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Hypoxia Increases β-Cell Death by Activating 
Pancreatic Stellate Cells within the Islet 
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Background: Hypoxia can occur in pancreatic islets in type 2 diabetes mellitus. Pancreatic stellate cells (PSCs) are activated dur-
ing hypoxia. Here we aimed to investigate whether PSCs within the islet are also activated in hypoxia, causing β-cell injury. 
Methods: Islet and primary PSCs were isolated from Sprague Dawley rats, and cultured in normoxia (21% O2) or hypoxia (1% 
O2). The expression of α-smooth muscle actin (α-SMA), as measured by immunostaining and Western blotting, was used as a 
marker of PSC activation. Conditioned media (hypoxia-CM) were obtained from PSCs cultured in hypoxia. 
Results: Islets and PSCs cultured in hypoxia exhibited higher expressions of α-SMA than did those cultured in normoxia. Hypoxia in-
creased the production of reactive oxygen species. The addition of N-acetyl-L-cysteine, an antioxidant, attenuated the hypoxia-in-
duced PSC activation in islets and PSCs. Islets cultured in hypoxia-CM showed a decrease in cell viability and an increase in apoptosis. 
Conclusion: PSCs within the islet are activated in hypoxia through oxidative stress and promote islet cell death, suggesting that 
hypoxia-induced PSC activation may contribute to β-cell loss in type 2 diabetes mellitus. 
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INTRODUCTION

Pancreatic β-cell failure caused by β-cell dysfunction or loss 
plays an important role in the progression of type 2 diabetes 
mellitus (T2DM). The mechanisms underlying the process in-
clude oxidative stress, inflammation, endoplasmic reticulum 
stress, amyloid aggregation, islet fibrosis, and dedifferentiation 
[1]. Because the interventions currently available do not pre-
vent the progression of T2DM, additional studies are necessary 
for a better understanding of the pathogenesis of β-cell failure. 

The exposure of pancreatic islets to hypoxia may be another 
mechanism leading to β-cell failure in long-standing T2DM. 
Moreover, hypoxia in islet grafts is associated with β-cell death 
after islet transplantation [2]. Previous studies suggest that 
β-cells can become hypoxic because of the high oxygen con-
sumption during insulin secretion, especially when the oxygen 
supply is not sufficient [3,4]. Recently, Bensellam et al. [5] re-

ported that hypoxia inhibited the adaptive unfolded protein re-
sponse and endoplasmic reticulum-to-Golgi protein trafficking 
in β-cells with increased β-cell death. In addition, a compensa-
tory increase in β-cell mass may compromise for the vascular 
density to maintain sufficient perfusion or oxygen delivery to 
the islet [6]. Abnormal islet vasculature including capillary loss 
and pancreatic arteriolosclerosis was also observed in T2DM 
[7,8]. Moreover, hypoxia induces oxidative stress [9], thus pos-
sibly aggravating hyperglycemia-induced oxidative stress. 

Interestingly, hypoxia is known to activate pancreatic stellate 
cells (PSCs) [10,11]. PSCs play a crucial role in the pathogene-
sis of chronic pancreatitis and pancreatic cancer [12]. When 
PSCs transform from a quiescent state into an activated state, 
they exhibit a myofibroblastic phenotype, express α-smooth 
muscle actin (α-SMA) and produce collagen and other extra-
cellular matrix proteins. The persistent activation of PSCs leads 
to fibrosis, which is associated with chronic pancreatitis and 
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pancreatic cancer [13,14]. Interestingly, we and others have 
demonstrated that PSCs are also present within the islet and 
are activated in high glucose conditions and animal models of 
T2DM [15-21]. Furthermore, Zha et al. [22] isolated PSC-like 
cells from cultured rat islets and termed them islet stellate cells 
(ISCs). PSC activation in the islet may damage β-cells indirect-
ly by promoting islet fibrosis, which may accelerate β-cell de-
struction or induce the disruption of β-cell connectivity [23-
25]. Moreover, activated PSCs may damage β-cells directly by 
diminishing insulin secretion and inducing apoptosis [26-28].

