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Predicting responses to platin chemotherapy agents with
biochemically-inspired machine learning
Eliseos J. Mucaki1, Jonathan Z. L. Zhao1,2, Daniel J. Lizotte2,3 and Peter K. Rogan 1,2,3,4,5

The selection of effective genes that accurately predict chemotherapy responses might improve cancer outcomes. We compare
optimized gene signatures for cisplatin, carboplatin, and oxaliplatin responses in the same cell lines and validate each signature
using data from patients with cancer. Supervised support vector machine learning is used to derive gene sets whose expression is
related to the cell line GI50 values by backwards feature selection with cross-validation. Specific genes and functional pathways
distinguishing sensitive from resistant cell lines are identified by contrasting signatures obtained at extreme and median GI50
thresholds. Ensembles of gene signatures at different thresholds are combined to reduce the dependence on specific GI50 values
for predicting drug responses. The most accurate gene signatures for each platin are: cisplatin: BARD1, BCL2, BCL2L1, CDKN2C,
FAAP24, FEN1, MAP3K1, MAPK13, MAPK3, NFKB1, NFKB2, SLC22A5, SLC31A2, TLR4, and TWIST1; carboplatin: AKT1, EIF3K, ERCC1, GNGT1,
GSR, MTHFR, NEDD4L, NLRP1, NRAS, RAF1, SGK1, TIGD1, TP53, VEGFB, and VEGFC; and oxaliplatin: BRAF, FCGR2A, IGF1, MSH2, NAGK,
NFE2L2, NQO1, PANK3, SLC47A1, SLCO1B1, and UGT1A1. Data from The Cancer Genome Atlas (TCGA) patients with bladder, ovarian,
and colorectal cancer were used to test the cisplatin, carboplatin, and oxaliplatin signatures, resulting in 71.0%, 60.2%, and 54.5%
accuracies in predicting disease recurrence and 59%, 61%, and 72% accuracies in predicting remission, respectively. One cisplatin
signature predicted 100% of recurrence in non-smoking patients with bladder cancer (57% disease-free; N= 19), and 79%
recurrence in smokers (62% disease-free; N= 35). This approach should be adaptable to other studies of chemotherapy responses,
regardless of the drug or cancer types.
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INTRODUCTION
Chemotherapy regimens are selected based on overall outcomes
for specific types and subtypes of cancer pathology, progression
to metastasis, other high-risk indications, and prognosis,1,2 and
variability in tumor resistance has led to the use of tiered,
sequential strategies for the selection of agents based on their
overall efficacy.3 Our group and other researchers have developed
machine learning (ML)-based gene signatures (i.e., predictive
models) aimed at predicting responses to specific chemother-
apeutic agents and minimizing chemoresistance based on the
inhibition of growth or drug targets (GI50 or IC50, respectively).

4–6

In this study, we present integrated ML models of platin drug
responses (cis-, carbo-, and oxaliplatin), and evaluate them using
clinical outcome data that were not used to construct the
signatures. Previous studies have reviewed the genes,7 gene
products,8 and specific individual pathways that are activated and
repressed by drugs,9 but comprehensive models of the global
cellular response to drugs are lacking. We use integrated ML-
based signatures based on the expression of multiple genes to
predict key responses to each of these platin agents, for the first
time, at different resistance levels.
Cisplatin, carboplatin, and oxaliplatin are each widely prescribed

