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ABSTRACT
One of the difficulties encountered in the statistical analysis of metaproteomics data
is the high proportion of missing values, which are usually treated by imputation.
Nevertheless, imputation methods are based on restrictive assumptions regarding
missingness mechanisms, namely “at random” or “not at random”. To circumvent
these limitations in the context of feature selection in a multi-class comparison, we
propose a univariate selection method that combines a test of association between
missingness and classes, and a test for difference of observed intensities between
classes. This approach implicitly handles both missingness mechanisms.
We performed a quantitative and qualitative comparison of our procedure with
imputation-based feature selection methods on two experimental data sets, as well as
simulated data with various scenarios regarding the missingness mechanisms and the
nature of the difference of expression (differential intensity or differential presence).
Whereas we observed similar performances in terms of prediction on the
experimental data set, the feature ranking and selection from various
imputation-based methods were strongly divergent. We showed that the combined
test reaches a compromise by correlating reasonably with other methods, and
remains efficient in all simulated scenarios unlike imputation-based feature selection
methods.

Subjects Bioinformatics, Molecular Biology, Statistics
Keywords Metaproteomics, Feature selection, Missing value imputation, Combined test

INTRODUCTION
Metaproteomics refers to the study of all proteins present in an ecosystem (soil, water,
gut,…) at a given time. It allows for the qualitative and quantitative profiling of the
tremendous diversity of proteins in complex biological samples. It is the method of choice
to learn about which microorganisms are doing what in a microbial ecosystem. Therefore,
metaproteomics moves beyond the genetic potential addressed by metagenomics, and it is
generating rising interest and new international initiatives (https://metaproteomics.org/).
Yet metaproteomics has long lagged behind metagenomics due to the lack of appropriate
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tools, but impressive progress in LC-MS/MS technologies (liquid chromatography coupled
with tandem mass spectrometry) makes it possible to decipher metaproteomes in a deep,
broad and high throughput manner. However, processing of metaproteomics data is much
less developed than for metagenomics, and statistical approaches developed for proteomics
of single organisms cannot necessarily be transposed to complex ecosystems. Indeed,
metaproteomics data are characterized by a huge diversity and specificity within and
between samples; this generates large and sparse matrices of protein abundances which
require dedicated analytical methods. In particular, selecting metaproteomic features that
are shared by homogeneous clinical groups could facilitate the diagnosis or prognosis of a
disease.

Feature selection methods (FSMs) can be classified in two categories. Wrapper and
embedded methods make use of a classifier to select a set of features based on their
discrimination ability, either with a recursive selection (wrapper) or by including a filtering
into the classifier (embedded) (Saeys, Inza & Larranaga, 2007). While these methods
enable the extraction of a reduced list of predictors, they are pointed out as potentially
generating overfit (Saeys, Inza & Larranaga, 2007), and lead to the elimination of
correlated features which may be detrimental to biological intepretation. In univariate
methods, features are examined separately. These methods do not account for potential
interactions amongst variables, but they enable the inclusion of more complex designs
(batch effects, multiple effects, censoring,…).

One of the difficulties in implementing FSMs on shotgun proteomics and
metaproteomics is handling the missing data. Indeed, LC-MS/MS technologies are known
to generate a high rate of missing values and this phenomenon is enhanced in
metaproteomics. On one hand, microbiota composition is largely specific to individuals,
leading to a significant proportion of truly missing proteins. On the other hand, the high
complexity of microbiota samples makes data acquisition and pre-processing particularly
sensitive, and generates a higher technical variability than observed on proteomics data,
leading to important measurement errors as well as missing values. The processes leading
to missingness are diverse and may originate from any step of the pipeline, either
biochemical, analytical or bioinformatics (Lazar et al., 2016). These mechanisms can be
analysed in the framework developped by Rubin (1976), who distinguishes Missing At
Random (MAR) in which the probability for a feature to be missing is independent of its
true abundance, and Missing Not At Random (MNAR) in which missingness depends on
the abundance, including notably thresholding due to device detection limit. It is
commonly recognized that both MAR and MNAR occur with LC-MS/MS technologies
(O’Brien et al., 2018; Lazar et al., 2016), but neither the proportion of each mechanism on a
data set nor the precise mechanism at the origin of a given missing value are known a
priori.

Methods to address missing data in proteomics mostly rely on either missing value
imputation (Wang et al., 2020) or statistical modelling of censoring mechanisms
(Karpievitch et al., 2009; Luo et al., 2009, O’Brien et al., 2018), even if a few alternatives
have arisen. Borrowing from both above mentioned categories, Berg et al. (2019) recently
proposed a multiple imputation approach based on a MAR/MNAR model. Gianetto et al.
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(2020) (R package imp4p) developed a statistical model that combines MAR and MNAR
missing value imputation. Besides, Webb-Robertson et al. (2010) developed a filtering
approach that circumvents missing values imputation by means of two successive filterings
based on difference in terms of peptide occurrence, and difference in intensities among the
non-missing observations. To the best of our knowledge, in the metaproteomics
context, the treatment of missing values mostly relies on imputation (Tang et al., 2020b). A
large number of imputation methods for proteomics or metaproteomics have been
proposed in the literature (R package NAguideR, Jin et al. (2021)), and can be classified in
three categories: (i) single value imputation, where missing intensities are replaced by
the same value for all samples; (ii) global structure methods, in which imputation is based
on correlations between the whole set of observations; (iii) local similarity imputation,
based only on the most similar features.