Therefore, exposure of the islet to hypoxia might induce the 
activation of intra-islet PSCs, which in turn would damage 
β-cells leading to the progressive β-cell failure observed in 
T2DM. However, few studies have addressed this possibility. 
Here, we examined the hypoxia-induced activation of PSCs 
and its underlying mechanism, as well as the detrimental effect 
of activated PSCs on β-cell viability. 

METHODS

Isolation and culture of rat islets and primary PSCs
Islets were isolated from 7-week-old Sprague Dawley (SD) rats 
and cultured in RPMI 1640 medium containing 11.1 mM glu-
cose and 10% FBS. Primary PSCs were isolated from 14-week-
old SD rats as reported previously [20,21]. PSCs were cultured 
in DMEM/Ham’s F-12 medium (1:1) containing 17.5 mM glu-
cose and 16% fetal calf serum. The experiments were per-
formed using PSCs at passages 1 to 6 after isolation, except for 
those that required freshly isolated PSCs. PSCs and islets were 
incubated in normoxia (20% O2) or hypoxia (1% O2) using a 
hypoxic chamber (Galaxy 14S; Eppendorf, Hamburg, Germa-
ny). The experimental protocol was approved by the Institu-
tional Animal Care and Use Committee in School of Medicine, 
The Catholic University of Korea (CUMC-2018-0209-03).

Immunohistochemistry 
Pimonidazole staining was performed to detect decreased cel-
lular oxygen tension in islets using a commercial kit (Hypoxy-
probe Kit; Hypoxyprobe, Burlington, MA, USA) with 10 μM 
pimonidazole for 2 hours in normoxia or hypoxia. 
α-SMA staining was performed to detect activated PSCs 

among primary PSCs and islets, as α-SMA expression is the 
most commonly used index of PSC activation [13]. Primary 
PSCs were cultured on cover glasses coated with poly-L-lysine. 
The cells were fixed in 4% paraformaldehyde and incubated 

overnight at 4°C with a mouse anti-α-SMA antibody (1:400; 
Sigma-Aldrich, St. Louis, MO, USA). The cells were then incu-
bated with a rhodamine-labeled anti-mouse IgG antibody 
(1:100) as the secondary antibody. The nuclei were stained with 
4’,6-diamidino-2-phenyl-indole (DAPI). The percentage of a-
SMA-positive cells among primary PSCs was calculated. Islets 
were fixed in 4% paraformaldehyde, and pelleted in 2.5% agar 
(US Biological, Salem, MA, USA). The specimens were embed-
ded in paraffin, and cut into 3 μm. The sections were incubated 
overnight at 4°C with the mouse anti-α-SMA-antibody (1:400; 
Sigma-Aldrich), as the primary antibody followed by incuba-
tion with a biotin-conjugated rabbit anti-mouse IgG and avi-
din-biotin complex (VECTASTAIN ABC Kit; Vector Labora-
tories, Burlingame, CA, USA), as the secondary antibody. The 
slides were developed using diaminobenzidine (Sigma-Al-
drich) and counterstained with hematoxylin. The percentage of 
the α-SMA-stained area per islet section was calculated.

Western blot analysis 
Western blot analyses were performed as described previously 
[15]. The primary antibodies used were the anti-α-SMA anti-
body (1:2,000; Sigma-Aldrich) and anti-β-actin antibody 
(1:10,000; Abcam, Cambridge, MA, USA).

Measurement of reactive oxygen species 
To measure the production of measurement of reactive oxygen 
species (ROS), PSCs were loaded with 10 μM dichlorodihy-
drofluorescein diacetate (DCF; Molecular Probes, Eugene, OR, 
USA) for 30 minutes at 37°C. The cells were analyzed using a 
luminometer (excitation/emission at λ=490/535 nm) in a 
black 96-well plate. A fluorescence microscope was used to ob-
serve DCF fluorescence.

