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Pregnancy can be defined a vascular event upon endocrine control. In the human hemo-
chorial placentation the chorionic villi penetrate the wall of the uterine spiral arteries, to
provide increasing amounts of nutrients and oxygen for optimal fetal growth. In any
physiological pregnancy the natural maternal response is of a Th1 inflammatory type,
aimed at avoiding blood loss through the arteriolar wall openings. The control of the
vascular function, during gestation as in any other condition, is achieved through the
action of two main types of prostanoids: prostaglandin E2 and thromboxane on the one
hand (for vasoconstriction and coagulation), prostacyclin on the other (for vasodilation and
blood fluidification). The control of the maternal immune response is upon the
responsibility of the fetus itself. Indeed, the chorionic villi are able to counteract the
natural maternal response, thus changing the inflammatory Th1 type into the anti-
inflammatory Th2. Clinical and experimental research in the past half century address to
inflammation as the leading cause of abortion, pregnancy loss, premature delivery and
related pulmonary, cerebral, intestinal fetal syndromes. Increased level of Interleukin 6,
Interleukin 1-beta, Tumor Necrosis Factor-alfa, Interferon-gamma, are some among the
well-known markers of gestational inflammation. On the other side, COVID-19 pneumonia
is a result of extensive inflammation induced by viral replication within the cells of the
respiratory tract. As it may happen in the uterine arteries in the absence of an effective fetal
control, viral pneumonia triggers pulmonary vascular coagulation. The cytokines involved
in the process are the same as those in gestational inflammation. As the fetus breathes
throughout the placenta, fetal death from placental thrombosis is similar to adult death
from pulmonary thrombosis. Preventing and counteracting inflammation is mandatory in
both conditions. The most relevant literature dealing with the above-mentioned concepts
is reviewed in the present article.
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INTRODUCTION

Despite the substantial progress in the comprehension of
miscarriage and pregnancy loss pathogenic mechanism, there is
still a great delay in transferring the scientific findings to medical
practice. “Statistical evidence-based medicine” today is anxiously
awaiting double blind randomized controlled trials, but forgets
that these can only be planned by clinicians with a solid knowledge
of pathophysiology. Science is measurement, but this must be
based on a rational ground. In the absence of a solid philosophical
perspective, the results of the measurements, however exact, end
up supporting the wrong target. As a consequence, many obstetric
complications leading to fetal demise are still generically attributed
to a so called ‘placental insufficiency’, a definition sharply criticized
long ago by H. Fox. This Author, indeed, pointed out that such
complications are not a result of changes within the placenta, but
of a compromised utero-placental blood flow. Furthermore, he
stated that in these cases the placental maturation is accelerated,
and therefore its functional efficiency is increased rather than
reduced. This opinion is based on the finding of a decreased
thickness of the placental barrier, with more precocious formation
of vasculo-syncytial membranes, aimed at increasing the
maternal-fetal passage of nutrients and gas exchange (1). At the
time when Professor Fox described the morphological evidence of
the vascular changes related to miscarriage and pregnancy loss,
their inflammatory nature had not been yet understood. Indeed, in
discussing the etiological classification of abortion, he observed for
instance that trisomy 21 may result in a spectrum of abnormalities
from blighted ovum to a mentally retarded adult, but the factors
that allow the pregnancy survival are not known (1). As a matter of
fact, although the pathogenic role of inflammation is better
understood today, the criteria for a precise diagnosis and
effective anti-inflammatory therapy have not been clearly
expressed and are not adopted in clinical practice.
MATERNAL IMMUNE TOLERANCE AND
SUSCEPTIBILITY TO INFECTION

Since the dawn of immunology, it was suggested that in normal
pregnancy the maternal immune response must be reduced, to
allow the acceptance of the semi-allogeneic product of conception.

Such a concept has created a myth of pregnancy as a state of
immunological weakness and increased susceptibility to
infectious diseases.

On the contrary, the immune gestational system, far from
being suppressed, is modulated and perfectly working (2, 3).

The gestational decidua contains a high number of immune
cells. Among leukocytes, 70% are NK cells, 20–25% are
macrophages and 1.7% are dendritic cells (4, 5). During the
first trimester, NK cells, dendritic cells and macrophages
infiltrate the decidua and accumulate around the invading
trophoblast cells (6, 7).

The decidual NK cells are critical for trophoblast invasion of
the uterine spiral arteries, as their deletion leads to miscarriage
(8, 9).
Frontiers in Immunology | www.frontiersin.org 2
Contrary to the opinion of a decreased maternal immunity,
there is also evidence for a boosted innate immune response
implying a decreased susceptibility to infection, thus protecting
the mother and the fetus (10, 11). Nevertheless, the reduction of
the immune response, that could be leading to increased
incidence of infection, suggested that pregnant women should
be vaccinated against a list of diseases including flu, pertussis,
tetanus, diphtheria, and more recently SARS-COV2
infection (12).

