histone octamer (HO) that
wraps DNA in nucleosomes (Kono and Ishida, 2020), such
as sliding, is still beyond the capability of AA-MD. Lowering
the model’s resolution by merging groups of highly correlated
atoms to individual interaction sites is an effective way to study
these features. These low-resolution models are usually called
coarse-grained (CG) models. In such models, the fluctuations
of unimportant degrees of freedom are implicit. Furthermore,
with a low number of degrees of freedom, we effectively deal
with a smoother free energy surface of the molecular system.
Consequently, CG models speed up the simulation in two ways–
there are fewer interacting particles in the simulation system–
and faster dynamics due to the smoother free energy surface.
Within CGmodels, we can observe molecular dynamics at a large
temporal and spatial scale using widely available computational
resources, such as workstations and freely accessible simulation
software packages.

The development of CGmodels is not always straightforward,
and it remained something of an art rather than rigorous science
for a long time. For simple molecular systems, such as liquids
of small molecules, the CG model is usually straightforward
with a small number of parameters. It is convenient to tune
these parameters to reproduce correct macroscopic quantities,
such as density and/or surface tension. It is widely known as
“top-down” modeling. As the need for a complex model arises,
it is usually challenging, if not impossible, to complete the
modeling with only top-down approaches as the number of
parameters in the model could be exceedingly large. There is not
enough information for all parameters to be determined with
high confidence.

Another CG modeling approach relies on the lower level,
higher resolution models, commonly referred to as fine-grained
(FG) models. These so-called “bottom-up” methods achieve the
desired modeling by averaging out the unimportant degrees of
freedom. For instance, water molecules are usually implicit in CG
modeling of proteins, while their effects on, for example, protein
conformation is implicitly included in the effective Hamiltonian
of the CG model. Therefore, the central task of bottom-up CG
modeling is to derive all parameters of the target CG model with
the information presented by an underlying fine-grained model,
usually an AA model.

Mathematically, bottom-up coarse-graining strives to project
a higher dimensional Hamiltonian to a lower-dimensional
space, with the requirement that a certain set of properties
is maintained. This set of properties is defined by carefully
choosing an objective function that determines the properties

of interest and their relative weights. Practitioners have a
number of algorithms based on statistical mechanics tackling this
projection with various objective functions. Some approaches try
to preserve interaction forces by averaging out the fast degrees
of freedom by integration (Noid et al., 2008). Some minimize
the information loss in the coarse-graining process, characterized
by a relative entropy (Shell, 2008, 2016; Chaimovich and Shell,
2011). Others aim to reproduce structural features of the
molecular system represented by the radial distribution functions
(RDF) (Lyubartsev and Laaksonen, 1995; Soper, 1996). It is
worth noting that the objective function does not necessarily
consist of elementary physical quantities such as force or particle
correlation. It can be a combination of various quantities
with predetermined weights, such as distance distributions
(Leonarski et al., 2013), force variations (Zhang et al., 2018;
Wang et al., 2019), and entropy loss (Wang and Gomez-
Bombarelli, 2019). Even macroscopic quantities can be included
in such designed objective function to accommodate a wide
range of modeling goals. These modeling efforts with designed
objective functions gained more popularity in the past decade
as machine learning approaches became common. Nevertheless,
choosing or designing a suitable objective function is the most
critical part in such cases, as the optimization methods are
readily available using machine learning algorithms. This process
is something of an art, requiring experience in solving such
modeling problems. Generally, all CG modeling efforts can be
described by a common framework as depicted in Figure 1.
The key elements in the framework are the objective function,
the optimization algorithm, and the simulation engine. The
simulation engine produces simulation results that are evaluated
by the objective function with respect to the targeting reference
data, before the trial CG model being subjected to optimization.
The modeling is successful when the quality of the CG model is
good enough judged by the objective function. In this review, we
will focus on bottom-up coarse-graining algorithms originating
from statistical mechanics. Readers interested in novel objective
functions andmodeling withmachine learning are referred to the
review by Gkeka et al. (2020).

Though mathematically well-defined, the bottom-up coarse-
graining process is not straightforward in practice, especially
for complex molecular models, such as DNA and proteins.
Many aspects of interactions and configurations of DNA
could collectively determine one specific property, e.g., bending
flexibility. It is challenging to model all these kinds of
interactions accurately at the same time. Nevertheless, many
coarse-grained DNAmodels, based on atomistic force fields have
been developed, following the bottom-up philosophy. In this
review, we review the application of bottom-up coarse-graining
methods for studying and understanding DNA properties. We
will first introduce bottom-up modeling methods in section 2.
Some selected representative bottom-up DNA models will be
summarized to give an overview of its recent development.
The pros and cons of bottom-up modeling different properties
of DNA will be presented. Lastly, we will summarize the
current stage of bottom-up DNA models and discuss the future
development of bottom-up coarse-graining of DNA. DNA is
a highly charged polyelectrolyte. The long-range electrostatic
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FIGURE 1 | General workflow of coarse-grained modeling. Essential tools for coarse-grained modeling include a software that performs simulation, an objective

function to evaluate simulation data and an optimization algorithm to improve the CG model. The final model, which will reproduce the reference data, is obtained

when the objective function is satisfied. When the reference data is extracted from fine-grained model simulations, this flow chart represents a general bottom-up

coarse-graining algorithm. When the reference data is macroscopic quantities obtained in experiments, this flow chart indicates a top-down coarse-graining

procedure. Hybrid coarse-grained modeling is achieved with reference data from both lower-level models and experiments, with a corresponding objective function.

interactions between DNA, small mobile ions (due to salt), and
other charged small molecules, as well as biomacromolecules,
dominates most, if not all, their physicochemical properties
(Bloomfield et al., 2000). Dramatic salt effects and the strong
influence of the valence of counterions on DNA physical
properties are observed. In some cases, it leads to counter-
intuitive behavior such as like-charged attraction between the
DNA polyions (Guldbrand et al., 1986; Nordenskiold et al., 2008;
Korolev et al., 2010, 2016). Bottom-up approaches represents
arguably the most rigorous way of extracting the effective
electrostatic potentials between the charged CG sites.

2. BOTTOM-UP COARSE-GRAINING

2.1. Theoretical Background
In physical terms, bottom-up coarse-graining is the process
of removing unimportant degrees of freedom (DOF) from a
detailed high-resolution model and formulation of a simpler
model, which contains only essential DOFs. Assume that at the

high-resolution level, the system is described by a Hamiltonian
(potential energy) H(q1, · · · , qn), where {qi; i = 1, · · · , n}
are coordinates of particles. The potential energy function
typically represents the atomistic force field. However, it can
be the potential energy of an already existing CG model, or
in the case of ab initio modeling, can represent the energy
surface obtained from quantum chemical computations. Coarse-
graining is described in terms of mapping of FG coordinates
(degrees of freedom) {qi; i = 1, · · · , n} to CG coordinates
{Qj; j = 1, · · · ,N} withN≪n, which ismathematically expressed
as mapping functionsM:

Qj = Mj(q1, · · · , qn) (1)

Generally important DOF, represented by coarse-grained sites,
can be chosen in different ways, often based on experience
grounded in chemical and physical intuition. Typically one
chooses CG sites according to the center-of-masses (COM) of
the atom groups forming the CG units, while other choices
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(such as taking coordinates of specific atoms) are also possible.
For instance, one can aim to minimize the information loss
due to the mapping operation (Giulini et al., 2020), or choose
beads representing collective motions (Zhang et al., 2008). The
Hamiltonian H(q1, · · · , qn) defines all properties of the high-
resolution system and, through the mapping functions (Equation
1), all properties of the CG system. The task of the bottom-up
approach is to define the effective interaction potentials for the
CG sites, denoted HCG(Q1, · · · ,QN), which provides the same
properties for the CG system as the properties defined by the
FG Hamiltonian H(q1, · · · , qn) through the CG mapping. In
other words, bottom-up modeling is the practice of solving the
inverse problem: to determine the CG interaction potential that
reproduces known properties obtained from simulations of the
FG system.