Preparation of conditioned media from PSCs
Primary PSCs at passage 1 to 3 after isolation were grown to 
80% confluence, then cultured for 48 hours in normoxia or hy-
poxia. The media were collected, centrifuged to remove cells, 
and stored at –20°C until use. For control experiments, condi-
tioned media (CM) from C2C12 cells (a mouse myoblast cell 
line) were prepared in the same way.

Cell viability and apoptosis assay 
Rat islets were incubated for 48 hours in media for culturing 
PSCs (PSC media), CM from PSCs in normoxia (normoxia-
CM) and hypoxia (hypoxia-CM), and CM from C2C12 cells in 
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normoxia and hypoxia. Cell viability was determined using ac-
ridine orange (AO)/propidium iodide (PI) staining. Islets were 
visualized using a fluorescence microscope. Digitalized images 
were captured and the areas that were stained with PI were 
quantified using Adobe Photoshop CS 8.0 (Adobe Systems In-
corporated, San Jose, CA, USA). In addition, a terminal deoxy-
nucleotidyl transferase-mediated dUTP nick-end labeling 
(TUNEL) assay was performed to detect apoptosis in islets, as 
described previously [29]. Islets were fixed with 4% parafor-
maldehyde, pelleted in 2.5% agar, and embedded in paraffin. 
The In Situ Cell Death Detection Kit, Fluorescein (Roche Di-
agnostics, Mannheim, Germany) was used. Apoptotic cells 
(TUNEL-positive cells) were quantified using a fluorescence 
microscope. Nuclei were stained with DAPI.

Detection of various cytokines released from PSCs
Various cytokines, including the tumor necrosis factor-α 
(TNF-α), interleukin-1β (IL-1β), and interferon-γ (IFN-γ), 
were measured in PSC media and normoxia-CM and hypoxia-
CM from PSCs using a multiplex enzyme-linked immunosor-

bent assay (ELISA) kit (Rat Inflammatory Cytokines Multi-
Analyte ELISArray Kit; Qiagen, Hilden, Germany) and indi-
vidual ELISA kits (Abcam).

Statistical analysis
Data are expressed as the mean±standard error of the mean 
(SEM). Differences between groups were evaluated using 
GraphPad Prism version 3.02 (GraphPad Software, San Diego, 
CA, USA). To analyze the quantitative variables between 
groups, Student’s t-test or analysis of variance (ANOVA) with 
post hoc test for multiple comparisons was used. P values of 
<0.05 were considered to show significance.

RESULTS

Activation of PSCs within the islet after exposure of hypoxia
First, we performed pimonidazole staining in islets. We detect-
ed pimonidazole adducts in islets cultured in 1% hypoxia, but 
not in 20% normoxia, thus confirming the presence of cellular 
hypoxia under this condition (Fig. 1A). Next, we examined the 

Fig. 1. Activation of pancreatic stellate cells (PSCs) in islets after hypoxia. (A) Images showing pimonidazole (green) staining of 
islets after incubation in normoxia or hypoxia for 2 hours. The nuclei were stained with 4´,6-diamidino-2-phenyl-indole (DAPI, 
blue). (B) Images showing α-smooth muscle actin (α-SMA) staining and the percentage of α-SMA-positive cells within the islet 
after incubation in normoxia or hypoxia for 12 hours. Arrows indicate cells expressing α-SMA (brown). Bar, 100 μm. (C) The ex-
pression of α-SMA in Western blot analysis. Values are mean±standard error of the mean (n=3). aP<0.05 for normoxia vs. hy-
poxia, bP<0.01 for 12 hours vs. 24 hours, cP<0.01 for 0 hour vs. 24 hours. 
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presence of PSC activation in islets after exposure to hypoxia 
or normoxia for up to 24 hours. Immunostaining showed the 
existence of multiple α-SMA-positive cells in islets cultured in 
hypoxia, indicating the presence of activated PSCs. The per-
centage of α-SMA-positive cells in islets cultured in hypoxia 
was significantly higher than that detected in islets cultured in 
normoxia (2.25%±0.19% vs. 0.47%±0.39%; P<0.05) (Fig. 1B). 
Western blot analysis also showed a significant increase in the 
expression of α-SMA in islets cultured in hypoxia (Fig. 1C).