compounds with antineoplastic effects. While each drug contains

platinum and forms adducts with tumor DNA, their effectiveness
differs for specific types of cancers, such as bladder (cisplatin),
ovarian (cisplatin and carboplatin), and colorectal cancer (oxalipla-
tin). Carboplatin differs in structure from cisplatin, exchanging the
dichloride ligands in the latter with a cyclobutane dicarboxylic acid
(CBDCA) group, while oxaliplatin is paired with both a diaminocy-
clohexane (DACH) ligand and a bidentate oxalate group. These
chelating ligands have greater stability and solubility in aqueous
solutions, which lead to differences in drug toxicity compared to
cisplatin.10 Oxaliplatin is up to two times more cytotoxic than
cisplatin, but it forms fewer DNA adducts.11 The large hydrophobic
DACH ligand that overlaps with the major groove is thought to
prevent the binding of certain DNA repair enzymes, such as the POL
polymerases, and may contribute to the low cross-resistance
between oxaliplatin and the other two platin drugs.10 While all
three drugs enter the cell via copper transporters, organic cation
transporters are oxaliplatin-specific and likely play a role in its
efficacy in colorectal cancer (CRC) cells where these transporters are
commonly overexpressed.7 Oxaliplatin specifically interferes with
both DNA and RNA synthesis, unlike cisplatin, which only infers with
DNA.12 These intrinsic properties of the platinum drugs lead to
differences in their activity and resistance profiles, despite their
similar modes of action.
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We derived gene signatures to predict drug responses at
different sensitivity and resistance levels for each of these agents.
Our group and other researchers have used supervised learning
algorithms, including random forest models;13 support vector
machine (SVM) models;6 neural networks;14 and linear regression
models5 for these predictions. Pathway and network analyses of
gene expression (GE) have been used to identify hundreds of
genes that are potentially up- and down-regulated upon cisplatin
treatment.15 Cisplatin-specific gene signatures have been devel-
oped with integrative approaches such as elastic net regression
using the inferred pathway activity obtained from data from
bladder cancer cell lines.16 These methods have implicated genes
that have not been described previously. Supervised ML with
biochemically relevant genes has also been useful for predicting
drug response.6 A concern with each of these ML approaches is
that an insufficient number of samples coupled with a large
number of features, i.e., GE changes, in each sample may result in
overfitting of the model, affecting its generalizability with other
sources of data.17 We therefore reduce the number of dimensions
by selecting genes that are biologically relevant to the drugs
under observation.6,17 In this study, genes included in the final
signatures have well-defined roles in responses to their corre-
sponding drugs (Supplementary References, Section A). Additional
selection criteria are necessary when the number of genes
implicated in peer-reviewed reports is still prohibitively large
compared to the sample size.
Biochemically-inspired gene signatures have shown good perfor-

mance in predicting treatment responses. A paclitaxel ML signature
based on tumor GE had a higher success at predicting the
pathological complete response rate (pCR18) for sensitive patients
(84% of patients with no/minimal residual disease) than gene
signatures based on a differential GE analysis.6 For gemcitabine, a
signature derived from both expression and copy number (CN) data
from breast cancer cell lines was derived and subsequently applied
to the analysis of nucleic acids from archived patient samples.
Multiple other outcome measures used to validate gene signatures
include prognosis,5 Miller–Payne response,19 and disease recurrence.
Binary SVM classifiers based on discrete time thresholds have been
used to classify continuous outcome measures such as prognosis
and recurrence. In contrast, pCR is simpler to interpret with binary
SVM models. Nevertheless, differences in clinical recurrence have
been noted between patients with known pCR and those who do
not exhibit disease pathology.18 This source of variability in defining
patient responses can confound the transferability of SVM models
between different datasets.
We apply biochemically-inspired ML to predict and compare the

cellular and patient responses to cisplatin, carboplatin, and
oxaliplatin. We train models and perform model selection for the
classification of platin resistance using data from cancer cell lines,
and validate the results using patient GE and clinical outcome data.
Our previous gene signatures derived from cell lines were based on
median GI50 values for each drug.6 Models (i.e., gene signatures)
learned and selected using the cell line data have not been re-
trained prior to application to the patient data since GI50 values are
not available for patient samples. This approach has been a
necessary compromise; however, in the present study, we derive
different signatures at the highest and the lowest levels of drug
resistance. A series of candidate gene signatures are derived by
shifting the GI50 thresholds that distinguish sensitivity from
resistance. The frequency of genes selected at median and extreme
thresholds highlights pathways that most likely define these
responses among different patient subsets.