The CG Hamiltonian, which satisfies the consistency
condition, can be deduced from the FG Hamiltonian by
integrating over non-interesting degrees of freedom: (Noid et al.,
2008; Lyubartsev et al., 2015)

HCG(Q1, · · · ,QN) = −
1

β
ln

∫ n
∏

i=1

dqi

N
∏

j=1

δ(Qj −Mj(q1, · · · , qn))

exp(−βH(q1, · · · , qn))+ C (2)

The above coarse-grained Hamiltonian, HCG, is also known
as an N-body potential of mean force. It provides precisely
the same structural properties for the CG model as the FG
system mapped by Equation (1) to the CG representation.
Thermodynamic properties (average energy, free energies,
pressure) can also be reproduced, given the fact that the
original and CG Hamiltonians have the same partition function.
However, a caveat is that the CG Hamiltonian depends on the
thermodynamic conditions (temperature, volume, or density).
These dependencies need to be considered while obtaining
thermodynamic properties by taking the derivative of the
partition function with respect to thermodynamic parameters
(Lyubartsev, 2018). Reconstruction of correct dynamics in
the CG system is a more challenging task, which leads to
a generalized Langevin equation with a memory function
(Romiszowski and Yaris, 1991). Approximately, dynamics can
be reconstructed within a dissipative particle dynamics approach
implementing the Mori-Zvanzig formalism (Eriksson et al., 2008;
Hijon et al., 2010) or by normal Langevin dynamics with an
appropriately chosen friction constant.

However, modeling a CG system using an N-body potential
(Equation 2) is practically impossible. In all implementation of
bottom-up coarse-graining, one resorts to simpler functions such
as additive pair potentials. Hence, the task is reformulated into
finding the best possible approximation to the exact Hamiltonian
in Equation (2), in the form of additive pair interactions:

HCG(Q1, · · · ,QN) ≈ 6i,jUij(Rij) (3)

where Rij is the distance between CG sites i and j.
We note that the use of only pair potentials is not a restriction.

Other types of interactions can be included in Equation (3). For

example, angle (3-body) or torsion (4-body) potential terms are
commonly used for macromolecular CG models. Other forms
expressing multi-body interactions can also be included as long
as they can be handled efficiently by the simulation software. The
task of building a CG force field can be reformulated into finding
“as good as possible” an approximation to the exact many-body
potential according to Equation (3). For instance, finding the best
fit of forces coming from both sides of Equation (3) gives rise to
the force-matching method (Ercolessi and Adams, 1994; Izvekov
et al., 2004), also known as theMulti-Scale Coarse-Graining (MS-
CG) method (Izvekov and Voth, 2005). Another approach that
rests on minimizing the entropy difference between FG and CG
models corresponds to the relative entropyminimizationmethod
(Shell, 2008).

All bottom-up approaches can be approximately divided into
two categories: thermodynamics-based coarse-graining aiming
at a reproduction of thermodynamic properties (free energies,
average forces), and structure-based coarse-graining, aiming at
the reproduction of structural properties of the FG system. The
theoretical justification of structure-based coarse-graining is the
Henderson theorem (Henderson, 1974) that defines a one-to-
one relationship between a set of radial distribution functions
(RDF) and a set of pair potentials for CG sites. Rudzinski
and Noid (2011) later generalized the Henderson theorem to
include multiple RDFs between different types of CG sites and
intramolecular structural properties such as bond lengths and
angles distributions. Below we present several well-developed
bottom-up CG modeling methods and discuss the connections
among them.

2.2. Iterative Boltzmann Inversion
We first discuss the simplest algorithm of bottom-up coarse-
graining, which is Iterative Boltzmann Inversion (IBI). This
method is usually categorized as structure-based coarse-
graining, where the pair potential approximation (Equation 3)
is fitted to reproduce various distribution functions obtained
in atomistic simulations. Common target distributions include
radial distribution functions (RDF), bond length distributions,
angle value distributions, etc. The IBI approach is implemented
through an iterative algorithm (Soper, 1996; Reith et al., 2003).
The pair interaction potential is in each iteration updated with a
correction term originating from the mean-field approximation:

U i+1
αβ = U i

αβ − kBT ln





giαβ (r)

g
ref
αβ (r)



 (4)

The pair potential between site types α and β used in iteration
i + 1 is obtained by applying the correction term (second term
on the right-hand side) to the pair potential in iteration i.
To determine the correction, the pair RDF, giαβ (r), is obtained
through proper sampling with the current interaction potential,

U i
αβ , and subsequently compared with the reference RDF, g

ref
αβ (r),

from an FG simulation. The iterative algorithm is started with a
bootstrapping potential, usually, a simple potential of mean force:
(Soper, 1996; Reith et al., 2003)

U0
αβ (r) = −kBT ln g

ref
αβ (r) (5)
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The convergence of the effective potential is expected when the
correction term approaches zero, which also means (Equation 4)
that the CG RDF is nearly equal to the RDF of the reference FG
simulations. Thus, the inverse problem is solved, and the effective
potential is obtained.

Correction of the potential according to Equation (4) is
straightforward to implement. This correction is determined only
by the value of the same distribution function, while correlations
between different interaction terms are completely neglected.
As a result, the IBI approach often faces convergence problem
even for relatively simple systems such as ion solutions (Hess
et al., 2006), where RDFs between different pairs of anions and
cations are strongly correlated with each other. In the practical
calculation of CG potentials by RDF inversion, it might be
instructive to start the iterative process using the IBI approach.
This brings the system RDFs close to the reference values, after
which one may switch to other algorithms, which take into
account correlations between different interaction terms and
provide better convergence when the RDFs are close to the
reference functions.

2.3. Inverse Monte Carlo
The Inverse Monte Carlo (IMC) method (Lyubartsev and
Laaksonen, 1995; Lyubartsev, 2018) (also known as Newton
Inversion; Lyubartsev et al., 2010) is a general method to
invert ensemble averages, and particularly RDFs, to effective pair
potentials. For any multi-component system, it goes through
an inverse process and produces as output the effective pair
potentials between CG sites, which in direct CG simulations
reproduce the same RDFs as those obtained in the detailed
FG simulations.