In this article, we propose an approach which circumvents the limitations of missing
value imputation and implicitly handles both MAR and MNAR mechanisms. This
univariate feature selection method combines a presence/absence test which detects if the
frequence of missingness is different between classes, and a test of the difference in
observed intensities between classes, embedded in a permutation test procedure.
We compared our method with three imputation-based FSMs, on two metaproteomics
data sets: the first one from human gut microbiota of a cohort of coronary artery disease
patients, and the second one from gut microbiota samples of pigs repeatedly measured in a
diet perturbation experiment. Moreover, we made use of a set of technical replicates to
explore missingness mechanisms.

MATERIAL AND METHODS
Experimental data sets
ProteoCardis
We used a subset of the data set generated in the ProteoCardis project, an association study
between the human intestinal metaproteome and cardiovascular diseases, using fecal
samples collected in the framework of the FP7 MetaCardis. (Bassignani, 2019; Section 1.6).
Two classes were considered: patients with acute cardiovascular disease (N = 49) and
healthy controls (N = 50). For each of these 99 subjects, the extracted gut microbiota was
fractionated into its cytosolic and envelope compartments, which were analysed separately
for their metaproteome, giving a total of 198 metaproteomes. Details on metaproteomics
analyses can be found in Bassignani (2019) (Section 4.1.2). The cytosolic and envelope data
sets are denoted by ProteoCardis-cyto and ProteoCardis-env. In order to investigate
technical variability, eight biological samples from the ProteoCardis cohort were replicated
seven times each, for both their cytosolic and envelope compartment analyses.

The peptides and the proteins they come from were identified using an original iterative
method described in Bassignani et al. (2021). Indistinguishable proteins, i.e., those
identified with a same set of peptides, were grouped into metaproteins (or protein
subroups) using the parsimonious grouping algorithm of X!TandemPipeline (Langella
et al., 2017). To simplify the writing, those protein assemblages are denoted “proteins” in
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the following (Bassignani et al., 2021; Bassignani, 2019). Finally, intensities of proteins
were calculated as the sum of the extracted ion currents of their specific peptides, using
MassChroQ (Valot et al., 2011). Data are available at https://doi.org/10.15454/ZSREJA.

Pigs
The data set Pigs (Tilocca et al., 2017) consists in fecal microbiota analyses on 12 pigs
observed at six time points during a 4-week diet. Samples from weeks one and two (one
observation per week) were gathered into a metabolic period, and samples from weeks
three and four (two observations per week) into an equilibrium period. These two periods
represent our classes of interest for this analysis, similarly to Tang et al. (2020b). All details
can be found in Tilocca et al. (2017), and the data are available at ProteomeXchange
PXD006224.

Filtering of sparse features
FSMs were applied on log-transformed data after filtering out proteins with less than τ

non-missing values, with τ equal to 40% of the size of the smallest class (τ = 20 for
ProteoCardis and 10 for Pigs). This value represents a compromise between a high
threshold that may lead to the deletion of a large part of the features, and a low threshold
where too little information would be available for some variables. Nevertheless, as the
impact of the missing value treatment may depend on the proportion of missing values,
complementary analyses were performed with higher threshold values (30, 40 and 50 for
ProteoCardis data sets; 20 and 30 for Pigs).

Statistical characteristics of the experimental data sets
Even after filtering of sparse features, ProteoCardis data sets are still highly sparse, with
most proteins having more than half missing values while Pigs displays a larger proportion
of proteins with very few missing values (Fig. S1, top). These differences of sparsity may
originate from a higher similarity in terms of genetic background and diet among
experimental animals. Moreover, many more proteins are significantly different between
the two classes in Pigs than in ProteoCardis for all FSMs (Fig. S1, bottom). Thus
Proteocardis and Pigs display different statistical characteristics, which enhance the
robustness of the FSM comparison carried out in this paper.

Analysis of replicates
Consider a technical replication of the analysis of a biological sample i. The probability that
a feature j is missing in the technical replicate, given that the observed intensity Yi,j is equal
to y in the original analysis, is defined as follows:

p0i;jðxÞ ¼ PðY 0
i;j ¼ NAjYi;j ¼ yÞ

with Y′i,j the observed intensity in the replicate. The replicate data sets were used to infer
the missingness probability function under the assumption that the probability p0i,j(x) is
independent of the biological sample and of the feature: p0i,j(x) = p0(x). Then, observed
intensities were stratified in 5% quantiles: ðy0; . . . ; y20Þ and p0 was approximated by:

Plancade et al. (2022), PeerJ, DOI 10.7717/peerj.13525 4/25

https://doi.org/10.15454/ZSREJA
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD006224
http://dx.doi.org/10.7717/peerj.13525/supp-1
http://dx.doi.org/10.7717/peerj.13525/supp-1
http://dx.doi.org/10.7717/peerj.13525
https://peerj.com/


p
x‘ þ x‘þ1

2

� �
¼ PðY 0

i;j ¼ NAjYi;j ¼ ½x‘; y‘þ1ÞÞ ¼
PðY 0

i;j ¼ NA;Yi;j 2 ½y‘; y‘þ1ÞÞ
PðYi;j 2 ½y‘; y‘þ1ÞÞ

which was estimated by its empirical counterpart:

PJ
j¼1

P8
i¼1

P
r;r0¼1;...;7;r 6¼r0

1IYr
i;j¼x;Yr0

i;j¼NA

J � 8� 7� 6
� J � 8� 7
PJ
j¼1

P8
i¼1

P
r¼1;...;7

1IYr
i;j¼x

with Yr
i;j the intensity of the protein j in the replicate r of the biological sample i.