RESULTS
Selection of platin drug-related genes
We documented genes in the peer-reviewed literature associated
with drug effectiveness or responses (Supplementary References,

Section B). For cisplatin, carboplatin, and oxaliplatin, 179, 90, and
288 genes were implicated, respectively (Supplementary Table S1).
Multiple factor analysis (MFA) was used to determine which genes
correlated with the GI50 in breast cancer cell lines through either
GE and/or CN,13 significantly reducing the sizes of the gene sets
for cisplatin (N= 39), carboplatin (N= 28), and oxaliplatin (N= 55).
Genes with significant relationships to GI50 and the directions of
correlations (positive or inverse) are indicated in Figs. 1–3. The
diverse functions of these genes included apoptosis, DNA repair,
transcription, cell growth, metabolism, immune system, signal
transduction, and membrane transport. Analyses of IC50 and GE
levels for cisplatin-treated bladder cancer cell lines confirmed
these relationships based on the GI50 values of different breast
cancer lines. IC50 values were related to GE for CFLAR, FEN1,
MAPK3, MSH2, NFKB1, PNKP, PRKAA2, and PRKCA.20 Similarly, IC50
values obtained from separate bladder cell lines included in the
Genomics of Drug Sensitivity in Cancer project (CancerRxGene;
http://www.cancerrxgene.org; N= 17)21 correlated with GE for
CFLAR, FEN1, and NFKB1, as well as ATP7B, BARD1, MAP3K1, NFKB2,
SLC31A2, and SNAI1.
We performed an MFA of the GI50 values for cisplatin,

carboplatin, and oxaliplatin, without considering either GE or
CN. Responses to cis- and carboplatin were directly correlated (a
6.2° separation between vectors), but neither was related to the
oxaliplatin response (Fig. 4). Cisplatin-resistant cell lines are
generally sensitive to oxaliplatin.22–24

SVM-based signatures were initially derived for each platin drug
using breast cancer cell line GE data. A 13-gene signature for
cisplatin that predicts whether observed growth inhibition is
above or below the median GI50 threshold (5.2% cross-validation
misclassification rate) consisted of BARD1, BCL2L1, FAAP24, CFLAR,
MAP3K1, MAPK3, NFKB1, POLQ, PRKAA2, SLC22A5, SLC31A2, TLR4,
and TWIST1. A similarly derived carboplatin signature included
AKT1, ATP7B, EGF, EIF3I, ERCC1, GNGT1, HRAS, MTR, NRAS, OPRM1,
RAD50, RAF1, SCN10A, SGK1, TIGD1, TP53, and VEGFB (10.4% cross-
validation misclassification). For oxaliplatin, the final SVM gene
signature consisted of AGXT, APOBEC2, BRAF, CLCN6, FCGR2A, IGF1,
MPO, MSH2, NAGK, NAT2, NFE2L2, NOTCH1, PANK3, PRSS1, and
UGT1A1 (2.1% cross-validation misclassification). A cisplatin SVM
generated from 17 bladder cancer cell lines in CancerRxGene
resulted in 2 equally accurate signatures (with 11.8% cross-
validation misclassification) consisting of either PNKP and PRKCA,
or ATP7B, CFLAR, FEN1, MAPK3, NFKB1, and SLC22A11. These gene
signatures were not useful for predicting patient outcomes due to
the limited size of the training set.

GI50 threshold-independent modeling
In our previous studies, we set the median GI50 value as the
threshold to distinguish drug resistance and sensitivity.5,6 An
important question is whether the genes contributing to drug
responses are consistent among different cell lines, each with their
own unique GI50 values. Different ML gene signatures were
obtained by shifting the GI50 threshold, which changed the labels
of resistant and sensitive cell lines. After feature selection, the
compositions of the corresponding gene signatures for each
threshold were compared. Finally, ensemble averaging of all of
these optimized SVMs with Gaussian kernels derived for different
GI50 thresholds was used to create a single aggregated, threshold-
independent, ML-based predictive model comprised of all genes
that were selected in any of the threshold-specific models (i.e., a
composite gene signature).
Kinase (MAPK3 and MAP3K1) genes and apoptotic family