Within the IMC approach, both RDFs and interaction
potentials are discretized into two sets of values: histogram
of particle-particle distances {Gα;α = 1, · · · ,m}, which after
ensemble averaging and normalization to bulk particle density
yields RDF, and tabulated pair potentials {Uα;α = 1, · · · ,m},
which are determined for the same set of distances as the RDFs.
In standard simulations (direct problem), we have the interaction
potential U as input, and by running MC or MD simulation, we
can evaluate averages {〈Gα〉} and thus obtain the RDF as output.
In coarse-graining by IMC, we solve the inverse task: from

averages determined in FG simulations ({〈G
ref
α 〉}) we determine

the CG effective potential U.
The solution to this non-linear inverse problem can be

obtained iteratively by the Newton-Raphson method (hence
named the Newton Inversion). Let us determine the Jacobian of
the G(U) dependence by defining its elements:

Jαγ =
∂〈Gα〉

∂Uγ

(6)

This Jacobian (anm×mmatrix) determines how changes of the
potential are related to the changes of the RDF:

1EG = J1 EU (7)

where we use vector notations for the sets of values of the
potential and RDF. Respectively, corrections to the potential,

which produce the desired changes of the RDF are determined
by the inverse matrix:

1 EU = J−1(EG− EGref ) (8)

The Jacobian itself can be computed in Monte Carlo or MD
simulations by (Lyubartsev and Laaksonen, 1995):

∂〈Gα〉

∂Uγ

= −
1

kBT
(〈GαGγ 〉 − 〈Gα〉〈Gγ 〉) (9)

Recall that G is discretized RDF and U is discretized potential
energy, as formulated in IMC and implemented in the MagiC
software (Mirzoev et al., 2019). More generally, G can be any
set of observables, and Uγ can represent an arbitrary parameter
of potential energy. The G(U) dependence in this general sense
can be computed in similar ways as in Equation (9), which
has been used in the molecular renormalization group (Savelyev
and Papoian, 2009a,b, 2010) and ForceBalance (Wang et al.,
2014) methods.

Equations (8) and (9) allow us to solve the inverse problem by
an iterative procedure. We start from a trial set of potential. In
practical simulations, one can start either from zero or from the
pair potentials of mean force and then run an MC simulation,
followed by computation of RDFs expressed in terms of 〈Gα〉,
as well as the cross-correlation terms according to Equation (9).
It is followed by inverting the Jacobian defined by Equation (6)
(which solves the corresponding system of linear equations) to
obtain corrections to the interaction potential U. The procedure
is repeated until convergence.

In practical computations, the direct use of Equations (8) and
(9) may lead to divergence since the method is based on linear
extrapolation (Equation 7) of a generally non-linear relationship.
A simple way to regularize the procedure is to iterate by “small
steps” to ensure staying in the linear regime, i.e., to multiply the
difference of RDF, EG− EGref , by a scaling factor 0 < λ < 1.

Dealing with long-range electrostatic interactions, which are
important in the coarse-graining of highly charged systems such
as DNA, requires special considerations. In the first application
of IMC to the ionic solution (Lyubartsev and Laaksonen, 1995),
the electrostatic part of the interaction was separately treated in
the simulations. The non-electrostatic part of the interactions is
expected to be of short range. While the electrostatic interaction
is considered invariable, the short-range interaction is optimized
by the IMC procedure to reproduce the RDF within the specified
cut-off distance.

2.4. Molecular Renormalization Group
Savelyev and Papoian (2009a,b) have proposed an approach
similar to IMC bottom-up coarse-graining inspired by the
renormalization group theory. The so-called Molecular
Renormalization Group Coarse-Graining (MRG-CG) relies
on iteratively updating the trial interaction potential, using
a Jacobian identical to Equation (6). The novelty is that the
Jacobian is obtained by

∂〈Gα〉

∂Kγ

= −
1

kBT

[〈

Gα

∂U

∂Kγ

〉

− 〈Gα〉

〈

∂U

∂Kγ

〉]

(10)
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where Kγ represents an arbitrary parameter of the potential
U . It is apparent that when the Hamiltonian takes the form
U =

∑

α KαGα , Equation (10) becomes Equation (9). Therefore,
MRG-CG is a generalization of IMC.

In the original implementation of IMC (Lyubartsev and
Laaksonen, 1995), tabulated potentials were used as the default
functional form of the coarse-grained potential, as can be
expressed as a collection of delta-functions:

UCG =

m
∑

i

Kiδi(r− ri) (11)

where i goes through all m entries of the tabulated potential.
In other words, the CG Hamiltonian is expanded on a delta-
function basis set, usually with a large number of parameters {Ki}.
With the generalization introduced by MRG-CG, one can choose
a convenient basis set with much fewer parameters for expanding
the Hamiltonian. High efficiency is expected if the chosen basis
set is optimal.

2.5. Relative Entropy Minimization
In this approach, a quantity called the relative entropy based on
information theory was proposed to be used as a minimization
objective in bottom-up coarse-graining. The relative entropy is
defined as (Chaimovich and Shell, 2011)

Srel =
∑

i

PFG(i) ln
PFG(i)

PCG(M(i))
+ 〈Smap〉FG

Smap(I) = ln
∑

i

δI,M(i)

(12)

where the summation goes over all configurations {i} in FG
ensemble, P(i) is the probability of configuration i in FG
ensemble, FG and CG denote FG reference quantities and CG
quantities respectively. Note that the mapping entropy Smap is
not dependent on the CG effective potential. It represents the
entropy loss of mapping a set of FG microstates {i} into one
single CG microstate I. Under the canonical ensemble, we have
the following expression for relative entropy after substituting
configurational probabilities:

Srel = β〈UCG − UFG〉FG − β(ACG − AFG)+ 〈Smap〉FG (13)

Here, A = −kBT lnZ is the Helmholtz free energy, and all
averaging is performed under the FG ensemble. Note that the
free energy term ACG is evaluated over the FG ensemble, with
the operation of the mapping function and the CG potential
function. Hence, the term −β(ACG − AFG) characterizes the
free energy difference over the same FG ensemble, but in
representations of respective CG and FG models.

From an information theory point of view, relative entropy
quantifies the information loss in the coarse-graining process.
A good CG model is expected to have minimal information
loss when compared to its FG reference model. Therefore, we
minimize the relative entropy Srel to generate a CG model with
respect to the adjustable parameters in CG Hamiltonian.

Minimizing relative entropy with respect to an arbitrary
parameter λ of CG Hamiltonian requires

∂Srel

∂λ
= β

〈

∂UCG

∂λ

〉

FG

− β

〈

∂UCG

∂λ

〉

CG

= 0

∂2Srel

∂λ2
= β

〈

∂2UCG

∂λ2

〉

FG

− β

〈

∂2UCG

∂λ2

〉

CG

+ β2

〈

(

∂UCG

∂λ

)2
〉

CG

− β2
〈

∂UCG

∂λ

〉2

CG

> 0

(14)

Similar to other coarse-graining algorithms, the minimization of
relative entropy is achieved through iterations. With a simple
update rule (Shell, 2008) as:

λi+1 = λi −
∂Srel/∂λ

∂2Srel/∂λ2
(15)

the parameter of Hamiltonian, λ, is updated between iteration i
and i+ 1 by the negative ratio of the first derivative to the second
derivative of Srel with respect to λ. Here, the minimization of
Srel is implemented as a Newton-Raphson iterative algorithm. In
the case of UCG being linear in λ, i.e., UCG(QN) = λf (QN) +
· · · , where f (QN) is a function depending on CG coordinates,
Equation (15) becomes

λi+1 = λi − kBT
〈f 〉FG − 〈f 〉CG

〈f 2〉CG − 〈f 〉2CG
(16)

We may note here that when expanding the CG Hamiltonian
with a linear basis set, the correction term in Equation (16) is
calculated through the correlation of f . It indicates connections
to structure-based coarse-graining. We will discuss this further
in section 2.8.

