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Abstract

Cellular networks are highly dynamic in their function, yet evolutionarily conserved in their core network motifs or
topologies. Understanding functional tunability and robustness of network motifs to small perturbations in function and
structure is vital to our ability to synthesize controllable circuits. In establishing core sets of network motifs, we selected
topologies that are overrepresented in mammalian networks, including the linear, feedback, feed-forward, and bifan
circuits. Static and dynamic tunability of network motifs were defined as the motif ability to respectively attain steady-state
or transient outputs in response to pre-defined input stimuli. Detailed computational analysis suggested that static
tunability is insensitive to the circuit topology, since all of the motifs displayed similar ability to attain predefined steady-
state outputs in response to constant inputs. Dynamic tunability, in contrast, was tightly dependent on circuit topology,
with some motifs performing superiorly in achieving observed time-course outputs. Finally, we mapped dynamic tunability
onto motif topologies to determine robustness of motif structures to changes in topology and identify design principles for
the rational assembly of robust synthetic networks.
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Introduction

Intracellular networks are complex systems that coordinate the

information flow from the extracellular environment into the cell

to elicit appropriate gene regulatory and metabolic responses. The

complexity of signaling, metabolic and gene regulatory networks

arises from the extraordinary variety of molecular mechanisms

that have evolved to ensure that these systems have the necessary

robustness to adapt to environmental changes and compensate for

intracellular perturbations [1–2]. Bypasses, redundancies, and

regulatory loops are integrated at multiple levels to form highly

interconnected webs of protein interactions that reliably regulate

various cellular functions [3].

Dissecting the complexity of conserved cellular networks is

perhaps one of the most challenging tasks in systems biology.

Investigating the concept of network motifs as simple building

blocks within larger networks [4] revealed that such motifs occur

in biology, engineering, and ecology networks much more

frequently than they occur in randomized networks. Further

analysis of these conserved motif structures revealed associations

with specific biological functions, such as robust dual-time switches

[5], dynamics expression programs and responses to external

signals [6], tunable oscillations [7], and biochemical adaptation

[8]. We will interchange the words ‘‘motif’’ and ‘‘network motif’’

throughout the manuscript.

These studies posed the basis for the central hypothesis that only

specific network motifs can underlie observed biological functions,

whereas other circuit topologies do not have the ability to generate

particular cellular outputs. However, even simple network motifs

can exhibit wide ranges of static and dynamic behaviors,

depending on the initial cellular state and the rate of information

flow across the circuit [9–14]. Therefore, understanding whether

certain network topologies preferentially underlie functionally

associated cellular responses remains an open question.

Robustness of conserved signaling networks is attained through

complex webs of protein interactions, which promote stability and

redundancy, and through modularity, which may insulate

functional properties and prevent failure from spreading across

the network [15]. Robustness of core signaling motifs, however,

cannot depend on modularity but rather must be an emergent

property of the particular network topology or structure. Hence,

understanding how robustness of network motifs in generating

desired output responses correlates to the topology of particular

motifs of interest represents another central yet open question to

be addressed in the analysis of simple signaling circuits.

In this work, we used a computational approach that integrated

ordinary differential equations (ODEs) with particle swarm

optimization (PSO) to quantify tunability and robustness of

network motifs to attain relevant input-output signaling responses.

The ODE approach is commonly employed to describe the

steady-state and transient behavior of network motifs in response

to constant inputs [16]. PSO was used to identify sets of model

parameters representative of the different dynamic behaviors

exhibited by the various network motifs. We selected PSO because

of its superior ability to converge to more optimal solutions

compared with other optimization algorithms [17,18]. In estab-

lishing core sets of network motifs, we selected simple topologies
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that are overrepresented in mammalian signaling networks, such

as the linear, feedback, feed-forward, and bifan circuits [16,19].

Our computational results suggested that static tunability of the

network motifs is insensitive to the circuit topology, as all the

signaling motifs displayed similar ability to attain predefined static

outputs in response to constant inputs. Dynamic tunability, in

contrast, was tightly dependent on the circuit topology, with some

motifs performing superiorly in achieving observed time-course

outputs. We further mapped functional tunability onto topologies

of signaling motifs and determined the robustness of network

structures to changes in topology to identify design principles for

the rational assembly of robust synthetic networks.