However, although the involvement of infectious agents is
reported in about 40% of spontaneous abortion (13–15), there is
controversy regarding the incidence and effects of infections on
pregnancy. Indeed, the setting of pregnant women immunity
would appear to be directed towards a better protection against
infectious diseases compared to non-pregnant. For instance:
vertical transmission of BKPyV, JCPyV and SV40 and specific
IgG antibodies occurs in normal pregnancy (16); the incidence of
Human Papilloma Virus (HPV) infection is not increased in
spontaneous abortion. Moreover, the prevalence of serum anti-
HPV16 IgG antibodies is 30% in normal pregnancy and 37.5% in
women with spontaneous abortion (p > 0.05), thus suggesting
even better humoral immunity in the latter (17); rubella virus,
varicella-zoster, human immunodeficiency virus, adenovirus,
cytomegalovirus, herpes simplex virus, human parvovirus,
Epstein-Barr virus, enterovirus and respiratory syncytial virus,
have all been found in amniotic fluid, but their mere presence
appears not to be associated with negative human pregnancy
outcome (18–21).

As for influenza, contrary to the opinion of some Authors
(22–24), the risk for severe outcomes results to be decreased.
Indeed, there is a significantly lower incidence of admission to
intensive care unit. Moreover, neither a greater need for
mechanical ventilatory support, nor a raised incidence of
maternal death or other severe outcomes compared to general
population are observed. As for the registered higher incidence of
hospitalization, it is simply ascribed to a better care for
motherhood (25).
THE NEED TO DISTINGUISH HUMORAL
FROM CELLULAR GESTATIONAL
IMMUNITY

All above results indicate that the opinion of an increased
susceptibility to infectious disease in pregnancy may derive
from purely statistical studies burdened by methodological
errors, which make them unsuitable to settle disputes. These
follow for the widespread confusion between the distinct
functions of humoral and cellular immunity: the first, that is
active in antibody production against infections, is perfectly
preserved in pregnancy; the second, responsible for the
acceptance of the fetus, is seriously challenged from
implantation to delivery. There should be no need for
references regarding the integrity of maternal antibody
production: everyone knows, for instance, the effectiveness of
humoral immunity in maternal-fetal Rh-immunization! In this
March 2022 | Volume 13 | Article 861245
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case, the maternal humoral immune response is enhanced rather
than decreased, i.e., the anti-Rh antibody production is triggered,
with the specific intent of rejecting the semi-allogeneic fetus,
instead of accepting it. Nevertheless, the maternal antibody
response has been also tested against herpes simplex, measles,
rubella and influenza A viruses, showing no consistent effect of
pregnancy. It was stated that declining titers of antiviral
antibodies may seldom be seen as a predominant effect of
gestational physiological hemodilution (26).

Instead, changes are produced at the level of uterine vessels that
maternal cellular immunity is not ready to accept. Two stages of
such changes are described, the first beginning with implantation,
and followed by a second wave in the second trimester (1).
However, in our opinion, the process of uterine arteries invasion
and progressive modification would better be considered to
continue up to birth, due to the need of increasing amount of
oxygen and nutrients for optimal fetal growth. A deep crosstalk
between the invading trophoblast and the gestational decidua
occurs. Trophoblast antigens stimulate all T-types cells, namely
helper (Th), cytotoxic (Tc) and regulatory (Treg), as well as B cells,
in order to induce a tightly regulated balance between inflammatory
and tolerogenic states during the “immune chronology” of normal
pregnancy (27–30). Naive CD3+CD4+ T cells differentiate into T cell
subsets, such as Th1, Th2, Th9, Th17, Th22, and follicular Th cells
(Tfh). Th1 inflammatory immunity dominates during implantation,
in order to favor trophoblast invasion. Subsequently a shift to Th2
anti-inflammatory immunity is observed (31).

As regards the modulation of the inflammatory response, it
must be considered that the mediators of cellular inflammation
are also involved in the main physiological events of fertility,
such as menstruation and delivery (32) Accordingly, the levels of
the receptor ligands for the inflammatory peptide N-formyl-
methionyl-leucyl-phenylalanine (fMLP) in amniotic fluid are
stable during gestation, while they are significantly increased
by labour, along with the expression of fMLP receptor in amnion
tissue. These findings indicate that fMLP system modulates the
events of physiological labour (33–35).

Ultimately, two aspects characterize the cellular immunity
scenario that takes place at the maternal-foetal interface: the
natural reaction to the penetration of the chorionic villi into the
uterine spiral arteries on the one hand, and the foetal need to
counteract it on the other. Indeed, the Th1 reaction, although
probably worth to favour implantation, ends up later becoming a
maternal defence against the vascular changes produced by the
villi. Such a cellular inflammatory response is even more striking
in the presence of maternal acute or chronic inflammatory
disease, which already activate the cyclooxygenase pathways
involved in prostanoids production.