Simulation study
A simulation study was conducted to illustrate the impact of both the nature of the
biological difference between classes and the missingness mechanism. A realistic full data
set was generated by kNN imputation of missing values on the log-transformed intensities
from the ProteoCardis-cyto data set, after filtering of proteins with less than 10
non-missing values. Two classes of size 49 and 50 were randomly sampled among the 99
samples, so that no proteins are differentially expressed between the two classes except by
chance. Then, difference of expression between classes was generated. First of all, 2,000
proteins were randomly selected to be truly differentially expressed, assuming either a
difference in intensity (fold change), or a difference in probability of presence. Then,
missing values were picked up assuming either MAR or MNAR mechanism, followed by
filtering of proteins with less than 20 non-missing values. Details can be found in the
Supplemental Material.

Combined test
We propose a protein level univariate combined test that accounts for both missing and
non-missing data. Considerm features (here, proteins) observed in n samples belonging to
two or more classes. For each feature j, the difference of intensity between the two classes
on non-missing observations, and the association between class and missingness are tested
via the following linear mixed model (lmm) and generalised linear mixed model (glmm):

Yi;j ¼ Xibj þ Ziuj þ ei;j; i ¼ 1; . . . ; n such that Yi;j 6¼ NA ðmod� lmmÞ
log

P½Yi;j 6¼ NA�
P½Yi;j ¼ NA� ¼ X0

ib
0
j þ Z0

iu
0
j þ e0i;j i ¼ 1; . . . ; n ðmod� glmmÞ

8<
:

with Yi,j the log-transformed observed intensity of feature j in sample i, (X, X′) design
matrices of fixed effect including the class effect, (Z, Z′) design matrices of random effects,
(ɛi,j)i and (ɛ′i,j)i i.i.d. centered gaussian. Let p1 and p2 be the p-values of the F-test for class
effect in models (mod-lmm) and (mod-glmm) respectively.

Let S be the Fisher combined statistic defined as:
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S ¼ � 1
2
ðlog p1 þ log p2Þ: (1)

S is large if at least one of the two p-values p1 and p2 is small; moreover, if only one of the
two p-values is small, S is weakly affected by the value of the largest one. If the statistics of
the two tests were independent, S would be χ2-distributed under the global null hypothesis,
but this assumption may be violated, especially under MNAR assumption, since low
protein abundances could simultaneously lead to low observed intensities and high
probability to be missing. Therefore, the distribution under the global null hypothesis is
obtained by repeated permutations (Nperm) of the classes. In order to reduce the computing
time and to increase the number of distinct values that can be taken by S, the distribution
under the null hypothesis is assumed to be identical for all variables with the same proportion
of missing values. Mathematical details are provided in the Supplemental Material.

Design for ProteoCardis and Pigs data sets
For the ProteoCardis data sets, no random effect was considered and

Xibj ¼ bj;0 þ bj;11Ii2C 1 þ bj;21Ii2C 2

with C 1 and C 2 the two classes. For the Pigs data set, a random animal effect was added:

Xibj þ Z0
iu

0
j ¼ bj;0 þ bj;11Ii2C 1 þ bj;21Ii2C 2 þ uj;aðiÞ

with a(i) the animal on which sample i was collected. The comparison between classes is
performed based on the contrast βj,1 − βj,2.

Permutations framework
In the case of a complex design, single shuffling may be inappropriate since data are not
freely exchangeable under the null hypothesis. Thus for Pigs, permutations were
implemented such that the number of observations on each animal over each period was
preserved (two time points and four time points over the first and second period
respectively), using the R package permute.

For the implementation on the whole data set, we considered Nperm = 105, and for the
prediction accuracy and the replicability on independent subsets, Nperm = 104. A larger
number of permutations leads to a better precision of the p-values (of order 1/Nperm) but at
the cost of a larger computation time which increases linearly with Nperm. Note that the
procedure can be parallelised very easily, since the distribution under the null hypothesis is
computed separately for each possible number of missing values. Besides, the combined
test requires a sufficient sample size, so that enough permutations can be realised to
compute the statistic distribution under the null hypothesis with a good precision.
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FSMs based on NA imputation methods
The combined test was compared with feature selection procedures based on missing value
imputation. We considered the three imputation methods proposed by Tang et al. (2020a)
(package metaFS), namely: (i) single value imputation, where all missing value are
replaced by the smallest intensity observed in the data set; (ii) k-nearest neighbours (kNN);
(iii) singular value decomposition (SVD). Following Wang et al. (2020), kNN was
implemented using the R function SeqKNN with a number of neighbours k = 10 and SVD
was implemented using the function pca (package pcaMethods) with two components.
Then, the linear mixed model (mod-lmm) was applied on the vectors of observed and
imputed intensities. The choice of a lmm testing procedure after imputation guarantees
that the differences observed between the imputation-based FSMs and the combined test
are exclusively due to the treatment of missing values. The imputation-based FSMs are
denoted as follows.