2.6. Force Matching
Initially proposed by Ercolessi and Adams (1994), the force
matching method was later given a solid theoretical basis by
Izvekov et al. (Izvekov et al., 2004; Izvekov and Voth, 2005; Noid
et al., 2008). The objective in force matching is to minimize
the difference in the force as quantified by a functional of the
force residual:

χ2[F] =
1

3N

〈

N
∑

I=1

|fI(q
n)− FI(M

N
Q(q

n))|2
〉

(17)

In this way, given a CG mappingMN
Q(q

n), the forces given by the
FG force field, fI(qn), as exerted on atoms forming the CG site I,
are replaced by the force given by the CG force field, FI(QN). As
in other coarse-graining methods, a pairwise basis set, {φ2(RIJ)},
is usually adopted to expand the CG force field for efficiency:

FI(Q
N) =

∑

I 6=J

φ2(RIJ)êIJ =
∑

k

ck
∑

I 6=J

uk(RIJ)êIJ (18)

where {uk} is a set of B-spline functions, êIJ is the unit vector
pointing from bead I to bead J. The minimization problem of the
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force residual functional, with respect to a parameter set {ck}, can
be solved in a variational manner. In the further development of
the forcematchingmethod, regularization (Lu et al., 2010) and an
iterative algorithm (Lu et al., 2013) were introduced to improve
accuracy in reproducing structure correlations.

When working with pair-wise additive potential, the force
matching method can also be accomplished by solving a linear
system. Early implementation of the force matching algorithm,
employed discrete delta functions to represent forces in the form
of (Noid et al., 2007)

f (r) =
Nd
∑

d

fdδD(r − rd) (19)

with δD(r) = 1 when −1r/2 ≤ r < 1r/2, and δD(r) = 0
otherwise. By minimizing the force residual (Equation 17) with
respect to the force table elements fd, a linear equation system is
obtained (Noid et al., 2007)

∑

d′

fd′Gdd′ = bd (20)

where

bd =

〈

∑

i

∑

j 6=i

(EFI,AAi · EuIij)δD(r
I
i,j − rd)

〉

I

(21)

and

Gdd′ =

〈

∑

i

∑

j 6=i

∑

k 6=i,j

(EuIij · Eu
I
ik)δD(r

I
ij − rd)δD(r

I
ik − rd′ )

〉

I

(22)

The symmetric matrix G contains all the information, up to
three-body correlation, to connect the table elements of CG
forces, fd, and forces in the fine-grained ensemble, bd.

2.7. Other Coarse-Graining Approaches
While bottom-up coarse-graining, as described, is a rigorous
and self-consistent approach, the accuracy of the bottom-up CG
model relies on the quality of the underlying fine-grained model.
Deficiency in the all-atom force field could result in incorrect
behavior of the derived CG model. For instance, in Maffeo et al.
(2014), the CG model of single-stranded DNA obtained by IBI
from atomistic simulations could not reproduce experimentally
measured radius of gyration. A top-down refinement was
subsequently applied to non-bonded interactions to improve the
accuracy of the resulting CG model. Such a hybrid bottom-up
– top-down approach is useful when fine-grained simulation
cannot produce the correct ensemble due to either inaccuracy
in the FG model or sampling difficulties. The hybrid approach
can also be accomplished by constructing a hybrid objective
function before optimization by machine learning algorithms
(Leonarski et al., 2013; Zhang et al., 2018; Wang and Gomez-
Bombarelli, 2019; Wang et al., 2019; Gkeka et al., 2020). The
objective function contains contributions from both the fine-
grained simulation and macroscopic measurements. An optimal

model should be obtained even though the whole process is not
trivial as many hyper parameters are involved in the machine
learning algorithm and objective function.

Efforts were also made to derive models in ways similar
to the development of classical atomistic force fields. In such
practice, a model with a generalized representation of certain
atom groups (CG site types) is produced, hoping that these
types of CG sites can be used as building blocks in applications
of modeling macromolecules. Instead of deducing interaction
potential between atom types as in classical force fields, the
potential of mean force among these CG site types is calculated
through simulations of the moieties constituting the CG sites,
using a fine-grained model. The extension of the MARTINI
force field to DNA (Uusitalo et al., 2015) follows this modeling
philosophy. It is still considered a bottom-up modeling approach
since it is based on an atomistic force field model. However
it is not a systematic approach, as we described above. Self-
consistency is lost in such modeling practices.

While evaluating a CG model’s quality, a comprehensive
view should be taken to balance various criteria with sound
reasons. One should recognize the shortcomings of bottom-up
coarse-graining when the resulting CG model fails to reproduce
experiments. For such cases, one may seek help from other
approaches of deriving the CG model, e.g., by combination with
a top-down approach.

2.8. Connection Among Bottom-Up
Coarse-Graining Methods
The Henderson uniqueness theorem (Henderson, 1974;
Rudzinski and Noid, 2011) states that for liquids with only
pair-wise interactions, under given temperature and density,
the pair-wise potential, which gives rise to a given radial
distribution function, is unique up to a constant. As such, a
connection is immediately clear among all structure-based
coarse-graining methods, including IBI, IMC and MRG-CG.
For an inverse modeling problem with a given set of RDFs
and intramolecular distributions, all structure-based modeling
methods will arrive at the same set of pair-wise potential up to
numerical precision, as long as they can produce the potential
as their answer. In practice, IBI has an inherent limitation of
ignoring all correlations between pair-wise interactions, resulting
in IBI being less capable of producing CG potentials with good
precision, especially in complex systems withmany CG site types.
when the IBI approach can provide a satisfactory CG model, it
is usually the most efficient one since the evaluation of the RDF
produced by a trial potential is much faster than the evaluation
of correlations between RDFs required by other methods.

Although relative entropy minimization is formulated from
very different principles compared to structure-based coarse-
graining, it has been shown that a CG system described by pair-
wise potentials obtained by the relative entropy minimization
reproduces the RDFs of the FG system (Chaimovich and Shell,
2011). Hence, relative entropy minimization leads to the same
result in CG modeling as structure-based methods taking into
account the Henderson uniqueness theorem. Indeed, similarities
between relative entropy minimization and other modeling
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TABLE 1 | Summary of coarse-grained DNA models.

DNA

models

Representation Main features Modeling method Achieved modeling target

IMC DNA 5 beads per two

base pairs

Explicit ion; Stable double helical structure IMC Reproduces the bending persistence

length of dsDNA; Reproduces multivalent

ion-induced DNA aggregation

Fan Bonds

Model

1 bead per

nucleotide

Double helix is maintained by intra- and

inter-strand bonds. Explicit ions

MRG-CG or IMC Bending persistence length of dsDNA can

be reproduced with scaled potential or

specific bonding structure

“sugar”

model

6 beads per

nucleotide

Explicitly modeling the sugar ring

conformation with a double-well bond;

Explicit Ions

Boltzmann Inversion; Energy

Relaxation; Empirical adjustments

Reproduced both A-DNA and B-DNA

conformations

3SPN DNA

Model

3 beads per

nucleotide

Specific potential energy terms for base

interactions

Top-down modeling for DNA; Relative

entropy minimization for ion

Well reproducing DNA melting curve,

shapes and curvature

methods have been point out by Chaimovich and Shell (2011).
The equivalence becomes even more evident from the fact
that in the practical implementation of the relative entropy
minimization described by Shell (2008), the method involves
inversion of the same cross-correlation matrix (Equations 9, 16)
as in the IMC method.