At this regard, the complex relationship existing between
endothelial cell receptors, prostanoids biosynthesis (36, 37) and
cyclooxygenase influence on Th cells subset (38) must be
considered. Based on the above evidence, it can be assumed
that, from implantation to delivery, virtually all vascular events
depend on the balance of inflammatory and anti-inflammatory
cellular immune response, but not on the humoral ones.
Moreover, regardless of its maternal or foetal origin, an
Frontiers in Immunology | www.frontiersin.org 3
excessive Th1 response causes inflammation and coagulation,
thus leading to abortion and pregnancy loss.
ROLE OF THE TH1 IMMUNE RESPONSE
IN THE PATHOLOGY OF GESTATION

As above mentioned, the trophoblast invasion generates a
cellular immune response, the control of which is a task of the
trophoblast itself, by releasing the right mediators of cellular
functions needed in that unique condition of pregnancy
generically called ‘maternal tolerance’ (39). Indeed, it is the
trophoblast primary job to quench the Th1 reaction at the
level of the utero-placental interface. To the best of our
knowledge, Raghupathy was among the first to clearly affirm
that Th1–type of immune response is incompatible with
pregnancy (40). A more detailed description of the normal set-
up of lymphocyte subsets mentioned above (31) suggests some
benefit of Th1 immunity in the earliest stages of inflammation.
Nevertheless, as Th1 cytokines are also able to trigger
inflammation and coagulation, to confirm the hypothesis of a
foetal responsibility in the control of these functions it was
necessary to investigate upon their mediators in the foetal
compartment of pregnancies at high risk of abortion. These are
best represented by foetal aneuploidies. Accordingly, compared
to euploid gestation, the following features were registered in the
presence of chromosomal abnormalities:

- significantly increased amniotic fluid levels of endothelin-1 (41);

- significantly higher maternal serum levels of urokinase
plasminogen activator and its complexed form with type-1
inhibitor.

- significantly lower amniotic fluid level of the tissue
plasminogen activator in aneuploidy, with a higher
amniotic level of type-1 inhibitor in the presence of minor
chromosomal abnormalities (42);

- significantly increased level of amniotic fluid IL-6, with
decreased IL-8 level, and reduced IL-6 concentration in the
maternal blood (43);

- reduced adenosine receptors A (1) and A(2B) expression in
chorionic villi and mesenchymal cells in the presence of fetal
Trisomy (44);

All above results strengthen the opinion of a leading
pathogenic role of the fetal inflammatory cytokines, along with
the vascular and blood clotting system anomalies, in the
mechanism of miscarriage.
CYTOKINE IMBALANCE IN THE ABSENCE
OF INFECTION IN ADVANCED HUMAN
PREGNANCY COMPLICATIONS

As inflammation leading to miscarriage may derive from lack of
fetal control of cytokines and prostanoids, one wonders if the
March 2022 | Volume 13 | Article 861245
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same mechanism may be also involved in late pregnancy, when
the time of abortion is now over.

At this regard it has been reported that the maintenance of Th1
immunity is linked to other late complications, such as fetal growth
restriction, premature birth and related neonatal syndromes,
gestosis, up to pregnancy loss (40). In the presence of fetal growth
restriction, maternal peripheral mononuclear cells stimulation with
trophoblast antigens produces higher levels of the pro-inflammatory
cytokines IFNg, TNFa, IL-8, IL-12, IL-18, IL-23 and lower anti-
inflammatory cytokines IL-4, IL-10, IL-13 compared to normal fetal
growth, thus confirming once more an active fetal role in the
pathogenic mechanism (45, 46). Indeed, in such cases, the
trophoblast even strengthens the maternal inflammatory response,
instead of turning it off. Therefore, the question arises whether, and
when, in the absence of aneuploidy, the persistence of Th1
immunity indicates an intrinsic inability of the euploid
trophoblast, or it may recognize different etiologies, among which
infection. Indeed, experimental intrauterine infection in primates
triggers pro-inflammatory cytokine activation, prostaglandin
release, myometrial contractions, and premature delivery (47).

As for human pregnancy, bacterial mediation would appear
to be among the possible causes of a TH1 immune response.
Indeed, in a recent article by Romero and coworkers, the finding
of the same amniotic bacteria previously detected in the vagina at
the time of amniocentesis suggested that pathogens ascension
from the lower genital tract is the primary pathway for intra-
amniotic infection leading to premature labor (48). In this
research, IL-6 amniotic level was above 2 ng/ml, but it was not
interpreted as an indicator of a preceding inflammation.
However, the same Author, by sampling the fetal compartment
in cases of threatened premature birth, had previously reported
that fetal inflammation precedes infection (49, 50).