� Single-lmm: log-transformation + single value imputation + lmm

� KNN-lmm: log-transformation + kNN imputation + lmm

� SVD-lmm: log-transformation + SVD imputation + lmm

Hurdle model
Goeminne et al. (2020) proposed a peptide level model, the Hurdle model, that presents
similarities with our approach, by combining MSqRob, a mixed model applied on all
peptides observed intensities of each protein including a random sample effect, and a
quasi-binomial model on the number of observed unique peptides. The p-values are
combined as in (1), but independence is assumed between both statistics. Functions to
implement the tests are available at https://github.com/statOmics/MSqRobHurdlePaper.

Following Goeminne et al. (2020), additional filterings at the peptide level were applied
to ProteoCardis and Pigs datasets prior to the Hurdle test implementation. Peptides with
only one identification were deleted, as the model would be perfectly confounded. Then,
proteins identified by only one peptide were removed.

Resampling-based procedure for control of false discovery rate (FDR)
To account for correlation between variables, the false discovery rate (FDR) was
controled using the resampling-based procedure proposed by Reiner, Yekutieli &
Benjamini (2003): p-values were reestimated by resampling (100 times) from the marginal
distribution prior to p-value adjustment (Benjamini & Hochberg, 1995). Even if most FDR
procedures only guarantee an upper-bound control and are subject to assumptions on
dependence between variables, the number of selected variables for a given FDR threshold
is an indicator of the FSM’s power. Moreover, the resampling-based FDR procedure
considered here enables the bias due to complex dependence structures to be
circumvented. Mathematical details are provided in the Supplemental Material.
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Criteria for method comparison
Agreement between FSMs
The overall similarity between FSMs on all proteins was measured by Kendall correlation
between p-values which enables a non-parametric comparison, as well as Pearson
correlation on log-transformed p-values, which gives more importance on consistency
between small p-values than between large p-values (since the log transformation spreads
the values close to 0 and packs down the values close to 1). The proportion of common
selected features among the top N directly targets agreement in terms of feature selection.
Values of N were chosen for each data set according to the number of significant features.
For ProteoCardis data sets which display a small number of significant values, we
considered N = 30, 100, 200. For Pigs, as a large number of proteins were significantly
different between the two classes, we considered the larger values N = 200, 500, 1,000.
Moreover, for Pigs, sample splitting in cross-validation loop and stability computations
was implemented such that all observations from the same animal remained in the same
subset.

Stability of feature selection between independent data sets
The set of samples was repeatedly (100 times) split into two independent subsets while
preserving the proportion of each class. FSMs were applied on each subset, and the stability
was quantified as the proportion of common variables among the top N features selected
on each of the two subsets.

For comparison between the combined test and the Hurdle test, we considered
alternative criteria that account for the difference in the total number of features, since the
number of tested proteins differs due to the additional filtering for the Hurdle model.
Cohen’s kappa (McHugh, 2012) enables users to compare the agreement between two
“raters” (here, the selection based on the two independent subsets) with the chance
agreement. Fisher exact test and χ2 association test quantify, in a non-parametric and
parametric way, respectively, the association between selections operated on the two subsets.

Classification accuracy
Classification accuracy was computed on a 10-fold cross-validation loop for ProteoCardis
repeated 10 times to evaluate the standard deviation and a leave-one-out procedure leaving
out all observations from each animal in turn on Pigs. The classification procedure consists
in selecting the top N proteins, and then infer either a random forest (RF) or a support
vector machine (SVM) based on these N features. For prediction, the missing values were
replaced by zero. Filtering was performed on the complete data set (as this step does not
involve class labels). For each cross-validation split, the whole classification procedure
including feature selection was performed on the training set only, then the labels of the
samples in the validation set were predicted.
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RESULTS
Missingness mechanisms: both MAR and MNAR
The replicate data sets, including seven technical replicates for eight biological samples,
allow for the assessment of the technical variability and the analysis of the MAR/MNAR
hypotheses. Figure 1 and Figure S2 (left) display the average observed intensity of a protein
as a function of the number of times it is missing in the replicate samples. The observed
intensity decreased as the number of missing values increased, which suggests that the
probability to be missing is higher when the protein abundance is lower, so missingness
mechanisms is at least partially MNAR. In particular, we observed a pronounced
difference of intensity between proteins with no missing value and protein with one, or a
fortiori more than one missing values. Nevertheless, even when the protein was missing in
a large proportion of replicates, the average observed intensity could still be high,
indicating that missingness mechanisms are not exclusively MNAR. These observations
were confirmed by the probability of being missing, that decreased when the observed
intensity increased, but remained non-negligible even for consistent observed intensities
(Fig. 1 and Fig. S2). For example, for an intensity equal to the median of the observed
values on the data set, the probability of being missing was 0.23–0.25, and even for an
intensity equal to the 0.9 quantile, the probability was still 0.05.