The interconnection between the force matching approach
and structure-based coarse-graining has been analyzed by
Rudzinski and Noid (2011). It was shown that both approaches
could be formulated in terms of an information function that
discriminates between the ensembles generated by atomistic and
CG models. While the relative entropy approach (and thus
other structure-based CG methods) minimizes the average of the
information function, the force matching method minimizes the
average of its squared gradient. It is why force matching usually
produces particle distributions different from the FG reference
distributions in practice.

Furthermore, it was shown (Noid et al., 2007) that the
kernel that describes the effects of three-particle correlations in
the force matching method is equivalent to the kernel of the
Yvon-Born-Green (YBG) equation, which relates equilibrium
particle 2- and 3-body correlation functions to the additive
pair-wise Hamiltonian. In later work by Lu et al. (2013), the
force matching algorithm based on the YBG equation can be
applied iteratively to reproduce the RDF of liquids as done
in structure-based coarse-graining. Considering the Henderson
uniqueness theorem, we see that the iterative force matching
method (Lu et al., 2013) produces the same CG model if it is
applied to minimize the RDF difference between the FG and
CG models.

We see that, though developed from different theoretical
backgrounds, there is a common theme among the discussed
bottom-up coarse-graining methods. When a pair-wise additive
potential is adopted, all methods reside in the generalized Yvon-
Born-Green hierarchy, either directly, or through modifications
as in the later development of force matching. More generally,
as proposed by Shell (2008) and later elaborated by Rudzinski
and Noid (2011), relative entropy is a fundamental quantity in
bottom-up coarse-graining, which connects all structure-based
methods and force-based methods.

3. COARSE-GRAINED DNA MODELS

Modeling of DNA, both in vivo and in vitro, is inherently a
multiscale problem, which requires several levels of resolution,
from atomistic (and perhaps quantum-chemical) to models
describing higher-order structures of DNA in chromatin. Recent
years have seen many CG DNA models differing by levels
of details developed through both bottom-up and top-down
approaches. Here we give a brief description of somemodels with
emphasis on bottom-up models. A summary of these models is
provided in Table 1.

3.1. IMC Model of dsDNA
We have developed a coarse-grained dsDNA model, focused on
the dsDNA double helical shape and a strong emphasis on DNA
electrostatic interactions. The first version of this model was
proposed by Fan et al. (2013) as a component of a CG nucleosome
core particle model. In this model, DNA is represented as a
chain of two-base pair units. Each unit contains five CG beads
representing two base pairs. Four of the five beads represent
phosphate groups with −1e charge, denoted “P” beads. The
central bead, called the “D” bead, represents the other atoms
of these two base pairs, namely four nucleosides, bearing zero
charge. Four types of bonds are defined, between “D” bead and
“P” beads in the same unit, between adjacent “P” beads on the
same strand of DNA, between “D” beads of adjacent units, and
lastly, between corresponding “P” beads across the minor groove.
These fragments are put together to form a DNA chain with two
helices formed by the phosphate groups (Figure 2A).

The total interaction potential consists of bonded and non-
bonded interactions:

Utot =
∑

bonds

Ubond(r)+
∑

angles

Uang(φ)+
∑

i,j

(Uel(rij)+ USR(rij))

(23)
where the electrostatic potential is modeled with screened
Coulomb potential with ǫ = 78

Uel(rij) =
qiqj

4πǫ0ǫrij
(24)
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FIGURE 2 | Graphical representation of selected bottom-up coarse-grained DNA models. (A) the IMC DNA model (Sun et al., 2019; Minhas et al., 2020). Electrostatic

interaction is modeled with explicit ion and phosphate beads (red), in addition to its apparent double-helical structure. Base-pair dynamics is simplified as it is not the

primary modeling target. (B) Model by Savelyev and Papoian (2010). A double-helical structure is maintained by a series of inter-strand bonds. (C) Model by Naômé

et al. (2014). Similar to (B). (D) The “sugar” DNA model (Kovaleva et al., 2017). Sugar puckering is modeled with a double-well bond potential, so that it is capable of

simulating A-DNA and B-DNA transition. (E) 3SPN model (Knotts et al., 2007; Sambriski et al., 2009; Hinckley et al., 2013; Freeman et al., 2014). Capable of

simulating base-pair dynamics with its detailed Hamiltonian.

In the original formulation (Fan et al., 2013), the model was built
within a top-down principle, with empirically chosen parameters
for intra- and intermolecular interactions. Subsequently, Korolev
et al. (2014) developed it into a standalone model of DNA in
which intramolecular bonded interactions were parameterized
by the IMC approach based on atomistic simulations of DNA
with the CHARMM27 force field. For convenience, bonded
potentials,Ubond(rij) andUang(φ), obtained by IMC in a tabulated
form, were fitted to harmonic potentials and used in such form
for subsequent CG simulations. This model has successfully
reproduced the persistence length of dsDNA in a wide range of
salt concentrations (Korolev et al., 2014).

In a recent effort to implement a full bottom-up model
and extend the application range of this model, Sun et al.
(2019) have recalculated all interaction potentials for DNA
and a number of mono- and multivalent ions by IMC, both
bonded and non-bonded. The fine-grained simulation was
conducted with four segments of 36-bp dsDNA, described by
the CHARMM27 force field. The length of the FG simulations
is significantly longer than earlier versions of this model.
Interaction potentials involving monovalent ions (Na+, K+, and
Cl−) and multivalent ions [Mg(H2O)

2+
6 and Co(NH3)

3+
6 ] are

derived from the same FG simulations to perform explicit ion
simulations on a larger scale with the CG model. Except for the
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electrostatic potential, all potential terms are derived in tabulated
form, as usually done within the IMC algorithm. The model
showed its suitability to study multivalent ion-induced DNA
aggregation while preserving its accuracy in DNA mechanical
properties, i.e., the ion concentration-dependent persistence
length (Minhas et al., 2020).

This IMC derived DNA model is designed to work with
explicit ions. Themodel has proven its capabilities in reproducing
the mechanical property of dsDNA and phase separation of DNA
induced bymultivalent ions. The topology of themodel preserves
the dsDNA’s double-helical structure, though it excludes the
capability of modeling base pair dynamics, such as bubbling and
melting. We will discuss its merits and deficiencies in more detail
in the following sections.

A further step of coarse-graining was conducted based on this
CG DNA model, producing a mesoscale DNA model (Sun et al.,
2019), which showcases the inherent convenience of performing
multiscale modeling with bottom-up coarse-graining methods.
In this mesoscale model, the dsDNA chain is represented by
a chain of spherical beads, each bead representing six base
pairs of dsDNA. There are totally three interaction terms in
the total potential energy, one bond, one angle and one non-
bonded term.Withminimal computational resources, simulation
of DNA as long as 10 kb was realized. Experimentally observed
hexagonal packing in multivalent ion-induced DNA condensates
was reproduced in simulations with this mesoscale model.
Interestingly, the dynamic process of a single dsDNA chain
forming a toroid was described based on simulations within
this model.

3.2. The Fan Bonds Model
Savelyev and Papoian (2009a,b) have developed a two-bead
per base pair model for dsDNA. This model represents each
nucleotide with one bead located at its geometric center. In
addition to the bonds that connect nucleotide beads on the same
strand, the base-pairing and stacking interactions are collectively
modeled by a series of inter-strand bonds, which are called “fan”
bonds. These interaction terms are designed to maintain the
double-helical structure of dsDNA (Figure 2B).