To the best of our knowledge, this is the first clinical
demonstration that inflammation could not be triggered by
infection. In humans, indeed, even the mere steril inflammation
of the chorion-decidual interface is reported as a primum movens
producing a cascade of cytokines that result in preterm birth (51).
Accordingly, a recent article reports that T cell activation causes the
following clinical signs of premature labor: maternal hypothermia,
bradycardia, systemic inflammation, cervical dilation, intra-
amniotic inflammation, and fetal growth restriction (52).
Therefore, these findings confirm a leading role of inflammation
in triggering premature birth and its related perinatal syndromes
even in the absence of infection.
ROLE OF FETAL AND MATERNAL
GENETIC INFLAMMATORY
POLYMORPHISMS IN THE PATHOGENIC
MECHANISM OF GESTATIONAL
INFLAMMATION AND ITS RELATED
CLINICAL COMPLICATIONS

Further support for the predominant role of inflammation in the
pathogenesis of complications of advanced pregnancy comes
Frontiers in Immunology | www.frontiersin.org 4
from the study of the involvement of genetic inflammatory
polymorphisms. Indeed 119 genes with single nucleotide
polymorphism are reported to be associated with preterm birth
(53). It has been demonstrated that maternal polymorphisms in
genes IL-10, MBL, TNFRSF6 and TGFB1 may influence
susceptibility to chorioamnionitis (54). The risk of preterm
birth is lower with polymorphisms decreasing the
inflammatory response compared to those increasing its
magnitude and or duration (55). Common genetic variants in
proinflammatory cytokine genes IL-1a, IL-1ß, IL-2, IL-6, TNF,
and lymphotoxin a, also increase the risk for spontaneous
preterm birth (56). Interestingly, candidate gene studies have
sought genetic variants regulating inflammation either in the
mother or in the fetus. The most relevant concept derived from
these studies is that preterm labor, at least in part, has an
inflammatory etiology, that does not necessarily need to be
triggered by pathogens: it is the so called ‘sterile intra-amniotic
inflammation (57).
ROLE OF COVID-19 IN INFLAMMATION:
THE CYTOKINE STORM

Today the world is struggling from a global health emergency:
the Coronavirus disease-19 (COVID-19), caused by SARS-CoV-
2 virus infection. This infection triggers strong inflammatory
responses leading to acute pneumonitis, bronchitis, dyspnea, and
respiratory failure (58–62).

SARS-CoV-2 infection, called COVID-19, is often categorized
into three stages: first asymptomatic phase; second, non-severe
symptomatic phase; and third, severe respiratory symptomatic
phase (63). Usually, a small number of patient’s progress to the
severe stage and develop Acute Respiratory Distress Syndrome
(ARDS) with or without multiorgan failure (64). In fact, the large
par t of people infec ted wi th SARS-CoV-2 occurs
asymptomatically or cause only mild and less fatal symptoms
than MERS-CoV and SARS-CoV infections. In 10–20% of cases,
especially in those with associated comorbidities and advanced
age, can progress to interstitial pneumonia and acute respiratory
distress syndrome (ARDS) (65). Data suggest that the severity
and high mortality rate of COVID-19 is related with older age
with coexisting severely ills, nutritional status and serious
comorbidity, especially pulmonary, cardiovascular and
dysmetabolic ones, chronic obstructive lung disease and
coronary heart disease. Otherwise, young and healthy people
rarely developed severe COVID-19 pathology (66–71).

Studies have demonstrated that the host’s immune responses
initiate as soon as SARS-CoV-2 binds to cellular receptors and
releases viral RNA for replication with the involvement of both
the innate and adaptive immune system (64). The immune
response to the virus appeared to be different between severely
and moderately COVID-19 patients (64). In a blood sample of
symptomatic hospitalized patient with mild to moderate SARS-
CoV-2 infection, before resolution of symptoms were detected
immunological changes such as an increase in the number of
activated CD4+ helper, T cells and CD8+ killer T cells, follicular
March 2022 | Volume 13 | Article 861245
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helper T (Tfh) cells, antibody-secreting cells (ASCs) and
antibodies particularly IgG (Immunoglobulin G) and IgM
(Immunoglobulin M) (72). On the other hand, in severely
infected patients, lymphocytopenia is a common denominator
with substantial fall in numbers of natural killer cells, B cells,
CD3+ T cells, CD4+ helper T cells, CD8+ killer T cells along with
the increase in neutrophil-to-lymphocyte ratio (NLR) and
C reactive protein levels (64). Additionally, in comparison to
the non-severe patients, pro-inflammatory cytokines and
chemokines such as tumor necrosis factor (TNF)-alpha,
interleukin (IL)-2, IL-6, IL-7, IL-8, IL-10, Granulocyte-colony
stimulating factor(GCSF), mono cytochemoattractant protein 1
(MCP1) and macrophage inflammatory protein 1-alpha (MIP1-
alpha) are often reported to be elevated in serum levels of
critically ill patients (66, 73). The elevated neutrophil-
lymphocytes ratio (NLR), which is a biomarker of systemic
inflammatory response syndrome, points to the devastated
inflammatory state of COVID-19 patients in intensive care
units (74). This hyperactive immune response along with
impaired adaptive immune response may trigger pulmonary
injury, ARDS, viral sepsis and organ failure as complications,
and eventually death in some cases (74).

The severity of COVID-19 in patients is associated with an
exaggerated immune response and intense inflammation due to a
so called “cytokine storm”. Following COVID-19 infection, in the
severe cases it was observed an excessive production of pro-
inflammatory cytokines, namely tumor necrosis factor a
(TNFa), interferon g (INFg), interleukin-6 (IL6), interleukin-
1b (IL1b), and chemokines like monocyte chemoattractant
protein-1 (MCP-1/CCL2). The immune-mediated cytokine
storms are intended to protect the host from the infection;
however, the excessive release of proinflammatory cytokines
could harm multiple organs throughout the body.