Comparison of FSM’s performances on simulated data
Figure 2 illustrates the ability to discriminate differentially and non-differentially
expressed proteins of three FSMs, assuming two missingness mechanisms (MAR and
MNAR) and under two types of difference of expression between proteins (differential
presence and differential abundance). We considered two imputation-based FSMs: SVD
based on global structure similarity, and single value imputation by the smallest observed
intensity, followed by a linear (mixed) model, as well as the combined test. kNN-lmm was
not considered since kNN imputation was used to generate the simulated data set. FSM’s
performances were highly impacted by both the nature of the difference of expression and
the missingness mechanism. Each imputation based FSM failed under one scenario:
single-lmm did not achieve to detect differentially abundant proteins under MAR, while
the AUC with SVD-lmm was close to 0.5 when proteins were differentially present under
MNAR assumption. These observations are coherent with the underlying assumptions
under each imputation methods: MAR for SVD and MNAR for single value imputation.
In all scenarios, the combined test remains competitive, with AUCs close to the ones of the
best of the two imputation-based FSMs.

Poor concordance between imputation-based FSMs based on MAR
and MNAR
Comparison of the three imputation-based FSMs in terms of correlation between
log-transformed p-values and proportion of common selected features (Fig. 3 and Fig. S3)
indicated a strong agreement between SVD-lmm and KNN-lmm, but both methods
showed a poor concordance with single-lmm. These observations were common to the
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ProteoCardis and Pigs data sets, but the concordance between methods was globally higher
for Pigs due to a weaker proportion of missing values, which reduced the impact of the
imputation method.

Imputation-based FSMs are concordant with either glmm on
probability of missingness or lmm on observed intensities
In addition, the imputation-based FSM p-values were compared with the two tests involved
in the combined test (Rows 2 and 3 of Figs. 4, 5 and Fig. S4). We observed a very strong
correlation between the p-values of mod-glmm and single-lmm. Indeed, as the smallest
intensity used for imputation was far from most of the observed intensities (Fig. S9), the
proportion of imputed values among a class strongly impacted the average intensity after
single value imputation (a large proportion of missing values automatically leads to a small
average intensity after single value imputation). Therefore, testing the difference in
fold-change and in missingness leads to consistent p-values. Single-lmm p-values were
weakly consistent with mod-lmm on observed intensities. Conversely, the p-values from
KNN-lmm and SVD-lmm correlated well with mod-lmm, but weakly with mod-glmm.

The combined test reaches a compromise between imputation-based
FSMs
The combined test displays a strong agreement with single-lmm and a moderate
agreement with KNN-lmm and SVD-lmm in terms of correlation between
log-transformed p-values and proportion of common selected features (Fig. 3 and Fig. S3).
This observation was confirmed by the scatterplots between log-transformed p-values of
the combined test and each imputation-based FSM (first row of Figs. 4, 5 and Fig. S4).
Indeed, features found highly significant by any of the imputation based FSMs were at least
moderately significant with the combined test, while the opposite was not true. More
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Figure 1 Analysis of replicates-cytosolic fraction. Left: log10-transformed average intensities of non-missing observations as a function of the
number of missing values (NA), for all proteins and for each biological sample. Right: estimate of the probability that a protein is missing when the
analysis is replicated, as a function of the average of its non-missing values. Full-size DOI: 10.7717/peerj.13525/fig-1
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Figure 2 ROC curves for various scenarios on simulated data. Two types of difference between classes are generated: differential abundance of non-
missing values and difference in probability of absence, and two missingness mechanisms: Missing At Random (MAR) and Missing Not At Random
(MNAR). For each scenario, the two classes and the proteins that differs between classes are randomly sampled 10 times, and the ROC curve with the
three FSMs: linear model after SVD (svd-lmm) and single value imputation (single-lmm), and the combined test (each color corresponds to a repe-
tition). Column 4 displays the area under the curve (AUC) for each method for the 10 repetitions. Full-size DOI: 10.7717/peerj.13525/fig-2

Plancade et al. (2022), PeerJ, DOI 10.7717/peerj.13525 11/25

http://dx.doi.org/10.7717/peerj.13525/fig-2
http://dx.doi.org/10.7717/peerj.13525
https://peerj.com/


Figure 3 Pairwise agreement between p-values of FSMs. (A, B) ProteoCardis-cyto; (C, D) Pigs. (A, C) Pearson correlation between log-transformed
p-values and Kendall correlation between p-values. (B, D) Proportion of common features among the top N for each pair of FSMs, as a table and a
heatmap. Full-size DOI: 10.7717/peerj.13525/fig-3
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Figure 4 Scatterplots between log10-transformed p-values of pairs of FSMs for ProteoCardis-cyto. Row 1: combined test and imputation-based
FSMs. Row 2: linear mixed model on observed values and imputation-based FSMs. Row 3: generalised mixed model (logistic) on missingness and
imputation-based FSMs; proteins with less than 2 non-missing values are not displayed. For each pair of testing procedure, the red rectangle
corresponds to proteins with p > 5.10−2 with the first procedure and with p < 5.10−4 for the second procedure; conversely, the blue rectangle
corresponds to proteins with p < 5.10−4 with the first procedure and with p > 5.10−2 for the second procedure. Blue dotted line corresponds to the axis
y=x, and red line to the lowess interpolation. Full-size DOI: 10.7717/peerj.13525/fig-4
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precisely, for ProteoCardis data sets, the proteins with very low p-values (p < 5.10−4) with
the imputation-based FSMs also had low p-values with the combined test (p < 5.10−2);
Conversely for each imputation-based FSM, some non-significant proteins displayed very
low p-values with the combined test. A more nuanced but similar assessment holds on Pigs,
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Figure 5 Scatterplots between log10-transformed p-values of pairs of FSMs for Pigs. Row 1: combined test and imputation-based FSMs. Row 2:
linear mixed model on observed values and imputation-based FSMs. Row 3: generalised mixed model (logistic) on missingness and imputation-
based FSMs; proteins with less than 2 non-missing values are not displayed. Color gradient corresponds to the proportion of non-missing values for
each protein. Gray rectangles correspond to features with p < 5.10−4 with one FSM and p > 5.10−2 with the other. Blue dotted line corresponds to the
axis y=x, and red line to the lowess interpolation. Full-size DOI: 10.7717/peerj.13525/fig-5
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since most of the proteins that were found significant with SVD-lmm or KNN-lmm and
non-significant with the combined test were very sparse (Fig. S5) and thus included a large
proportion of imputed values, which indicates that imputation-based analysis on these
variables is weakly reliable. On the contrary, the variables significant with the combined
test but non-significant with SVD-lmm and KNN-lmm have a sparsity level that is either
low or high.