members (BCL2 and BCL2L1) were the most common genes in
the cisplatin signatures at different GI50 thresholds, with consistent
representation of error-prone and base-excision DNA repair genes
as well (Fig. 5a and Supplementary Table S2A). The kinases were
more concentrated in signatures with lower drug sensitivity
thresholds, whereas BCL2 and BCL2L1 were more ubiquitous at all
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levels. The error-prone polymerases POLD1 and POLQ were more
frequently detected in gene signatures with lower sensitivity
thresholds, while the flap endonuclease FEN1 tended to be
present at high levels of resistance. Thresholded gene signatures
for carboplatin-related genes commonly contained the apoptotic
family member AKT1, transcription regulation genes ETS2 and
TP53, as well as cell growth factors VEGFB and VEGFC, although the
latter were less common at lower sensitivity thresholds (Fig. 5b).
Common oxaliplatin-related genes included the transporters
SLCO1B1 and GRTP1 (but not SLC47A1), transcription-related genes
NFE2L2, PARP15, and CLCN6, and multiple metabolism-related
genes (Fig. 5c).
GI50-thresholded ML models were also derived using the log-

loss function to evaluate whether an alternative loss function (for
classification) would differ significantly from the misclassification-
based gene signatures (by both the distribution of selected genes
and by model accuracy to patient data). The log-loss function
penalizes false classifications, whose value ranges from zero (or
completely accurate) to 1 (or completely inaccurate; Supplemen-
tary Table S3). The overall distribution of genes across GI50
thresholds exhibited many distinct similarities to the gene
signatures derived by misclassification. For both sets of cisplatin
gene signatures, BCL2, BCL2L1, and FEN1 were common in low-to-
moderate GI50 thresholds, while NFKB1 was enriched at high
thresholds (Fig. 5a and Supplementary Figure S1A). For carbopla-
tin, AKT1, VEGFB, and VEGFC were similarly distributed across GI50
thresholds with both methods, although VEGFB was less

frequently represented in log-loss-based gene signatures at low
GI50 values (Fig. 5b and Supplementary Figure S1B). In both sets of
oxaliplatin gene signatures, SIAE and SLC47A1 were present at
high frequencies across all GI50 thresholds, whereas ABCG2 was
present less frequently (<50% inclusion; Fig. 5c and Supplemen-
tary Figure S1C). Differences between signatures selected by
minimizing log-loss and misclassification rates were observed. EGF
and ERCC1 were selected at a greater frequency at a moderate
carboplatin GI50 using the log-loss function, rather than mis-
classification. Similarly, in oxaliplatin signature genes, APOBEC2,
HLA-B, LTA, and MPO, were selected considerably more often using
the log-loss function. Therefore, while the misclassification- and
log-loss-based gene signatures are not interchangeable, overall,
they are quite similar to one another.
Log-loss gene signatures were initially constructed either using

(a) a modified version of the misclassification-based method, or (b)
the backwards feature selection (BFS) software described by Zhao
et al.25 Multiple signatures with low log-loss values can have
different compositions, consistent with the possibility that various
diverse gene combinations may give rise to signatures with
satisfactory performance. However, these signatures often contain
a larger number of gene features than the misclassification-based
signatures, raising the possibility that they might be more prone
to overfitting. This concern was addressed by generating gene
signatures by minimizing log-loss using both methods. The
median GI50-thresholded cisplatin gene signature generated using
the log-loss modified software [ATP7B, BCL2L1, CDKN2C, CFLAR,

Fig. 1 Schematic of platinum drug sensitivity and resistance genes that showed MFA correlation with the GI50 values for cisplatin. The gene
products corresponding to those used to derive the SVM are indicated within boxes in the context of their cellular mechanisms of action and
regulation of drug response. GE and CN correlations with inhibitory drug concentrations are based on the MFA of breast (GI50) and bladder
(IC50) cancer cell line data. Gene products within the best-performing gene signature are embedded within color-coded ovals; whereas the
other correlated gene products are embedded within rectangles
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ERCC2, ERCC6, FAAP24, FOS, GSTO1, GSTP1, MAP3K1, MAPK13,
MAPK3, MSH2, MT2A, PNKP, POLD1, POLQ, PRKAA2, PRKCA, PRKCB,
SLC22A5, SLC31A2, SNAI1, TLR4, and TP63] shares 15/19 genes with
the signature generated using the BFS software25 [ATP7B, BARD1,
BCL2, BCL2L1, ERCC2, FAAP24, FEN1, FOS, MAP3K1, MAPK13, MAPK3,
MSH2, MT2A, NFKB1, PNKP, POLQ, PRKCB, SLC22A5, and SNAI1].