The enveloped coronaviruses (CoVs) are a versatile family of
positive-sense RNA viruses that infect several species and often
in pleomorphic form (75). These are classified into four major
categories according to their genomic structure as a, b, g, and d;
the a and b CoVs affects only mammals. The SARS-CoV-2 and
MERS-CoV-2 are grouped under b coronaviruses.

The CoVs have four structural proteins that includes E, M, N
protein, plus S- Spike glycoprotein (76). Among these the S
protein is located on the virion’s outer surface and it is the most
crucial for the infection and its consequences on patients. The
spike protein acts as a recognition factor as it attaches to the
membrane receptor on the host cells, facilitating the fusion with
cellular membrane (77).

The Spike protein mediates receptor recognition, cell
attachment, and fusion during viral infection. The Spike
protein are coated with polysaccharide molecules that
camouflage them, allowing them to evade surveillance of the
host immune system during entry (78). When the virus interacts
with the host cell, there is an extensive structural rearrangement
of the S protein that allows the virus to fuse with the host cell
membrane and to penetrate into the cell (78).

In its native state, the CoVs S protein exists as an inactive
precursor; however, during viral infection, specific cell proteases
Frontiers in Immunology | www.frontiersin.org 5
activate the S protein by cleaving it into S1 and S2 subunits (79); this
step is necessary for activating the membrane fusion domain after
viral entry into target cells (80). The S protein of SARS-CoV-2 is
cleaved into S1 and S2 subunits by cellular proteases: S1 domain
contains the Receptor binding domain (RBD), which is mainly
responsible for binding of the virus to the receptor, while S2 domain
mainly contains the heptad repeat (HR) domain, including HR1
andHR2, which is closely related to virus fusion (81). In the effort to
explain the exaggerated immune responses observed in the severe
COVID-19 patients, were performed structure-based
computational models on S protein. By using in silico modeling,
it was found that SARS-CoV-2 encodes a superantigen (SAg) region
in SARS-CoV-2 S glycoprotein that is highly similar in sequence
and structure to the staphylococcal enterotoxins B (SEB) (82).
Bacterial SAgs, like SEB, include proteins that stimulate massive
production of inflammatory cytokines and toxic shock. SAgs are
able bind to major histocompatibility complex (MHC) class II
(MHCII) molecules and/or to T cell receptors (TCRs) of both
CD4+ and CD8+ T cells, and they are well known as potent T cell
activators (82). The SAgs have the capacity to bypass the antigen
specificity of the TCRs and to cause a broad activation of T cells that
lead to a cytokine storm and to toxic shock (83, 84). SAgs do not
bind the major (antigenic) peptide-binding groove of MHCII but,
instead, directly other regions ofMHCII, and recent studies revealed
that they can bind to either a- or b-chains or both the TCRs (85).
SEB enables large-scale T cell activation and proliferation with a
massive production of proinflammatory cytokines including IFNg,
TNFa, and IL-2 from T cells, as well as IL-1 and TNFa from
antigen-presenting cells, that finally leads to multiorgan tissue
damage (84).

The hyper-inflammatory syndrome, observed in severe cases of
COVID-19 in adults, may be driven by the SAg-like activity of the S
protein (82). Indeed, the inflammatory cytokine signature, that
include IL-6, TNFa, IL-8, and IL-1b, and which predicts severity
and possible death in COVID-19 patients, is very similar to the one
elicited by SAgs (84, 86). It was also noted that adult patients with
severe/hyper-inflammatory COVID-19 exhibit a skewed TCR Vb
repertoire, similar to the one elicited by bacterial SAgs, that
distinguish them from patients with mild/moderate COVID-19
(82). A discriminant in the severity of COVID-19 symptoms in
patients could also be related to the HLA systems. HLA has been
shown to play a role in COVID-19 susceptibility, and it is known
that certain HLA types are more permissive of binding SAg (87).
SAgs have been also implicated in autoimmunity by triggering self-
reactive T cells (83). In a similar way, it is also possible that SARS-
CoV-2 SAg could cause a delayed hyper-inflammatory response by
antibody-mediated enhancement due to the virus re-exposure (88)
when a poor initial antibody response to the virus fails to neutralize
the SAg (82).
EFFECTS OF SARS-CoV-2 S PROTEIN ON
ACE-2 IN PREGNANCY