As noted in the theory section above, this Fan Bonds model
expands its Hamiltonian over a compact basis set when modeled
with the MRG-CG method. The Hamiltonian of this dsDNA
model adopts the following form: (Savelyev and Papoian, 2010)

Ubond,fan =

4
∑

α=2

Kα(l− l0)
α

Uang =

4
∑

α=2

Kα(θ − θ0)
α

Uion−DNA;ion−ion =
∑

i>j

[

A

r6;12ij

+

3;5
∑

k=1

Bke
−Ck(rij−Rkij)

2
+

qiqj

4πǫ0ǫrij

]

(25)

Usage of quartic polynomials for bonds and angles and sums of
Gaussians for non-bonded interactions significantly reduces the

number of parameters. Indeed, the free energy difference between
this CG model and the all-atom model is decreased to ∼ 0.5kBT
in a small number of iterations, which illustrates an efficient
algorithm. Finally, the salt concentration-dependent persistence
length of dsDNA was reproduced within a scaling factor.

Naômé et al. (2014) have modeled dsDNA with a topology
similar to the Fan Bonds model using the IMC approach, while
adopting tabulated potentials (Equation 11) to model the system
Hamiltonian (Figure 2C). Unlike the model by Savelyev and
Papoian (2009a,b), where bonded and non-bonded potentials
were derived separately, their model follows a more systematic
way of deriving all interaction terms from the same calculation,
considering cross-correlation among all interaction terms. The
inverse problem was solved in two stages, with IBI and IMC
respectively. The final model was obtained after a significantly
larger number of iterations (∼75 iterations) of than MRG-
CG modeling. We clearly see the benefit of having fewer
parameters in the MRG-CG method. Various modeling options
such as the number of fan bonds and the optimal procedure in
solving the inverse problem were explored in their work. The
salt concentration-dependent DNA persistence length was well-
reproduced with the optimal number of fan bonds, without any
scaling factor.

3.3. The “sugar” DNA Model
Kovaleva et al. (2017) have formulated the “sugar” DNA model,
designed to include the flexibility of the ribose rings. Each
nucleotide is represented by six beads – three for the backbone
and three for the base (Figure 2D). CG beads are placed on
selected atom positions in each nucleotide. The mass of each
CG bead is balanced to ensure that the center of mass of the
base doesn’t move during the mapping operation. The two
major conformations of ribose ring, C2′-endo and C3′-endo,
are modeled with a double-well potential for P-C1’ bond. The
transition between these two states corresponds to the transition
between C2′-endo and C3′-endo conformations.

Most of the bonded potential functional parameters were
derived from atomistic simulations with the AMBER99SB bsc0
force field by Boltzmann inversion, except for the well depth
of the aforementioned double-well potential. The depths of two
wells of P-C1’ potential is set to equal value, as the all-atom
sampling is not optimal. In cases where the Boltzmann inversion
is not working well, the so-called “relaxation” method is used,
where the relevant particle pair is set at a series of distances while
relaxing the rest of the system to obtain energy function for this
pair. Note that a hybrid approach is adopted in this model to
achieve the modeling target. Lastly, using the ion-ion effective
potential previously derived by IMC (Lyubartsev and Marčelja,
2002), the “sugar” DNA model successfully modeled the A-DNA
and B-DNA states, as well as the transition between the two
(Figure 2D).

3.4. The 3SPN Model
As an example of a top-down DNA model and hybrid top-down
and bottom-up modeling, we discuss the 3-site-per-nucleotide
(3SPN) model first developed by Knotts et al. (2007). The
first implementation of the 3SPN model (denoted 3SPN.0)
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was primarily designed to reproduce the melting temperatures
of oligonucleotides. Empirically determined relative interaction
strengths among non-bonded interaction terms reduce the
parameter set to one single interaction energy ǫ, which is
subsequently determined with a trial-and-error approach. In
the subsequent development, Sambriski et al. (2009) improved
the 3SPN model and derived a new version, 3SPN.1. A new
solvent-induced attraction term was introduced in this version
of the 3SPN model, and other interaction parameters were
further tuned to make the model more precise. As a result, DNA
mechanics was improved significantly (Figure 2E).

In the subsequent development of the 3SPN model, denoted
3SPN.2 (Hinckley et al., 2013), the authors employed a
more detailed interaction Hamiltonian, including a cross-
stacking potential to reproduce experimentally determined base
interaction energies such as base step energies and base stacking
free energies. The resulting model improved the molecular
flexibility for both ssDNA and dsDNA. More recently, Freeman
et al. (2014) introducedDNA sequence dependence to the 3SPN.2
model. At the same time, additional stability of the helix was
implemented using weak dihedral potentials.

Besides developing the 3SPN model by a top-down route,
efforts have been made to derive ion-ion, ion-DNA interactions
through bottom-up approaches. De Biase et al. (2012) first
used a predetermined functional form for ion-ion and ion-
DNA interactions, together with 3SPN.1 model. The parameters
were derived so that radial distribution functions from all-atom
molecular dynamics simulation were satisfactorily reproduced.
Subsequently, De Biase et al. (2014) used IMC to derive ion-
related potential terms fitted to an empirical functional form. The
accuracy of reproducing the RDF was significantly improved in
the latter study.

Additionally, the developers of the 3SPN model, Hinckley
and de Pablo (2015), developed a transferable coarse-grained
ion model for simulations of nucleic acids. Dimethylphosphate
(DMP) was adopted as a model molecule for the phosphate group
of nucleic acids. Relative entropy minimization was utilized to
derive the CG effective potential for ion-ion and ion-phosphate
interactions. Ion concentration-dependent persistent length of
dsDNA and dsDNA potential of mean force were demonstrated
with the new ionmodel. Although this ionicmodel only describes
ion-ion and ion-phosphate interactions, the authors argued it is
a general model, which can be used with other CG models of
nucleic acid with explicit charged phosphate sites.

4. DISCUSSION

4.1. Interactions in CG DNA Models
As straightforward as it is theoretically, modeling interactions of
DNA in a CG model is not trivial in practice. Since a few types
of interactions are involved, it is difficult, if not impossible, to
model all aspects of DNA interactions with a reduced number of
DOF accurately. We first consider the practice of modeling the
DNA conformation ensemble and discuss modeling interaction
between DNA and other molecules or ions later.

An ideal model with general applicability would require fairly
accurate modeling of four DNA properties, namely electrostatic

interaction, sugar puckering, base-pair stacking, and base-pair
hydrogen bonding. Long range electrostatic interactions are
crucial to DNA chain conformation and mechanical properties.
Sugar puckering is essential in the transition between A-DNA
and B-DNA, which in turn contributes to DNA thickness and
bending flexibility. For nucleic bases, their stacking and hydrogen
bonding interactions are anisotropic and directional due to
aromaticity. To our knowledge, there is to date no ideal CG DNA
model designed to model all these properties simultaneously.
All CG DNA models are compromising and focusing on some
particular aspect of the interactions in DNA.