Activation of primary PSCs after exposure to hypoxia
Freshly isolated PSCs were incubated in hypoxia or normoxia 
for 48 hours. α-SMA staining showed that most PSCs exposed 
to hypoxia transformed into a myofibroblast-like phenotype, 
whereas most PSCs exposed to normoxia remained quiescent 
(Fig. 2).

Involvement of oxidative stress in PSC activation after 
exposure of hypoxia
To measure ROS generation, primary PSCs were exposed to 
DCF, a fluorescent marker of cellular oxidant production. Fig. 
3A shows that exposure to hypoxia for 48 hours induced a 
higher fluorescence intensity compared with normoxia, which 
indicated the induction of oxidative stress by hypoxia. To inves-
tigate whether the hypoxia-induced facilitation of PSC activa-
tion was prevented by antioxidant treatment, we added 2.5 mM 

N-acetyl-L-cysteine (NAC) to islets cultured in hypoxia for 24 
hours. Western blot analysis showed a significant attenuation of 
the upregulation of a-SMA induced by hypoxia (Fig. 3B). In 
addition, α-SMA staining of primary PSCs cultured in hypoxia 
with or without 2.5 mM NAC for 48 hours confirmed that 
NAC treatment attenuated the activation of PSCs (Fig. 3C).

Effect of PSC activation on islet viability
To examine the effect of PSC activation on β-cell survival, we 
incubated islets for 48 hours in PSC media, normoxia-CM, 
and hypoxia-CM obtained from primary PSCs, and CM from 
C2C12 cells in normoxia and hypoxia. The AO/PI staining 
showed that islets incubated with hypoxia-CM from PSCs ex-
hibited increased cell death compared with those incubated 
with PSC media (PI-positive cells: 22.45%±4.71% vs. 2.84%± 
1.35%, P<0.05) (Fig. 4A). In contrast, CM from C2C12 cells 
did not affect islet survival (Fig. 4B). In addition, the TUNEL 
assay showed that islets incubated with hypoxia-CM from 
PSCs contained more TUNEL-positive cells (38.32%±1.70%) 
than did those incubated with normoxia-CM (21.50% ± 
1.75%) or PSC media (9.77%±1.50%) (all P<0.05) (Fig. 4C). 

Measurement of various cytokines in conditioned media 
from PSCs
To examine whether cytokines released from PSCs induced is-
let cell death, we measured the levels of various cytokines in 

Fig. 2. Activation of pancreatic stellate cells (PSCs) after hypoxia among freshly isolated PSCs. Images showing α-smooth muscle 
actin (α-SMA) staining and the percentage of activated PSCs after the cells were incubated in hypoxia or normoxia for 48 hours. 
Bar, 20 μm. Values are presented as mean±standard error of the mean (n=4). DAPI, 4´,6-diamidino-2-phenyl-indole. aP<0.05 
for normoxia vs. hypoxia. 
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Fig. 3. Involvement of oxidative stress in pancreatic stellate cell (PSC) activation after hypoxia. (A) Generation of reactive oxygen 
species. Images showing dichlorodihydrofluorescein diacetate (DCF) fluorescence (green) in PSCs after exposure to hypoxia or 
normoxia for 48 hours. DCF fluorescence was quantified using a scanning fluorometer. Bar, 200 μm. Values are presented as 
mean±standard error of the mean (n=6). (B) Western blot analysis showing the expression of α-smooth muscle actin (α-SMA) 
in islets after hypoxia in the presence or absence of treatment with 2.5 mM N-acetyl-L-cysteine (NAC). Values are presented as 
mean±standard error of the mean (n=3). (C) Representative images of α-SMA staining in primary PSCs cultured in hypoxia 
with or without 2.5 mM NAC for 48 hours. Bar, 20 μm. DAPI, 4´,6-diamidino-2-phenyl-indole. aP<0.05 for normoxia vs. hypox-
ia, bP<0.01 for 0 hr (0 hour) vs. 24 hr (24 hours), cP<0.05 for 24 hours vs. 24 hours+NAC. 
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PSC media, normoxia-CM, and hypoxia-CM from PSCs using 
two different ELISA kits. However, none of these cytokines 
were detected (Tables 1 and 2). 