Aside respiratory problems and the S protein-induced cytokine
storm, the SARS-CoV-2 virus targets cardiac, gastro-intestinal,
March 2022 | Volume 13 | Article 861245
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hepatic, cutaneous, and renal organs to elicit organopathy. This is
possible because SARS-CoV-2 virus uses angiotensin converting
enzyme 2 (ACE-2), trans-membrane serine protease 2 and 4
(TMPRSS2, TMPRSS4), glucose regulating protein 78 (GRP78)
Cluster of Differentiation 147 (CD147), and other entry factors to
colonize host cells (89). The organs expressing these receptors are at
greater risk to showCOVID-19 organ dysfunctions. In this contest, it
is important to underline that several studies have showed the
expression of these entry factors in gonads and other accessory
reproductive organs (59–61). In fact, especially ACE-2 is largely
expressed in the reproductive system, ovary (especially, in a high rate,
in oocytes) (90–92), utherus (92–94) and vagina (92, 94) included.
The role of ACE2 and, in particularly, the modulation of the
concentration of Angiotensin II and Angiotensin- (1–7), is
fundamental for the correct function of menstrual cycle and
fertility of woman. ACE2 is able to hydrolyze angiotensin I (Ang I)
to produce angiotensin- (1–9) and also has a high affinity for
angiotensin II (Ang II) to generate Ang-(1-7) (95). The major
component of the ACE/Ang II/AT1 (angiotensin II type 1) axis, is
Angiotensin II, thatmaintains thehydro-salinity balance (96, 97) and
promotes cell proliferation and facilitates vasoconstriction (98–101).
Ang-(1-7). is an endogenous ligand for the G protein-coupled
receptor Mas (102, 103) and, as an important modulator of the
human renin-angiotensin system (RAS), specifically inhibits Ang II
by the antagonism of AT1 receptors (103). Moreover, Ang-(1-7)
alleviates metabolic syndrome (104, 105), enhances vasodilation
(106, 107) and seems to protect the heart (108–110). Several studies
have demonstrated that ACE2 is a modulator of the secretion of
Angiotensin II and Ang (–1–7). The natural balance of this
two molecules is associated with maturation of human oocytes
(111–114), induction of hormones secretion (115–117), follicle
development (114, 116, 118–122) and atresia (123–125), and
modulation of the ovulation (114, 126–136). Furthermore, a
correct balance between Ang II and Ang-(1-7) plays an important
role in vascular bed and endometrium regeneration, and it is
necessary for a regular menstrual cycle (137, 138), for the
regeneration of endometrium (93) and myometrium activity
(139, 140).

In addition, the human placental RAS, that is directly modulated
from ACE-2, is upregulated in the first trimester and involved in
endometrial neo-vascularization during peri-implantation period as
well as placental development period (141).

During pregnancy, the balance between Angiotensin II and
Ang-(1-7) is fundamental and ACE-2 is widely expressed in
human cytotrophoblast, syncytiotrophoblast, endothelium and
vascular smooth muscle of the chorionic villi (142). The presence
of ACE-2 is detected even in the maternal stroma, in the invading
and intravascular trophoblast, in decidual cells, in arterial and
venous endothelium and smooth muscle of the umbilical cord
(142). ACE-2 reaches the highest level in early gestation (143),
where it is expressed in luminal and glandular epithelial cells in
the primary and secondary decidual zone. During gestation,
ACE-2 staining is visualized in the placenta, and amniotic and
yolk sac epithelium (144, 145). ACE-2, Ang II and Ang-(1-7),
seem to be involved in the regulation of blood pressure, hydro-
salinity balance fetus development (143). In particularly, Ang II
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seems to stimulate trophoblast invasion in human cells (146),
while Ang-(1-7) and ACE2 may behave as a local autocrine/
paracrine regulator in the early (angiogenesis, apoptosis and
growth) and late (uteroplacental blood flow) events of pregnancy
(144). Several studies suggested that an abnormal expression of
Ang II, ACE-2 and Ang-(1-7) may induce pre-eclampsia (147–
152). In fact, during pre-eclampsia, high expression of Ang II in
the placental villi causes a decreased blood flow and fetal
nutrition (149, 150, 153). Low placenta levels of ACE-2 and
Ang-(1-7) are instead associated with intrauterine growth
restriction (145).

Dysregulation of RAS has been even linked with miscarriage
reported (140).

A recent study showed that in pregnant SARS-CoV-2 patients,
ACE-2 levels were lower in asymptomatic/mild patients compared
to those with severe disease (154). It was observed that during
SARS-CoV-2 infection, the binding of S1 to the ACE2 receptor
induce the cleavage of ACE2 by a disintegrin and metallopeptidase
domain 17 (ADAM17)/tumor necrosis factor-converting enzyme
(TACE) at the ectodomain sites (155–157). Furthermore,
TMPRSS2 cleaves ACE2 at the intracellular C-terminal domain
(80, 156). These processes lead to shedding of host ACE2 receptor
(158) that may contribute to the loss of ACE-2 function (159). In
this way, SARS-CoV-2-ACE2 complex negatively regulates ACE-
2, leading to a decrease in plasma levels of angiotensin-(1–7),
potentiating vasoconstriction and hyper-coagulation and therefore
contributing to reproductive failure and other obstetrical
complications (160).

Moreover, SARS-CoV-2 infection during the preconception
period and the first half of pregnancy may increase the risk of
miscarriage by affecting the ACE-2 activity (161). It has been in
vitro shown that S1 subunit of SARS-CoV-2 S protein without
the rest of the viral component was alone able to induce ACE-2
mediated cell signaling (71, 162, 163).