Results

Core sets of motif topologies
The motif topologies [16,19] overrepresented in mammalian

signaling networks that we examined are shown in Figure 1. In all

of the motifs, ‘‘I’’ is the input source that activates signals across

the networks; ‘‘A, B’’ are intermediate components; and ‘‘X, Y’’

are downstream effectors. In the linear motif (LM), signals are

transduced from the input source I to the downstream effectors X,

Y via linear cascades through A, B, respectively. In the negative

feedback (NFB), positive feedback (PFB), positive-negative feedback (PNFB),

isolated negative feedback (iNFB), and isolated positive feedback (iPFB)

motifs, information from the downstream effectors can be

transmitted back to either the input source I (feedback) or to the

intermediate molecules A, B (isolated feedback). In the negative feed-

forward (NFF), positive feed-forward (PFF), and positive- negative feed-

forward (PNFF) motifs, signals from the input source directly

modulate the downstream effectors X, Y and the intermediates A,

B. Finally, in the coherent bifan (CB), incoherent bifan (IB), and partially

coherent bifan (PCB) motifs, the downstream effectors X, Y are

regulated by both intermediates A, B. All of the network motifs

have in common the same core structure, which is that of the

linear motif. The interactions that augmented the linear motif core

structure can be any combination of positive or negative effects.

Each motif topology can be obtained from any one of the other

structures, where the occurrence of ‘‘mutations’’ can add or

remove interactions within motif components (Table S1 in file S1).

Functional tunability of network motifs
Functional tunability was defined as the ability to tune the

model parameters of each network motif to attain predefined static

and transient outputs in response to constant input stimulations.

To quantify and rank motif tunability of the various motifs, we

implemented ODE modeling (Table S2 in file S1) to predict the

output responses of activated X and Y (X* and Y*, respectively)

and to determine whether specific topologies performed superiorly

in achieving predefined output objectives. Motifs tuned to achieve

an objective were termed ‘‘plastic’’ if easily tuned or termed

‘‘rigid’’ if tuned with difficulty.

We compared the motif performance in attaining static outputs

by quantifying the motif tunability in generating steady-state

responses that reached low, intermediate, or high levels of X* and

Y*. Figure 2A shows the static output objectives to be achieved by

the output responses X* and Y* for the various network motifs.

Objective areas obj11, obj22, and obj33 represent states in which

both output responses attained comparable levels that were low,

intermediate, or high. The other objective areas define states in

which X* and Y* reached different steady-state levels, as indicated

on the graph. We quantified and ranked functional tunability of

signaling motifs to reach particular steady-state outputs by using

two different approaches, described as follows.

In the first approach, we randomly sampled the model

parameters from predefined ranges of values (Methods section).

We then implemented ODE modeling by using the same set of

randomly sampled parameters across all of the network motifs and

determined the static output responses attained by the various

network motifs. We repeated these steps independently 100,000

times and ranked tunability by computing the percentage of target

hits (TH). TH was defined as the percentage of times that the

steady-state values of X* and Y* were located in one of the

predefined objective areas over the total number of attempts. The

computational results, shown in Figure 2B, indicated that TH

decreased as the motif output responses reached higher steady-

state levels. Hence, full motif activation—in which X* and Y*

attained high levels—required initial cellular states and rates of

information flow such that strong signals were rapidly transduced

across the networks. If the initial concentrations of signaling

molecules or the kinetic rate constants were not appropriately

sampled, weaker signals were transduced slower, and the steady-

state values of X* and Y* remained low. Therefore, for any given

structure, full motif activation was found to be less likely to occur.

The results also suggested that full activation of network motifs was

facilitated in CB, PFF, PFB, and LM topologies, whereas low

network activation was more likely to occur in NFF, IB, and NFB

motifs.

In the second approach, we integrated ODE modeling with

PSO to identify initial cellular states and rates of information flow

that generated steady-state output responses that were located in

each of the nine objective areas (Methods section). Particle

positions of each motif—i.e., the model parameters—were

initialized to identical values such that the levels of X* and Y*

attained static values that were outside the objective areas. These

levels were denoted as xy1.5_1.5, xy1.5_8.5, xy8.5_8.5, and xy8.5_8.5,

respectively (Fig. 2A). Particle velocities—i.e., the extent to which

the model parameters were changed—were randomly sampled.