Since most CG models are designed with implicit solvent,
various screening methods are usually adopted to model
electrostatic interaction, sometimes in conjunction with
modifications of charge values (Savelyev and Papoian, 2009b). In
such cases, the solvent is treated as a uniform medium without
structure. The simplest form of electrostatic interaction potential
uses a constant relative permittivity with Coulomb’s law:

Uel =
qiqj

4πǫ0ǫrij
(26)

where ǫ0 is the vacuum permittivity, ǫ is the relative permittivity.
It is used in the IMC dsDNA model (Korolev et al., 2014; Sun
et al., 2019; Minhas et al., 2020), the MRG-CG model (Savelyev
and Papoian, 2009a, 2010), the “sugar” model for its ion-ion and
ion-DNA interactions (Kovaleva et al., 2017), and a few other
models. Some models use the Debye-Huckle potential, generally
in the form (Savelyev and Papoian, 2009b; Morriss-Andrews
et al., 2010; He et al., 2013; Hinckley et al., 2013; Kovaleva et al.,
2017)

Uel =
qiqj

4πǫ0ǫrij
· e−rij/λD (27)

where λD is the Debye length of interacting particles. Effectively,
interacting particles experience larger permittivity at a longer
distance. More complicated forms of distance-dependent
permittivity, such as employing a switching function (Kovaleva
et al., 2017), are used in some models. Nevertheless, a suitable
screened interaction can be engineered to model the electrostatic
interaction in CG models where solvent degrees of freedom
are missing. However, experience and tweaking might be
necessary to obtain an appropriate choice that reproduces a
given experimental data-set.

We note here that from the structure-based coarse-graining
point of view, electrostatic interaction is part of the force
that determines particle correlations alongside short-range
interaction, which includes van der Waals attraction, short-
range repulsion, and implicit effect of water solvation. With
a systematic modeling approach such as IMC, these factors
are included in the effective pair interactions as the model’s
target is to reproduce particle correlation functions. If there was
an inaccuracy in the electrostatic interaction, the electrostatic
potential’s error could be absorbed into the short-range
interaction potential and vice versa, such that the final total
potential reproduces the target particle correlation functions.

Though sugar puckering is essential to DNA backbone
conformation, its modeling is not common in bottom-up
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CG DNA models, partially due to the inaccuracy in force
field parameters and difficulties in the sampling of the C2′-
endo and C3′-endo conformations. Additionally, modeling these
interactions requires higher resolution, including more CG beads
(and DOFs) compared to what is present in most available CG
models. The “sugar” DNAmodel (Kovaleva et al., 2017) explicitly
models sugar puckering with a double-well bond potential and a
specifically designed bonding structure along the DNA backbone.
Additional empirical modifications are needed upon bottom-up
modeling to achieve optimal results, manifesting the difficulties
mentioned before. Many CG DNA models consider B-DNA
only; hence they have not included sugar puckering in their
parameter set.

Due to the planar conformation of nucleic bases, interactions
originating from them are anisotropic. To realistically represent
this anisotropy, there should be a sufficient number of DOF in
the CG description. The simplest way is to represent individual
nucleic bases with multiple coarse-grained beads. For example, in
the “sugar” DNAmodel, each base is modeled by three CG beads
with balanced mass distribution (Kovaleva et al., 2017) such that
the base plane is easily defined. In this way, base stacking and
hydrogen bonding potentials can be projected onto a few suitable
degrees of freedom. Another popular choice is to use anisotropic
potentials at interaction sites. The number of interaction sites
is minimal, though the number of degrees of freedom is not
necessarily small. Gay-Berne potential (Gay and Berne, 1981;
Persson, 2012), a generalized Lennard-Jones potential with
anisotropy, is frequently adopted to model ellipsoidal CG beads.
For instance, ellipsoidal beads are used in the NARES DNA
model (He et al., 2013; Liwo et al., 2014; Yin et al., 2015) and used
by Li et al. (2016). One should note that using anisotropic beads
does not necessarily result in a better model, as seen in Li et al.
(2016). No matter through a bottom-up or top-down approach,
determining parameters in these models is not a trivial task.
Furthermore, anisotropic potentials require more computational
time to compute the forces compared to the models based
on isotropic distance-dependent potentials. We also note that
anisotropic beads may not be necessary for modeling DNA
properties intrinsically related to base interactions. For example,
the 3SPN model (Knotts et al., 2007) reproduces the dsDNA
salt-dependent melting temperature with isotropic beads.

In a simplified representation, DNA base pair interactions can
be approximated by bonded fluctuations, as done in the IMC
dsDNA model (Korolev et al., 2014; Sun et al., 2019; Minhas
et al., 2020) and the G-quadruplex model by Rebič et al. (2015).
Though the details of basepair conformation and dynamics are
lost, these representations are incredibly efficient in simulation
and are easily extended to large molecules. In cases where base
pair dynamics is considered secondary, bonded representation
could be superior to more detailed base pair models.

4.2. Mechanical Properties of DNA
DNA mechanical properties are essential for understanding
the DNA behavior in chromatin of the cell nucleus and DNA
nanomaterial development. These properties are determined
by a combination of DNA intramolecular interactions
(backbone rigidity, basepair interactions) and the electrostatic

polyelectrolyte nature of DNA. To test the performance of
any dsDNA model, the bending flexibility characterized by the
bending persistence length is usually the first property tested
against known experimental data. In simulations, the bending
persistence length, Lp, is approximated by an exponential decay
of the angular correlation function:

〈êi · êi+n〉 = exp

(

−nI

Lp

)

(28)

where êi is a unit vector along segment i, I is the average
segment contour length, angle brackets denote ensemble average.
Since the importance of the electrostatic interaction for
DNA bending flexibility, testing salt concentration-dependent
persistence length is a rigorous way to test the performance of
a new model. Though, it should be noted that the approximation
of an exponential correlation function as above, albeit good for
a worm-like chain polymer, is ignoring the DNA sequence effect
and intrinsic DNA curvature (Mitchell et al., 2017).

With the IMC dsDNA model, Korolev et al. (2014) tested
the salt concentration-dependent persistence length, where the
bonded potential is fitted to harmonic function based on IMC
inverted potential. The result showed a very good agreement with
experimental data. When the bonded potentials were substituted
with accurate tabulated IMC inverted potential (Minhas et al.,
2020), the bending persistence length still agrees well with
experiments. However, when torsion persistence length was
tested with this model, the result showed a significantly larger
value than experimentally reported data (Korolev et al., 2014).
It was explained by reasoning that while ion-dependent DNA
bending is determined mostly by long-range electrostatic forces,
the torsion flexibility does not depend much on electrostatics.
It is determined mostly by basepair twisting, which is relatively
short range. Since the IMC dsDNA model simplifies basepair
movement to bonded fluctuations, it is challenging to reproduce
DNA twisting satisfactorily.

In the two-bead per basepair models by Savelyev and Papoian
(2010) and Naômé et al. (2014), the long-range interactions
are implemented with explicit ions similarly to the works by
Korolev et al. (2014) and Minhas et al. (2020) while the bonding
of CG sites along DNA was different. These models show that
persistence length is sensitive to the bonding structure. With an
optimal bonding structure, the salt-dependent persistence length
can be reproduced well.

Figure 3 compares the result of predictions of the dependence
of persistence length on salt for these above mentioned bottom-
up CG DNA models. Generally, all bottom-up models provide
near quantitative agreement with experimental measurements
of persistence length over a wide range of salt concentration.
The agreement is particularly good at physiological salt. The
predictions at salt concentrations below 1 mM display more
variation between models and compared to experiments. The
results from the IMC model (Minhas et al., 2020) do a good
job over a wide range of salt concentrations and are similar
to the data obtained by Naômé et al. (2014) and to those of
Hinckley and de Pablo (2015). In the latter work, bottom-up
derived CG potentials for the ionic interactions were used, while
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FIGURE 3 | Ionic strength dependent persistence length of dsDNA modeled

by coarse-grained DNA models using explicit ions in the simulations. Data

from five models are plotted: Savelyev and Papoian (2010), Korolev et al.