Impact of the filtering threshold
The impact of the imputation method is expected to decrease with the proportion of
missing values, which itself depends on the filtering threshold. Therefore, we repeated our
analyses with higher filtering thresholds: 30, 40 and 50 for ProteoCardis, and 20 and 30 for
Pigs, to examine to what extent the comparisons between FSMs were impacted. Figures
S6–S8 display the concordance between FSMs for several filtering thresholds.
The comparisons between methods still holds when threshold varies: SVD-lmm/KNN-
lmm on the one hand, and single-lmm/combined test on the other hand were strongly
concordant, while KNN-lmm/SVD-lmm were moderately concordant with the combined
test, and poorly concordant with single-lmm. As expected, the agreement between all pairs
of FSMs globally increased with the threshold.

A harder thresholding also resulted in a higher number of discarded variables,
potentially leading to a loss of biological information. Indeed, Fig. S10 displays the
distribution of the p-values as a function of the protein sparsity; we observed that very
sparse proteins may exhibit very small p-values, in particular for ProteoCardis data sets.
Moreoever, Table S1 indicates that the sets of most significant proteins for each FSM
include 60–82% (average 70%) of features with more than half of missing values for
ProteoCardis, and 17–57% (average 41%) for Pigs. Note that this proportion of sparse
proteins among the selected ones is only slightly lower than in the entire data sets (79% for
ProteoCardis and 43% for Pigs). This indicates that sparse proteins are selected almost as
frequently as less sparse ones.

Similar FSM’s quantitative performances
Table 1 and Table S2 display the prediction accuracy with SVM and RF classifiers applied
on selected proteins. Even though the four FSMs selected very different sets of features,
their performances in terms of prediction were not significantly different.

Figure 6 and Figure S11 display the concordance between variable selection performed
on independent data sets. On ProteoCardis-cyto, reproducibility of feature selection was
similar with the four FSMs, while on ProteoCardis-env and Pigs the combined test and
single-lmm outperformed imputation-based FSMs. Therefore variable selection based on
the combined test and the single imputation FSM were equally reproducible and tended to
be more reproducible than FSMs using structure-based imputation.

Figure S1 displays the number of selected variables for various values of FDR.
The methods ranking varied with the data set and the FDR threshold, but the combined
test remained competitive in terms of number of selected variables.
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Comparison of the combined test with the peptide-level hurdle model
Similarly to the combined test, the Hurdle model proposed by Goeminne et al. (2020)
targets simultaneously difference of intensity on observed values and difference in
probability of detection, but with a peptide level model. As expected, both procedures lead
to consistent p-values (Fig. 7), with Pearson correlation of log-transformed p-values of
0.637–0.786, but far from identical. In terms of feature selection, some proteins highly
significant with one method exhibit non-significant p-values with the other, in particular
for Pigs.

Regarding prediction, both procedures led to similar accuracy on ProteoCardis data
sets, and on Pigs with RF, but the combined test had lower performances with SVM than
RF, while the hurdle test maintained a similar accuracy (Table 1 and Table S2).
No significant differences in terms of replicability were observed between the protein-level
combined test and the peptide-level hurdle test (Fig. 8 and Fig. S12). More precisely,
feature selection with the combined test was slightly more replicable than the hurdle test
on Pigs, notably for the largest number of selected features, while the opposite was
observed on the ProteoCardis data sets.

Table 1 Prediction accuracy for two classification procedures on ProteoCardis-cyto and Pigs. The
selection of the top N variables was followed by SVM or RF. For Proteocardis-cyto, accuracy was
computed in a 10-fold cross-validation loop, repeated 10 times. For Pigs, accuracy was computed
in a leave-one-out setting in which training sets consist in all measurements from one pig. Each
cell provides the average accuracy (standard deviation of accuracy) computed over the 10
repetitions of the cross-validation. Bold numbers correspond to the highest accuracy among the
four FSMs.