Figure 1. Motifs topologies overrepresented in mammalian
signaling networks. In all of the motifs, ‘‘I’’ is the input source that
activates signals across the networks; ‘‘A, B’’ are intermediate
components; and ‘‘X, Y’’ are downstream effectors. LM: linear motif;
NFB: negative feedback; PFB: positive feedback; PNFB: positive-negative
feedback; NFF: negative feed-forward; PFF: positive feed-forward; PNFF:
positive-negative feed-forward; CB: coherent bifan; IB: incoherent bifan;
PCB: partially coherent bifan; iNFB: isolated negative feedback; iPFB:
isolated positive feedback.
doi:10.1371/journal.pone.0091743.g001
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PSO was implemented to minimize the static square error and to

identify 100 sets of model parameters that generated steady-state

output responses that were located in each objective area. Motif

tunability was ranked by using the coefficients of variation (CVs) of

the identified model parameters. Bigger CVs correlated with

higher flexibility with which parameters could be tuned to attain

wider ranges of steady-state outputs and, in turn, superior motif

plasticity. Figure 2C and Figure S1 (in file S1) show the heatmaps

of the CVs of the motif parameters that generated static levels of

X* and Y* that attained the predefined objective areas. The

computational results suggested that the variability of the

parameters defining the core structure common to all motifs was

very small when the values of static output responses to be attained

were closer to those used to initialize the model parameters for all

motifs. However, the parameter variability increased as the steady-

state objective values were further away from the initial levels of

X* and Y*. Therefore, the contribution of the core structure to the

overall motif tunability increased with the distance between initial

and static output objectives for all motifs.

The results also indicated that the variability of the parameters

that define the common core structure is smaller than the

variability of the parameters defining the reactions that augment

the core structure, regardless of the choice of the particular

objective areas to be achieved and the initial levels of X* and Y*.

Therefore, the existence of additional protein interactions confers

to feedback, feed-forward, and bifan topologies a small gain in

plasticity to attain steady-state output objectives compared with

the linear motif.

Finally, the results suggested that higher tunability of X* and Y*

deactivation rates—k12 and k15—could facilitate full motif

activation independently on the strength and speed of signal

transduction across the various motifs. Therefore, full network

activation seemed to be preferentially accomplished through

inhibition of X* and Y*deactivation rather than via modulation

of the overall signal flow across the networks.

The computational results obtained by using these two different

approaches converged toward a unified interpretation: all the

signaling motifs displayed comparable functional tunability in

reaching predefined static output objectives in response to constant

inputs. Therefore, the static tunability of the network motifs

appeared to be insensitive to the particular topology of the circuit

of interest.

To quantify functional tunability of signaling motifs to transient

output objectives, we compared the motif performance in

generating output responses of X* and Y* that resembled those

of commonly observed time-courses from biological signaling

networks [20–23], as shown in Figure 3A. We implemented the

integrative PSO-ODE approach to compute the transient output

responses attained by the various networks when the particle

positions of all motifs were initialized to identical values. In this

regard, we set the values of the kinetic constants of the reactions

that augment the core structure common to all motifs to zero to

reduce the topology of all motifs to that of the core structure. We

then randomly sampled the particle positions of the common core

structure from the uniform distribution and initialized the values of

particle velocities to zero. To rank motif tunability, we initialized

the model parameters by using 20 randomly sampled sets and

implemented PSO 20 times to identify for each motif 20 sets of

Figure 2. Functional tunability of network motifs to attain
static output objectives. A: Predefined steady-state objective: [x00

x01] = [0 1], [x02 x03] = [4.5 5.5], [x04 x05] = [9 10]; [y00 y01] = [0 1], [y02

y03] = [4.5 5.5], [y04 y05] = [9 10]; obj11, obj12, and obj13: X* is low and Y* is
low, intermediate, or high; obj21, obj22, and obj23: X* is intermediate and
Y* is low, intermediate, or high; obj31, obj32, and obj33: X* is high and Y*

is low, intermediate, or high. PSO implementation: steady-state levels of
motif output responses were arbitrarily set to the following values: [X*

Y*] = [1.5 1.5] (xy1.5_1.5); [X* Y*] = [1.5 8.5] (xy1.5_8.5); [X* Y*] = [8.5 1.5]
(xy8.5_1.5); and [X* Y*] = [8.5 8.5] (xy8.5_8.5). Model parameters of all motifs
were initialized to identical values as follows: 1) PSO was pre-
implemented to identify model parameters that generated such static
outputs for the linear motif; 2) these parameters were used for the core
structure of all other network motifs; 3) the kinetic constants of the
additional reactions were set to zero. B: Motif tunability to static output
objectives obtained through random sampling of model parameters.
C: Motif tunability to static output objectives obtained through PSO
sampling of model parameters necessary for ODE implementation.