Impacts of features in gene signatures
Each gene was independently excluded and model accuracy was
reassessed within every SVM signature to determine the
contributions of individual genes to the overall cross-validation
accuracy of a gene signature (Supplementary Table S2A, S2B, and
S2C contain cis-, carbo-, and oxaliplatin gene signatures,
respectively). The elimination of ERCC2, POLD1, BARD1, BCL2,
PRKCA, and PRKCB consistently significantly increased the mis-
classification error (average > 16% increase) in moderate threshold
cisplatin SVMs (GI50 thresholds: 5.1–5.5). ERCC2 and POLD1
perform critical functions in nucleotide and base excision repair,
respectively. PRKCA and PRKCB are paralogs with significant roles
in signal transduction. BARD1 has been shown to reduce the
expression of the apoptotic BCL2 gene in the mitochondria,26 and
has a key role in genomic stability through its association with
BRCA1. The genes NFKB1, NFKB2, TWIST1, TP63, PRKAA2, and MSH2
showed a high variance in increased misclassification between
different gene signatures. The variance of these genes may be due
to epistatic interactions with other biological components,
including the other genes in the SVM. For example, NFKB1 and

NFKB2 are jointly included in 7 SVMs generated at a moderate GI50
threshold. Possible epistasis was observed, as the removal of
either of these genes, but not necessarily both, exerted a
substantial impact on model misclassification rates (≥18.0%
increase). The misclassification variance of NFKB1 with NFKB2
was significantly lower than in SVM gene signatures lacking
NFKB2.

Derivation of gene signatures from data obtained from patients
with bladder carcinoma
Gene signatures derived from cell line data were validated using
data from patients with cancer. We also developed SVMs using the
cisplatin and/or carboplatin-treated TCGA (The Cancer Genome
Atlas) data from patients with bladder urothelial carcinoma using
post-treatment time to relapse as a surrogate criterion for different
GI50 resistance thresholds to explore the similarities in the gene
signatures in the data obtained from these patients (as performed
in Mucaki et al.;27 Supplementary Table S4). Similar trends to cell
line SVMs were apparent: POLQ was frequently included in gene
signatures with a recurrence threshold of a longer duration, while
FEN1 was a marker of resistance when the time to relapse was
shorter. However, BCL2, which is present in a majority of breast
cancer cell lines SVMs, was present in only one gene signature
derived from TCGA data. Similarly, MSH2 was rarely selected using
cell lines, yet appeared in nearly all patient-derived SVMs with >1-
year recurrence. However, independently-derived patient SVMs
were not able to be used for any other analyses.

Fig. 2 Schematic of platinum drug sensitivity and resistance genes that showed MFA correlation with the GI50 values for carboplatin. Refer to
the legend of Fig. 1 for details
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Validation of cell line-based models using data from patients with
cancer
GI50-thresholded models for each platin drug, which were
generated with the breast cancer cell line data, produced 70
cisplatin, 83 carboplatin, and 83 oxaliplatin SVM gene signatures.
Each of the thresholded gene signatures was applied to available
platin-treated patient datasets to understand how the choice of
GI50 threshold for training on cell line data impacted the
predictive accuracy when the resulting gene signatures were

assessed according to patient outcomes.28–32 In this study,
cisplatin gene signatures were validated using data from patients
with bladder cancer, carboplatin signatures were validated using
data from patients with ovarian cancer, and oxaliplatin signatures
were validated using data from patients with CRC. While the
available data contained the necessary GE information, the clinical
response metadata differed between studies. The responses of
patients with bladder cancer to cisplatin were described as post-
treatment survival by Als et al.,31 whereas patients with CRC
treated with oxaliplatin were categorized as responders and non-
responders by Tsuji et al.32 TCGA provided two different measures
that we used to assess the predictive accuracy of our gene
signatures—clinical response to chemotherapy and disease-free
survival. Signature accuracy was similar using either measure
(Supplementary Table S5A); however, recurrence and disease-free
survival were used as the primary measures of responses, as these
outcomes were more consistently recorded among the TCGA
datasets tested. Patients in the study by Als et al.31 with a ≥5-year
post-treatment survival were labeled as sensitive to treatment. The
differences between these metadata may partially contribute to
differences in the prediction accuracy of the thresholded SVM
gene signatures.
At higher resistance thresholds for any platin drug (low GI50),

where more cell lines were labeled sensitive, the positive class
(disease-free survival) was correctly classified, while the negative
class (recurrence) was highly misclassified (Supplementary Fig-
ures S2 and S3). The reverse was true for gene signatures derived
using lower resistance thresholds (high GI50). For these reasons,