Combined KNN-lmm SVD-lmm Single-lmm Hurdle

ProteoCardis-cyto

Top 30 RF 0.706 (0.0075) 0.679 (0.011) 0.649 (0.013) 0.705 (0.024) 0.689 (0.012)

SVM 0.718 (0.017) 0.56 (0.013) 0.606 (0) 0.664 (0.022) 0.668 (0.0032)

Top 100 RF 0.714 (0.017) 0.651 (0.0085) 0.697 (0.017) 0.703 (0.021) 0.704 (0.014)

SVM 0.722 (0.02) 0.535 (0.032) 0.688 (0.029) 0.689 (0.0064) 0.684 (0.0096)

Top 200 RF 0.698 (0.019) 0.672 (0.02) 0.702 (0.014) 0.697 (0.013) 0.712 (0.017)

SVM 0.708(0.019) 0.638 (0.0064) 0.716 (0.035) 0.696 (0.0032) 0.702 (0.016)

Pigs

Top 200 RF 0.903 0.903 0.917 0.903 0.903

SVM 0.833 0.861 0.889 0.875 0.917

Top 500 RF 0.917 0.917 0.903 0.903 0.903

SVM 0.847 0.833 0.875 0.847 0.917

Top 1,000 RF 0.917 0.889 0.903 0.917 0.903

SVM 0.792 0.819 0.819 0.792 0.917
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DISCUSSION
Missingness blends MAR and MNAR mechanisms and our method
addresses both assumptions
Metaproteomics by LC-MS/MS generates a large proportion of missing values, usually
imputed prior to statistical analysis. Several categories of imputation methods are routinely
considered. Methods based on local similarity (e.g., kNN) or global structure (e.g., SVD)
implicitely assume that missingness occurs independently of the true feature concentration
(MAR). But the analysis of the replicate data sets clearly indicates that missingness is more

Figure 6 Replicability of variable selection on independent subsets. Pearson correlation between log-transformed p-values, Kendall correlation
between p-values, and proportion of common selected features among the top N, for 100 splitting of samples into two subsets. Datasets: Proteo-
Cardis-cyto and Pigs. Full-size DOI: 10.7717/peerj.13525/fig-6
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likely to occur when the feature has a low abundance. On the other hand, the single
imputation method relies on the assumption of a left censoring mechanism, but the
distribution of observed intensities as well as the analysis of the replicate data set are not
consistent with this assumption. Even if the co-existence of MAR and MNARmechanisms
is admitted in LC-MS/MS proteomics, exploration of their prevalence is often based on
biological replicates (e.g., Karpievitch et al. (2009)), assuming similar protein abundances
in all samples from a given class. This assumption is questionable, in particular in human
gut metaproteomics characterised by a strong individual specificity. On the contrary, our
analysis based on technical replicates guarantees that the true protein abundances are
identical.

Limits of missing value imputation in metaproteomics
Missing value imputation is the standard method to account for missing values in
metaproteomics. This flexible approach enables to address any type of statistical questions
(e.g., prediction, network inference,…) using methods developed for data with no missing
values. But the downside is the risk to “forget” which values were imputed and to treat
them equally to observed values, regardless of implicit assumptions underlying imputation
that can strongly impact biological findings when a large proportion of values are missing
(O’Brien et al., 2018; Karpievitch, Dabney & Smith, 2012; Lazar et al., 2016). In particular,
we observed that global and local structure imputations specifically led to selection of
features with a large proportion of imputed and thus weakly reliable values. Therefore,
despite its easiness of use, imputation has a cost in terms of reliability and should be
limited to moderately sparse data sets. On sparse metaproteomics data, this condition
would require to filter out a large part of the features, which may be harmful since we
demonstrated that a large part of the potentially interesting proteins have more than half of
missing values.

As an alternative to missing value imputation, censored statistical models developed for
proteomics data can account simultaneously for MAR and MNAR mechanisms
(Karpievitch et al., 2009; Luo et al., 2009; O’Brien et al., 2018). Moreover, Berg et al. (2019)
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Figure 7 Scatterplot of log10-transformed p-values of the hurdle test and the combined test for ProteoCardis-cyto Protoecardis-env and Pigs
data sets. Full-size DOI: 10.7717/peerj.13525/fig-7
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proposed a multiple imputation model which handles MAR and MNAR assumptions, but
their method suffers from a methodological bias since imputation is performed within
each class, which may artificially increase significance of inter-classes differences by
enhancing intra-class similarities. Similarly, Gianetto et al. (2020) proposed a combination
of MAR and MNAR imputation for proteomics data, but their method relies on a
log-normal distribution of the true abundances, unrealistic in the metaproteomics
framework where a large part of proteins are truly missing. Even though these models may
address the complexity of missingness mechanisms more acutely than simple imputation
methods, they also heavily rely on assumptions regarding missingness mechanisms (e.g.,
hard thresholding) as well as signal distribution (e.g., additive effect, Gaussian

Figure 8 Replicability of variable selection on independent subsets for the hurdle test and the combined test. Boxplot of the Cohen’s kappa
(left), the log-transformed p-value of Fisher test (center) and the statistic of the v2 contingency table test (right), for selection of the top N features,
performed on 100 splitting of the samples into two subsets. Black and red boxlots correspond to feature selection with the combined and the hurdle
test respectively. Datasets: ProteoCardis-cyto and Pigs. Full-size DOI: 10.7717/peerj.13525/fig-8
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distribution). Therefore, they can not be directly applied to metaproteomics data whose
structure and characteristics strongly differ from proteomics.