Particle positions were initialized to the point xy1.5_1.5. CV was defined
as the ratio between the standard deviation and the mean computed
across the 100 parameter sets identified by using PSO. Given the 12
motif topologies, 9 objective areas, and 100 sets of identified
parameter, PSO was implemented 10,800 times.
doi:10.1371/journal.pone.0091743.g002
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model parameters that generated the predefined transient output

responses. Since not all of the motifs displayed the ability to

produce such objective responses for each PSO run, functional

tunability was ranked by computing the convergence percentage

with which each motif could generate output responses that

matched those of the transient output objectives.

Figure 3B shows the functional tunability of network motifs in

generating signaling response that attained predefined output

objectives. The computational results indicated that: 1) all the

motifs had the same plasticity in generating fast responses; 2) NFF,

PFF, PNFF, NFB, and PNFB were more plastic motifs in

producing slowly decaying responses; 3) CB and IB were more

plastic structures in displaying asymptotic responses; 4) iPFB

displayed superior plasticity in generating rapid and delayed

responses; 5) CB and iPFB were more plastic motifs in producing

sigmoidal responses; 6) IB, iNFB, and PCB were more plastic

Figure 3. Motif tunability to transient output objectives. A: Predefined time-courses and B: convergence percentage of network motifs to
transient output objectives for: 1) fast; 2) slowly decaying; 3) asymptotic; 4) rapid and delayed; 5) sigmoidal; 6) pulse; 7) biphasic; 8) rapid increasing-
slow decaying and asymptotic; and 9) multi-static responses. Given the 12 motif topologies, 9 time-course objectives, and 20 attempts to identify the
model parameter, PSO was implemented 2,160 times.
doi:10.1371/journal.pone.0091743.g003
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structures in generating pulse responses; 7) CB and NFF displayed

superior plasticity in generating biphasic responses; 8) PNFB and

PFF exhibited superior plasticity in producing rapid increasing-

slow decaying and asymptotic responses; and 9) CB and IB were

more plastic motifs in displaying multi-static responses.

Overall, CB was the most plastic motif across the whole set of

predefined output responses (8 of 9 times), whereas LM was the

most rigid motif (2 of 9 times). Moreover, bifan motifs displayed on

average superior plasticity across the whole set of signaling output

responses (7 of 9 times) compared with the feedback motifs (6.67 of

9 times), feed-forward motifs (6.33 of 9 times), and isolated

feedback motifs (5 of 9 times). As the signaling motifs displayed

different functional abilities to attain predefined transient output

objectives in response to constant inputs, the transient tunability of

the network motifs appeared to be tightly dependent on the

particular topology of the circuit of interest.

Motif robustness to functional tunability
Since each motif topology can be obtained from that of other

structures through occurrence of mutations that enable or impair

additional interactions within motif components, motif robustness

to functional tunability was defined as the motif ability to produce

virtually identical signaling outputs when the interaction network

that underlies the motif topology of interest is altered due to

mutations. In this regard, we constructed a web of 81 motif

topologies (Table S3 in file S1) that interconnected the linear,

feedback, feed-forward, bifan, and isolated feedback motifs (Fig.

S2 in file S1). This network was obtained by starting with the

linear motif and allowing at most the occurrence of two mutations.

Since all of the motif topologies have similar functional tunability

in producing static output responses, we focused our attention on

the transient tunability and integrated ODE modeling with PSO

to compute the convergence frequency of the 81 motifs in generate

signaling time-courses that resembled those of the slowly decaying

and pulse output objectives (Fig. 3A). To compute the convergence

frequency, we implemented PSO 20 times and counted the

number of times that a given motif could generate predefined

transient output responses.