Fig. 4 GI50 values for cell lines treated with the three platin drugs
were plotted in order of ascending oxaliplatin GI50. For most cell
lines, a trend between the GI50 values for cisplatin and carboplatin
was observed, reflecting the correlation between the two drugs
detected using MFA. Despite this correlation, carboplatin shows a
much smaller variance (0.22) than cisplatin (0.37; the oxaliplatin
variance is 0.34)

Fig. 3 Schematic of platinum drug sensitivity and resistance genes that showed MFA correlation with the GI50 values for oxaliplatin. Refer to
the legend of Fig. 1 for details
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SVMs generated at these extreme thresholds were not very useful
at predicting patient outcomes. When used to predict recurrence
in the TCGA datasets, sensitivity and specificity appeared to be
maximized in gene signatures where the GI50 threshold for
resistance was set near (but not necessarily at) the median
(Supplementary Figure S2 and Supplementary Table S5A to S5C).
While this pattern held true for the data reported by Tsuji et al.,32

oxaliplatin gene signatures, where GI50 thresholds were set above
the median, better separated patients with primary and metastatic
CRC (best signature predicting 92.6% of metastases and 60.7% of
primary cancers; Supplementary Table S5C). Although less
consistent, cisplatin gene signatures generated with thresholds

above the median GI50 performed better when evaluating the
patient dataset reported by Als et al. (Supplementary Figure S3).31

Gene signatures were individually evaluated for their accuracy in
TCGA patients using various recurrence times post-treatment to
classify resistant and sensitive patients (0.5–5 years; Supplementary
Table S6A-C). The best-performing cisplatin signature (hereby
identified as Cis1; Table 1) accurately predicted 71.0% of the
recurrence of bladder cancer in patients who experienced recurrence
after 18 months (N= 31; 58.5% accurate for disease-free patients
[N= 41]). The best-performing carboplatin gene signature (desig-
nated Car1 [Table 1]) predicted the recurrence of ovarian cancer
after 4 years at an accuracy of 60.2% (N= 302; 61.0% accurate for

Fig. 5 Variation in the composition of the gene signatures obtained using misclassification-based SVMs at different GI50 thresholds for
a cisplatin, b carboplatin, and c oxaliplatin. GI50 intervals are indicated on the left, with the number of cell lines with GI50 values within the
indicated intervals shown in brackets. Each box represents the density of genes appearing in optimized Gaussian SVM gene signatures in
those functional categories, with darker gray indicating frequent genes in the indicated GI50 threshold intervals and lighter gray indicating
less commonly selected genes. The number of thresholded gene signatures used to derive the density plot within each interval is equal to (or
greater than, in the case of multiple equally performing gene signatures) the number of cell lines within that GI50 interval
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disease-free patients [N= 108]). For oxaliplatin, the best-performing
gene signature (designated Oxa1 [Table 1]) accurately predicted
71.6% of the disease-free TCGA patients with CRC after 1 year (N=
88; 54.5% accuracy in predicting recurrence [N= 11]). These gene
signatures (based on GE measured with the Affymetrix Gene Chip
Human Exon 1.0 ST arrays), TCGA sample expression data, and SVMs
based on bladder cell line data (based on expression measured using
the Affymetrix U133A microarray) were added to the online web‐
based SVM calculator (http://chemotherapy.cytognomix.com; intro-
duced in Dorman et al.6) to predict platin responses.
The TCGA bladder cancer dataset contained 19 patients treated