DISCUSSION

We demonstrated for the first time that hypoxia activates PSCs 

within the islet by inducing oxidative stress. We further showed 
that hypoxia-activated PSCs increase β-cell death via apoptosis. 

Hypoxia activates PSCs, which contribute to pancreatic can-
cer progression [10,11]. To our knowledge, however, no study 
has demonstrated that hypoxia activates PSCs present within 
the islet. To induce cellular hypoxia, we incubated rat islets in 
1% hypoxic conditions. Detection of pimonidazole adducts in 
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Table 1. Measurement of various cytokines in conditioned media from PSCs using a multiplex ELISA kit

Samples IL-1α IL-1β IL-2 IL-4 IL-6 IL-10 IL-12 IL-13 IFN-γ TNF-α GM-CSF RANTES

Negative control 0.196 0.467 0.555 0.112 0.506 1.170 0.131 0.195 0.920 0.615 0.139 0.125

PSC media (sample 1) 0.197 0.436 0.519 0.101 0.422 1.067 0.118 0.163 0.857 0.558 0.105 0.118

Normoxia-CM (sample 1) 0.180 0.417 0.488 0.099 0.393 1.014 0.112 0.152 0.813 0.505 0.109 0.120

Hypoxia-CM (sample 1) 0.170 0.415 0.515 0.172 0.388 0.968 0.108 0.157 0.778 0.502 0.121 0.112

PSC media (sample 2) 0.171 0.421 0.506 0.102 0.409 1.042 0.119 0.152 0.829 0.501 0.085 0.094

Normoxia-CM (sample 2) 0.180 0.418 0.494 0.097 0.403 1.018 0.117 0.156 0.79 0.503 0.087 0.102

Hypoxia-CM (sample 2) 0.162 0.426 0.495 0.091 0.412 1.065 0.105 0.158 0.813 0.482 0.086 0.105

Positive control 3.646 Overflow Overflow 0.812 0.852 3.603 2.806 Overflow Overflow Overflow 2.969 Overflow

Values are presented as absorbance values at 450 nm. 
PSC, pancreatic stellate cell; ELISA, enzyme-linked immunosorbent assay; IL, interleukin; IFN-γ, interferon-γ; TNF-α, tumor necrosis factor-α; 
GM-CSF, granulocyte macrophage-colony stimulating factor; RANTES, regulated on activation normal T cell expressed and secreted; CM, con-
ditioned media.
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Fig. 4. Effect of pancreatic stellate cell (PSC) activation on islet viability. (A) Representative images of acridine orange (AO, green)/
propidium iodide (PI, red) staining and quantification of PI-positive cells in rat islets incubated in PSC media and normoxia-con-
ditioned media (CM) and hypoxia-CM from PSCs for 48 hours. Bar, 200 μm. (B) Representative images of AO/PI staining in rat is-
lets incubated in PSC media and normoxia-CM and hypoxia-CM from C2C12 cells for 48 hours. Bar, 200 μm. (C) Representative 
images of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay and quantification of TUNEL-
positive cells in rat islets incubated in PSC media and normoxia-CM and hypoxia-CM from PSCs for 48 hours. The nuclei were 
stained with 4´,6-diamidino-2-phenyl-indole (DAPI, blue). Bar, 100 μm. Values are presented as mean±standard error of the mean 
(n=3). aP<0.05 for PSC media vs. hypoxia-CM, bP<0.05 for PSC media vs. normoxia-CM, cP<0.05 for PSC media vs. hypoxia-CM 
and for normoxia-CM vs. hypoxia-CM. 
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islets indicates the presence of severe hypoxia [30]. After hy-
poxic exposure, an increased number of α-SMA-positive cells 
was observed in islets, together with an increase in the expres-
sion of the α-SMA protein, as measured by Western blot anal-
ysis. We also isolated primary rat PSCs and incubated them in 
hypoxic conditions. Consistent with previous reports [10,11], 
most PSCs exposed to hypoxia became activated.