Standard robustness analysis of network topologies is generally

focused on quantifying robustness of circuit structures with respect

to their immediate neighbors. We extended this analysis beyond

immediate neighbors and computed the robustness R(h,i) of motif

topologies with respect to the 1-step, 2-step, 3-step, and 4-step

neighbors and with respect to all other topologies that make up the

web of networks (Methods section). Figure 4 shows the heatmaps

of the robustness index R(h,i) of the 81 motif topologies with

respect to their neighbors in producing cellular output responses

that matched those of the slowly decaying and pulse output

objectives. The computational results suggested that NFBl_PFFr

(left negative feedback and right positive feed-forward), NFFl_IBr

(left negative feed-forward and right incoherent bifan), and PNFF

are optimal topologies to robustly and frequently generate slowly

decaying signaling outputs with respect to their immediate

neighbors (Fig. 4A). Moreover, while NFFl_IBr and PNFF

displayed superior robustness compared with NFBl_PFFr with

respect to their 2-step neighbors, the 3 topologies have similar

robustness with respect to their 3-step neighbors and all of the

Figure 4. Robustness index heatmaps of the 81 motif topologies with respect to i-step neighbors. A: Robustness of functional tunability
to slowly decaying responses. B: Robustness of functional tunability to pulse responses. Given the 81 motif topologies, 2 time-course objectives, and
20 attempts to identify the model parameter, PSO was implemented 3,240 times.
doi:10.1371/journal.pone.0091743.g004
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other motif topologies, whereas NFBl_PFFr and NFFl_IBr

exhibited superior robustness compared with PNFF with respect

to their 4-step neighbors. Overall, NFFl_IBr and PNFF are more

optimal topologies than NFBl_PFFr is because of their superior

robustness with respect to 1-step and 2-step neighbors. The

computational results also indicated that IBl_NFFr (left incoherent

bifan and right negative feed-forward), IBl_NFBr (left incoherent

bifan and right negative feedback), IB, and IBl_PFBr (left

incoherent bifan and right positive feedback) are optimal

topologies to robustly and frequently generate pulse signaling

output responses with respect to their immediate neighbors

(Fig. 4B). Furthermore, IBl_NFBr exhibited superior robustness

compared with the other 3 topologies with respect to their 2-step

neighbors, whereas the 4 topologies displayed similar robustness

with respect to all of the other motifs as well as to their 3-step and

4-step neighbors. Overall, IBl_NFBr is more optimal than the

other motifs are because of its superior robustness with respect to

the immediate and 2-step neighbors.

Discussion

Quantifying the functional tunability and robustness with which

various motif topologies are able to generate biologically relevant

output responses is instrumental to understanding overrepresen-

tation of simple motifs in mammalian signaling networks.

Although particular network topologies may be optimal to reliably

generate a limited number of desired signaling outputs, other

motifs may non-optimally produce wider ranges of biologically

relevant cellular outcomes. There has been much work done on

the design of synthetic circuits using different structural motifs to

achieve specific objective functions to address important problem

[24–26]. In this context, our integrative approach provides a useful

tool with which to characterize regulatory properties of signaling

motifs and to map superior mutational evolution of motifs onto

their topology. Our integrative procedure may also provide a

compendium of design principles for the rational assembling and

engineering of synthetic networks that may robustly exhibit desired

functional tunability when transfected into bacterial and yeast

species.

Methods

Mass-action modeling
The dynamics of network motifs were described with use of

mass-action models of ordinary differential equations (ODEs). The

interaction networks of simple motifs were reconstructed as

chemical reactions (Table S1 in file S1), which described the

simplified mechanisms of activation and inhibition of signaling

proteins. The chemical reactions were transformed into systems of

coupled ODEs by assuming that the accumulation rate of the

concentration of the ith signaling component was expressed as the

difference between its net rates of production and consumption

(Table S2 in file S1). ODE modeling was implemented using the

implicit ode15s routine for stiff systems (Matlab R2008b, The

MathWorks, Natick, MA) to predict the output responses of the

various motifs and to determine whether motifs of interest could

attain predefined static and transient output objectives. ODE

implementation requires the selection of model parameters, which

are the kinetic rate constants (K’s) and the initial concentrations of

inactive, active, and complex species (C’s). Since the values of the

rate constants and initial concentrations are largely unknown for

virtually all biological systems, we arbitrarily selected ranges of

values for the model parameters: K’s [ [Kmin Kmax] = [0 100];

C’s [ [Cmin Cmax] = [0 10]. Kmin, Kmax, Cmin, and Cmax are the

minimum and maximum values of the kinetic rate constants and

the initial protein concentrations, respectively. ODE modeling was

implemented by either randomly sampling the parameter values

within these ranges or using particle swarm optimization (PSO)

because of its superior ability to converge to more optimal

solutions compared with other optimization algorithms17.