The combined test reaches a compromise between imputation-based
methods
Beyond differences in underlying assumptions, distinct imputation-based FSMs lead to
very different sets of selected variables. While selection with the two MAR imputation
methods (SVD and kNN) were consistent, these two methods displayed almost no
agreement with the FSM based on MNAR assumption (single value imputation) for the
highly sparse data sets ProteoCardis, and a low agreement for the moderately sparse data
set Pigs. Therefore, the choice of an imputation method can strongly impact the biological
conclusions. The combined test, which addresses the two types of missingness by
combining a glmm on probability of presence (relevant under MNAR assumption) and a
lmm on observed intensities after removal of missing values (amounting to assume MAR
mechanisms) displays a correct agreement with each imputation-based FSM. In greater
details, the features detected using single value imputation were recovered by the glmm,
while the features selected using kNN or SVD were recovered by the lmm on observed
values, which is consistent with the assumptions on missingness mechanisms.

Prediction accuracy is a classic criterion to compare FSMs (Tang et al., 2020b), but
its relevance is questionable when the main interest is the biological interpretation of
selected features. Indeed, as enlightened in our analysis, methods with similar classification
abilities can lead to totally different selected sets and feature ranking, so choosing a
FSM based on a slightly higher prediction accuracy that - may vary with the chosen
classifier - seems hazardous.

Furthermore, the simulation study conducted on archetypical scenarios illustrated that
the comparative performances in terms of discrimination between differentially and
non-differentially expressed proteins strongly depends on the nature of the protein
difference (associated to the biological context) and the missingness mechanisms (mostly
dependent on the technology). First of all, this simulation study indicates that quantitative
comparison of FSMs’ performances in a specific context has to be taken cautiously in
another biological context, in which the proportion of each scenario, notably regarding
biological differences, could vary. In particular, transposition of methods comparisons
performed on proteomics data to the metaproteomics context can be hazardous, as both
the biological context and the technical artefacts can differ. Secondly, while each
imputation-based FSM fails in at least one scenario, the combined test remains efficient in
all scenarios.

Thus, the combined test realises a compromise in terms of feature ranking and selection
between inconsistent methods whose performances are based on unverifiable assumptions,
and remains efficient in diverse scenarios. Therefore, it represents a robust solution,
notably in the context of few prior knowledge regarding missingness mechanisms and the
nature of biological differences.
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Protein vs peptide level analysis
In proteomics, analyses can either be realised at the protein or peptide level. In univariate
testing procedures on proteomics data, peptide level analyses including a run effect are
usually considered as more robust and with higher power (Clough et al., 2012).
Nevertheless, in metaproteomics, analysis are routinely performed at the protein level (see
review by Tang et al. (2020b)). This choice enables simplifications in the analysis, but
biological arguments could be considered: the complexity of metaproteome may lead to a
higher proportion of peptide misidentifications; moreover, the individual specificity of the
metaproteome generates a very high sparsity at the peptide level (e.g., 95–97% of missing
values at the peptide level in the Proteocardis data sets) which is detrimental to the
robustness of mixed model.

We compared the combined test with the hurdle model by Goeminne et al. (2020),
which displays similarities but is implemented at the peptide level. Interestingly, contrary
to what was demonstrated by the authors on proteomics data, this peptide level analysis
did not demonstrate superior performances compared to the protein-level combined test
on our metaproteomics data sets. Further analyses of the biological findings brought by
each method would enrich the comparison.

Beyond metaproteomics, the generic aspect of the combined test enables to use it in
other omics or non-omics contexts with data missing both at random and not at random.

CONCLUSION AND PERSPECTIVES
Feature selection based on imputation is highly dependent on the chosen imputation
method, and thus on restrictive assumptions regarding missingness mechanisms, while
biometric measurements typically subject to mixed missingness processes. Moreover,
beyond censoring mechanisms, we enhanced the impact of different types of expression on
FSMs’ in performances. On the contrary, the combined test handles simultaneously
missingness at random and not at random, and our analysis on metaproteomics data
confirm its effectiveness to recover the strongest findings from imputation-based FSM
based on either type of mechanisms and for different nature of biological changes, while
displaying equivalent quantitative performances.

In this article, we focused on the missing data issue and we restricted our analysis to
FSMs based on a linear mixed model, but the combined test could further be compared
with more diverse FSMs, including wrapped and embedded methods (Tang et al., 2020b),
as well as using data sets whose design include more than two classes. On the biological
side, the conclusion of this article could be reinforced through validation by targeted
proteomics measurements on a subset of variables. Ground truth data sets such as spike-in,
where the concentration of a small number of features is controlled could also be
considered, but one should keep in mind that comparative analyses of FSMs are strongly
impacted by the type of biological differences between classes (notably differential
presence or abundance). Finally, the combined test developed in this article is not
restricted to metaproteomics data and could be implemented on other meta-omics data or
on any data including a large part of missing values, whatever the missingness
mechanisms. Moreover, the proposed approach could be generalised to univariate feature

Plancade et al. (2022), PeerJ, DOI 10.7717/peerj.13525 21/25

http://dx.doi.org/10.7717/peerj.13525
https://peerj.com/


selection in other frameworks than multi-class comparison (e.g., time series) provided that
a test of presence/absence is available (e.g., a rank test for time series).

ACRONYMS
FSM Feature Selection Method

FDR False Discovery Rate

kNN k-Nearest Neighbors

SVD Singular Value Decomposition

SVM Support Vector Machine

RF Random Forest

MAR Missing At Random

MNAR Missing Not At Random
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