Spontaneous miscarriage and preterm delivery have been
documented among coronavirus infected pregnant women in
the past (62). At the immuno-pathological levels, the
reproductive failure is a consequence of a pro-inflammatory
maternal immune response, thromboembolic events, or it
could be a direct consequence of the virus activity in the
uterine environment (endometrium, decidua, and trophoblast).
Therefore, SARS-CoV-2 may affect the reproductive health by
inducing cytokines storm in infected pregnant women (164), as
well as by the direct action of S1 subunits of S protein on ACE-2
expressing cells in the reproductive system (71).
SOME BASIC PRINCIPLES FOR ANTI-
INFLAMMATORY THERAPEUTIC
APPROACH: LACTOFERRIN,
ANTIBIOTICS, GLUCOCORTICOIDS,
TOCILIZUMAB, a-1-ANTITRYPSIN

Despite the previous experience with SARS and MERS, health
systems around the world were not prepared to fight against the
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COVID-19 pandemic. Although the new virus shares a large part
of its structure with the preceding coronaviruses, triggering a
clinical form of pneumonia quite similar to all others, WHO
suggestions led to not treating the initial presentation of the
disease, pending the production of vaccines. Therefore, the
majority of patients were hospitalized when ventilatory support
was now useless due to pulmonary thrombosis, and medical
therapies were no longer able to extinguish inflammation and
superimposed infection. However, vaccination being a preventive
measure, and prevention a different topic from therapy, one might
be wondering if there is a rational therapeutic approach for
gestational and viral inflammation, which, although different in
etiology, share the same pathogenesis.

In general, it can be argued that some predisposing factors for
inflammation or clotting, such as genetics, cannot be modified.
Their consequences, instead, may be mitigated, even by
administration of simple supplements. One of them is
Lactoferrin (LF), an iron-binding glycoprotein largely used to
cure anemia. In fact, a significant decrease of IL-6 amniotic
concentration has been registered 4 hours after 300 mg
transvaginal LF intake (165). The same dose down-regulates 17
pro-inflammatory amniotic cytokines among which IL-9, IL-15,
IFN-g, IP-10, TNF-a, IL-1a and MCP-3, while up-regulating
several among anti-inflammatory (166). Moreover, LF also
lowers PGE 2, active MMP-9, and its inhibitor TIMP-1, while
increasing active MMP-2 and MMP-2/TIMP-2 molar ratio, and
leaving unchanged TIMP-2 (167). To look for a single drug
capable of balancing the intricate network of stormy cytokines is
a legitimate but naive hope: lowering the level of just one
cytokine while that of many others remains high doesn’t make
much sense. Therefore the attention of researchers should turn to
drugs capable of restoring the balance of cytokines as a whole,
reducing the level of the inflammatory ones and increasing that
of the anti-inflammatory, as happens with lactoferrin and
cortisone (168).

Infact, the physiological defense against inflammation is
based on the production of glucocorticoids by the adrenal
gland. Their circadian release regulates the mediators of
cellular functions among which IL-1, IL-6, IL-8, Tumor
necrosis factor, granulocyte-macrophage colony-stimulating
factor (G-CSF), and monocyte chemotactic protein-1 (MCP-1)
(169). Glucocorticoids also regulate the cellular cytokine
receptors (170, 171). Indeed, the expression of the receptors
that recognize a variety of pathogens (Toll-like), is down-
regulated (172), that of pro-inflammatory cytokines is
suppressed, and that of anti-inflammatory is up-regulated by
dexamethasone in isolated murine liver cells (173).

In addition, GCs inhibit the human pro-IL-lb gene by
decreasing DNA binding of trans activators to the signal-
responsive enhancer (174).

It is also worth to note that the glucocorticoid receptor exerts
autonomous control of TNF stimulated IL6 release by decreasing
it independently from GCs (175).