Random sampling
Model parameters were randomly sampled from the uniform

distribution and converted into their final values as follows:

Ki~Kminzri(Kmax{Kmin)

Ci~Cminzri(Cmax{Cmin)
ð1Þ

In equation 1, ri represents random numbers uniformly

distributed in the interval [0 1].

PSO
For details about PSO, see the methods described in previous

publications [17,18]. In our settings, the particle positions are the

parameter values used in the ODE model to computationally

generate the motif output responses X* and Y*, and the particle

velocities denote the extent to which the parameter values were

iteratively changed. The steady-state fitness was defined as the

distance between the centers of predefined objective areas

(Figure 2A) and the ODE-predicted static values X* and Y*,

which was evaluated by using the static square error:

St SqE~

x0i{1zx0i

2

� �
{x�

h i2

z
y0i{1zy0i

2

� �
{y�

h i2

i~1,3,5j~1,3,5
ð2aÞ

In equation 2a, (x0i-1+x0i)/2 and (y0i-1+y0i)/2 represent the

centers of the predefined objective areas. The transient fitness was

defined as the distance between predefined and ODE-computed

time-courses of X* and Y* (Figure 3A), which was evaluated by

using the transient square error:

Tr SqE~
Xs

i~1
½xd

i {x�i �
2
z
Xs

i~1
½yd

i {y�i �
2 ð2bÞ

In equation 2b, xd
i and yd

i are the predefined time-courses,

respectively, whereas s represents the total number of data points

that make up a time-course. Model parameters were initialized to

identical values for all the network motifs and iteratively changed

according to equation 2a until 1) the static values of X* and Y*

were in the objective areas or 2) the time-courses of X* and Y*

were within the error bars of the predefined transient objectives.

Robustness
We quantified robustness of network motifs in the context of

functional tunability by defining an index that provided a measure

of how frequently and robustly various motif topologies could

generate predefined output objectives. Only structures that could

produce signaling responses with high robustness and convergence

frequency were optimal. Non-optimal structures, on the contrary,

generated signaling responses either with high robustness but low

frequency or high frequency but low robustness. We defined the

index R(h,i) as follows:

Functional Properties of Core Motifs
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R(h,i)~

convh

1

nh(i)j j
X

k[nh(i)

i=h

convh{convkj j
if
X

k[nh(i)
convh{convkj j=0ð3aÞ

In equation 3a, i represents different types of neighbors, which

include 1-step or immediate neighbors (i = 1), 2-step (i = 2), 3-step

(i = 3), and 4-step (i = 4) neighbors, h denotes a given motif

topology, and k represents a neighbor topology of a particular

motif. Moreover, nh(i) is the set of neighbors, and convj (j = h,k) is the

convergence frequency, which accounts for the number of times

out of the 20 PSO runs that a motif topology could generate

output responses that matched those of predefined objectives.

Since convh, |convh – convk|, and |nh(i) | are positive integers, then

the index R(h,i) increased when 1) the frequency of convergence of

a given motif topology h was high; and 2) the difference between

the convergence frequency of the structure of interest and those of

the various i-step neighbors was small. When the sum of the

difference between the convergence frequency of a given structure

and those of the various i-step neighbors was zero, then the index

R(h,i) was computed as follows:

R(h,i)~convh if
X

k[nh(i)
convh{convkj j~0 ð3bÞ

Thus, if the convergence frequency of all motifs was low or zero,

then the motif in question would barely be able to generate the

predefined output objective or not be able to generate it at all and

would be found to be not optimal. Conversely, if the convergence

frequency of all motifs was high, then the motif would be found to

be optimal.

Supporting Information

File S1 Figure S1, Motifs tunability to static output objectives.

Figure S2, Interaction network of 81 motif topologies that

linked the linear, feedback, feed-forward, bifan, and isolated

feedback motifs. Table S1, Reaction networks describing

differential equation (ODE) modeling describing the dynamics

connected the linear, feedback, feed-forward, bifan, and isolated

feedback motifs.
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the dynamics of the signaling motif. Table S2, Ordinary

of the signaling motif. Table S3, Motif topologies that inter-