(2014), Naômé et al. (2014), Hinckley and de Pablo (2015), and Minhas et al.

(2020). The gray band corresponds to the spline approximation of the

experimental data (Hagerman, 1981; Kam et al., 1981; Manning, 1981; Rizzo

and Schellman, 1981; Cairney and Harrington, 1982; Porschke, 1991;

Baumann et al., 1997) with a confidence interval of 0.99995.

internal DNA interactions were obtained from the empirically
parameterized 3SPN model. The persistence length calculations
by Savelyev and Papoian (2010), which displayed consistently
larger persistence length values, resulted, however,in good
agreement with experimental data following uniform rescaling of
all CG DNA structural parameters.

If a more detailed CG DNA model is used, it is more
challenging to attribute long-range correlation to specific
interactions since these are determined collectively by a group
of degrees of freedom. For instance, in Morriss-Andrews et al.
(2010), the modeled bending persistence length of single-
stranded DNA is lower than experiments.

Another interesting mechanical property is force-extension
curve of ssDNA. Maffeo et al. (2014) derived a two-bead per
nucleotide model with a hybrid approach, i.e., using IBI to
derive a primer model, then refined it by fitting to the radius of
gyration of ssDNA. The force-extension curve obtained by this
model fits better than the other two top-down models to the
experimental curve.

4.3. DNA Aggregation and Compaction
Properties
As a highly-charged polyelectrolyte, DNA has been extensively
studied in solution both as a standalone subject and as a
component of complexes formed with other molecules. Efforts
have been made to model such molecular systems and to
get insights from a physical perspective. Besides the bending
flexibility discussed in section 4.2, quantities such as radius of
gyration (Maffeo et al., 2014), melting temperature (Hinckley
et al., 2013), and even knotting probabilities (Rieger and Virnau,
2018) are adopted as modeling targets, especially in top-down
models. There are additional studies of DNA-protein complexes

with top-down models, such as the NARES model for DNA-
protein complex (Yin et al., 2015) and free energy associated
with nucleosome unwrapping (Lequieu et al., 2016). Although
DNA solution structure can be directly simulated once a bottom-
up model is acquired, the result may not always agree with
experimental data. For instance, in the ssDNAmodel designed by
Maffeo et al. (2014), the direct result of the CG model derived by
IBI significantly underestimates the radius of gyration of ssDNA.
Correction to the interaction potential was made afterward to
obtain agreement with experimental data.

Another application of CG DNA models is to study
DNA condensation and phase separation. Positively charged
multivalent cations and polyelectrolytes can induce DNA
condensation under physiological salt conditions, which is
important for understanding DNA compaction in the cell
nucleus. Accurate effective potentials between DNA and
multivalent ions are crucial to these studies. Córdoba et al. (2017)
studied the dependence of DNA packing inside nanometer-
sized viral capsids on multivalent cations using the 3SPN.2C CG
DNAmodel incorporating bottom-up effective potentials for ion-
phosphate interactions (Figure 4). Multivalent cations such as
spermidine and magnesium induce attraction between packaged
DNA leading to DNA condensation. At high concentrations
of spermidine, the condensation reduced the pressure inside
the virus capsid. Savelyev and Papoian (2010) used their CG
bottom-up “fan” model to predict the structural phase transitions
in torsionally stressed DNA nanocircles due to the presence
of salt (see Figure 4B). The model predicted phase transition
to a buckled state in the overtwisted DNA nanocircle under
physiological salt conditions.

In work by Sun et al. (2019), a fully bottom-up model of
dsDNA in the presence of multivalent ions was built based
on atomistic simulations with the CHARMM27 force field.
Subsequently the model was used to study DNA condensation
in the presence of Cobalt(III)-hexammine (CoHex3+) ion. The
model successfully reproduced the experimentally observedDNA
condensation into hexagonally ordered structures (Figure 4C).
Furthermore, the developed CG model was used to make one
more step in coarse-graining, to obtain a CGDNAmodel suitable
for mesoscale simulation. It resulted in a “super-coarse-grained”
DNA model with a simple bead-on-string topology and a single
IMC-derived long-range potential between the beads, effectively
accounting for the effect of water and ions. The super-CG model
of DNA was used to study the formation of toroidal structures
formed by long (40k base pairs) DNA in the presence of CoHex3+

ions, resulting in excellent agreement with electron microscopy
observations of DNA toroids formation. It is worth emphasizing
that this model, allowing simulation of DNA on a micrometer
length scale, was derived exclusively from atomistic simulations
without using any empirical parameters.

5. CONCLUDING REMARKS

To model large biomolecular systems such as the components of
organelles of a living cell (e.g., chromatin in the cell nucleus),
an atomistic approach based on all-atom MD simulations is
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FIGURE 4 | Application of different coarse-grained DNA models illustrating multi-scale phenomena, including (A) DNA compaction in virus capsid (Córdoba et al.,

2017); (B) phase behavior of circular DNA (Savelyev and Papoian, 2010); (C) multivalent ion-induced DNA condensation (Sun et al., 2019).

neither computationally feasible nor practically useful since the
vast number of DOF makes the analysis complicated. Within
the coarse-grained approach, the macromolecular systems can
be reduced to a description with effective sites, representing
many atoms, which reduces the computational demand and
simplifies the analysis by focusing on those DOFs that are
of interest for a specific problem at hand. To obtain the
effective potentials describing the interactions between the CG
sites, we generally have two possibilities, either a top-down
approach that fits the potentials to some available experimental
data or the bottom-up approach discussed in this review. We

have presented an overview of the approach of bottom-up CG
computer simulations of DNA, which enables the modeling
of multiscale DNA structure, dynamics, and interactions with
various bio-macromolecules. As discussed thoroughly here, the
available methods are in principle equivalent. They enable
rigorous extraction of the effective potentials that reproduces
the system’s behavior in an FG description based on a given
AA force field. These potentials are particularly advantageous
when dealing with highly charged systems such as DNA.
The IMC method e.g., enables rigorous modeling of DNA
mechanical properties and aggregation of very large DNA
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assemblies, with a reduction of the number of particles of several
orders of magnitude, but still using effective potentials that
implicitly incorporate the effects of the solvent water. Further
development of this approach to model packaging of DNA
in chromatin and even chromosomes is a highly challenging
problem, which though in principle, can be handled within the
same methodology.

We foresee that as the methodology and computational
capability improve, physics-based models, derived by bottom-up
modeling or from other physical principles, will be taking up
more important roles toward illustrating biophysical processes
relevant to experimental studies. It is even more evident when
one considers the development in experimental techniques,
such as Cryo-EM and single-molecule experiments. These
experimental methods are reaching into finer and finer scales
to probe the underlying physics. The gap between physical
simulations and wet-lab experiments is diminishing. With
the inherent multiscale nature of bottom-up coarse-graining,
multiple molecular models spanning a few magnitude of length
scale can be generated rigorously. More accurate interactions will
be modeled to conduct simulations. With a minimal number
of empirical parameters, simulations can provide better insights
into molecular characteristics at each scale. Though there is still
much development to be expected in bottom-up coarse-graining
methods, we believe the connections between microscopic

molecular characteristics and experimental observations will
improve, leading to a deeper understanding of DNA physical
properties at large spatial and temporal scales.
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