A further example of complexity of the glucocorticoid system
regulation is the hormone induction of MIF secretion (176),
thereby apparently counteracting its anti-inflammatory mission.
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Several other aspects need to be considered in the prevention
and therapy of the devastating effects of gestational
inflammation. First, the action of cortisol, the hormonal form
that is active in the body, is regulated at the cellular level by 11-
beta-Hydroxysteroid-Dehydrogenase, the enzyme that transform
it into cortisone, its inactive form. The activity of the enzyme is
high in the chorionic villi, while it is lacking in the embryo in the
early stages of development, thus implying that nature does not
fear the action of the hormone during the most delicate phase of
morphogenesis (177). Glucocorticoids with different anti-
inflammatory power are available (178) and it is quite common
in obstetrics to resort to drugs with low anti-inflammatory
power, for fears of causing harm to the fetus. This would
appear the main reason why the Guidelines recommend
prednisolone instead of the much more potent betamethasone
or dexamethasone. But once the drug reaches the level of the
chorionic villi, that is exactly where its action is required, its weak
anti-inflammatory power is completely eliminated by the
enzyme. A clinical confirmation can be found in the case
reported by Queenby of a patient with history of 19
consecutive miscarriages (179). After losing the first14
pregnancies, due to the finding of several uterine natural killer
cells considered too high, the lady was treated with prednisolone
5 mg daily, bringing to 19 the total number of miscarriages.
Finally, the daily dose of the drug was increased to 20 mg, and she
became able to reach the eighth month of pregnancy, when she
gave birth to a healthy baby. Instead, since the fluorine prevents
the action of 11-beta-Hydroxysteroid-Dehydrogenase, the
fluorinated glucocorticoids, such as betamethasone, are
endowed with much greater anti-inflammatory power, which
they keep intact at the chorionic level, therefore resulting fully
effective at the level of utero-placental interface. This synthetic
glucocorticoid, neglected in early gestational age, is widely used
instead in advanced pregnancy for preventing the Hyaline
Membrane Disease of the premature neonate. Introduced half
a century ago (180), this therapy is still believed to induce a sort
of so called ‘maturation’ of type II alveolar cells, thus increasing
their production of pulmonary surfactant. Two evidences are
reported in support of the concept of ‘pulmonary maturation’
following betamethasone administration: the increased amniotic
concentration of lecithin, and the decreased incidence of the
respiratory distress syndrome (RDS) of the premature baby.
However, it has been shown that betamethasone induces the
release of a large amount of lecithin from amnion (181).
Moreover, the reduced incidence of neonatal RDS, along with
that of cerebral and intestinal damage, is a result of the anti-
inflammatory power of the hormone. Therefore, since the
syndromes of the premature baby (Hyaline Membrane Disease,
Perinatal Encephalopathy and Neonatal Enterocolitis) are not
due to prematurity by itself, but to inflammation leading to
premature birth, it is wrong and misleading to maintain that
betamethasone improves ‘maturation’, instead of pointing out
that it turns off inflammation. As inflammation begins days or
weeks before symptoms appear, one can hypothesize that, in
cases at risk, an earlier cortisone therapy at the appropriate doses,
can prevent premature labor (182, 183).
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Although the efficacy of the therapy largely depends on the stage
of cytokine imbalance syndromes, there are cases of extreme severity
of the foetal-maternal inflammation where glucocorticoids are not
able to revert the process to normal anymore. The same happens in
the most advanced stage of COVID-19 infection, and in the
‘Secondary hemo-phagocytic lymphohistiocytosis’ (sHLH), a
syndrome that can follow chimeric antigen receptor T cell (CAR)
therapy for acute lymphoblastic leukaemia. Furthermore, it has been
hypothesized that glucocorticoids may delay viral clearance (184,
185). For such reason theWHOsuggest to avoid their use for treating
COVID-19 infection.

Attempts have been made to reduce the level of IL-6 by
administering its antagonist Tocilizumab (186). Tocilizumab, the
receptor antagonist IL-6R, was given intravenously, with rapid
disappearance of fever respiratory symptoms and hypotension
(187). This monoclonal antibody Immunoglobulin G (IgG) has
been used also during pregnancy. It does not cross the placental
barrier during the first trimester, although its passage becomes
maximum in the third trimester, with an increased risk of
preterm labor (188, 189). It seems unlikely that tocilizumab
alone would be able to rebalance all cytokines and prostanoids
affected by gestational or viral inflammation. However, its use
could be of great value when untreated inflammation reaches the
extreme stage of cytokine storm.

a-1-antitrypsin (AAT), another anti-inflammatory
medication that is recently suggested to use, is a serine
protease inhibitor providing a defense against the digestion of
healthy tissue by proteolytic enzymes. Interestingly, AAT blood
level is very high during inflammation, as well as in advanced
pregnancy, while its deficiency causes inflammation and viral
infections. AAT therapy has been approved for treatment of
chronic obstructive pulmonary disease (190), and there is no
reason not to test it, even as a preventive measure, in a serious
emergency as that of the current pandemic.

A procedure that proved effective in saving many human lives
is hyperimmune serum transfusions from recovered patients
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(191). Their efficacy depends on a direct neutralization of the
virus, by preventing its entry into the cell.
CONCLUDING REMARKS

Fetal and maternal death in pregnancy, and death from
COVID-19 infection share the same pathogenic mechanism.
Indeed, COVID-19 inflammation triggered by unbalanced
cytokines, followed by coagulation, takes place in the lungs,
while in pregnant women the same occurs at the utero-
placental level. In COVID-19 the cause of the inflammation is
the virus, while in pregnancy, as reported above, it is the fetus
itself: therefore, in this latter case the cause cannot be eliminated.
Nevertheless, the cure should be the same in both conditions.
The rationale for management does not consists in fighting the
cause, but in curing the disease, i.e. inflammation, and
consequent overlapping bacterial infection and thrombosis.
Therapeutic agents include cortisone and eventually other non-
steroidal drugs against inflammation, as well as heparin to treat
thrombosis. However it can be stated: no cytokine imbalance=no
inflammation, no inflammation=no intravascular coagulation.
Moreover, it must be stressed that the treatment is all the more
effective the earlier it is started. The same therapy that can be
effective if started at the first onset of symptoms, becomes
compassionate if started when inflammation and thrombosis
are already at an advanced stage.
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