Oxidative stress plays an important role in PSC activation 
[31,32]. Hypoxia induces oxidative stress in PSCs [10,11], as 
oxygen depletion stimulates mitochondria to produce ROS 
[33,34]. Here, we found that ROS production was increased in 
PSCs during hypoxia. Co-treatment with NAC, an antioxidant, 
prevented the hypoxia-induced facilitation of PSC activation 
in islets and primary PSCs. These findings are consistent with a 
previous study reported by Lei et al. [11], which showed the 
suppressive effect of α-mangostin (an antioxidant) on hypoxia-
induced PSC activation.

Previous studies that were performed using cocultures of 
PSCs with RIN-5F cells or rat islets [26,28] and treatment of 
INS-1 cells with CM from PSCs or ISCs [27,35] demonstrated 
that activated PSCs could damage β-cells by reducing insulin 
secretion or inducing cell death and apoptosis. In this study, we 
measured cell death and apoptosis in cultured islets using AO/
PI staining and the TUNEL assay, respectively. We found that 
islet cell death and apoptosis were more frequent after incuba-
tion with hypoxia-CM from PSCs compared with PSC media. 
This finding was specific to PSCs because CM from C2C12 
cells did not affect islet survival. Our results suggest that medi-
ators produced by PSCs induce cell death and apoptosis direct-
ly in β-cells. Therefore, we measured the levels of various cyto-

kines, including TNF-α, IL-1β, or IFN-γ, which are known to 
induce apoptosis in β-cells [36], in CM from PSCs. However, 
none of these cytokines were detected. 

The current study had several limitations. First, we cultured 
the cells under severe hypoxic conditions. Second, we did not 
use ISCs isolated from the islet [22] in our experiment, but the 
characteristics of ISCs are similar to those of typical PSCs re-
garding biomarkers and activation [37]. Third, we were not 
able to detect cytokines in CM from PSCs, contrary to the 
findings of a previous study reported by Li et al. [35]. The rea-
son for this discrepancy is not clear. Factors other than cyto-
kines such as lipid substances, microRNAs, or exosomes could 
be more important in PSC activation-induced β-cell death. 
Exosomes are membrane-enclosed nanovesicles containing 
diverse bioactive molecules including lipids, proteins and mi-
croRNAs. It has been recognized that extracellular vesicles in-
volving exosomes are significant mediators of communica-
tions between cells including PSCs [37]. Therefore, it is neces-
sary to compare the exosomal cargo between the exosomes 
from the normoxia-CM and hypoxia-CM or between the exo-
somes from primary PSCs and C2C12 cells in the future. 

In conclusion, our data suggest that PSCs within the islet are 
activated in hypoxia through oxidative stress and promote 
β-cell apoptosis, suggesting that hypoxia-induced PSC activa-
tion contributes to β-cell loss. Therefore, therapies targeting 
PSC activation might be beneficial for the prevention of β-cell 
failure in T2DM and islet transplantation. However, additional 
studies are needed to elucidate the precise mechanism under-
lying the induction of β-cell death by PSC activation. 
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