with carboplatin (but not cisplatin), which enabled an evaluation
of the specificity of cisplatin models relative to patients who were
not treated with this drug. The cisplatin model that best predicted
outcomes of carboplatin-treated patients with bladder cancer in
TCGA was not Cis1 (the best-performing cisplatin model) but
rather Cis12 at 2 years post-treatment (80% accurate for
responding patients [N= 5]; 93% for recurrent patients [N= 14]).
Cis12 contains 9 genes that are not present in Cis1, including
ATP7B, a gene present in many of our carboplatin models. The
presence of this gene may have a significant impact on the overall
accuracy of Cis12 in determining the outcomes of the carboplatin-
treated patients with bladder cancer. We also evaluated these 19
patients to determine the carboplatin-specific gene signatures,
and the signature that best predicted the response of these
patients (Car73) was 84% accurate for patients after 1 year of
treatment (100% for responding patients [N= 11]; 62.5% accuracy
for recurrent [N= 8]). Interestingly, Car73 shares the same ATP7B
gene with Cis12. Two additional carboplatin gene signatures were
tied for overall accuracy (84%; Car9 and Car51), but more
successfully predicted non-responsive patients (87.5%; 82%
accuracy for responding patients). AKT1, ETS2, GNGT1, and VEGFB
were shared among these carboplatin gene signatures.
Distances from the hyperplane for all SVMs generated were

determined for patients with a short recurrence time to evaluate the
consistency of the predicted responses of TCGA patients with

bladder cancer who were treated with cisplatin (<6 months, N= 10;
Supplementary Figure S4). Despite showing similar levels of
resistance to treatment, distances differed between patients. While
these patients were expected to be indicated as highly cisplatin-
resistant (hyperplane distance < 0), two patients (TCGA-XF-A9SU and
TCGA-FJ-A871) were predicted to be sensitive by nearly all SVM
gene signatures. Similar variations were also observed in patients
with either a long recurrence time (>4 years) or no recurrence after
6 years (Supplementary Figure S5).
An aggregate, threshold-independent model was generated for

each individual platin drug at different GI50 thresholds using
ensemble ML, which involves the averaging of hyperplane distances
for each model to generate a composite score for each TCGA patient
tested (i.e., a composite gene signature). Hyperplane distances
across all 70 cisplatin gene signatures were similar, with a mean
score of −0.22 and a standard deviation of 3.5 hyperplane units (hu)
across the set of patient data. The ensemble model classified
disease-free patients diagnosed with bladder cancer with 59%
accuracy and those with recurrent disease with 47% accuracy.
Limiting ensemble averaging to only cisplatin gene signatures
generated at a moderate GI50 threshold (ranging from 5.10 to 5.50)
did not significantly improve accuracy (44% for disease-free patients
and 66% for recurrent patients; Supplementary Table S7A). For
carboplatin, ensemble ML did not produce significantly better
predictions than random, regardless of the GI50 threshold interval
selected (Supplementary Table S7B) or the similar mean hyperplane
distances (−0.11 ± 3.9 hu). For oxaliplatin, the ensemble ML model
(mean=−0.12 ± 2.7 hu) was most accurate after 1 year (60%
accuracy for disease-free patients and 73% for recurrent patients;
Supplementary Table S7C). Similar to cisplatin, limiting this analysis
to oxaliplatin SVM gene signatures with moderate GI50 thresholds
did not significantly increase accuracy.

K-fold cross-validation
The misclassification-based cisplatin, carboplatin, and oxaliplatin
gene signatures were also evaluated with k-fold cross-validation of

Table 1. Gene signatures that best predicted the responses of TCGA patients

Gene signature ID Cancer type tested GI50 threshold Signature (C; σ)

Cis1 (Cisplatin) Bladder 5.11 BARD1, BCL2, BCL2L1, CDKN2C, FAAP24, FEN1, MAP3K1, MAPK13, MAPK3, NFKB1, NFKB2,
SLC22A5, SLC31A2, TLR4, TWIST1 (100,000; 100)

Cis2 (Cisplatin) Bladder 5.12 BARD1, BCL2L1, CFLAR, FAAP24, MAP3K1, MAPK3, NFKB1, POLQ, PRKAA2, SLC22A5, SLC31A2,
TLR4, TWIST1 (10,000; 100)

Cis3 (Cisplatin) Bladder 5.60 BCL2, CFLAR, ERCC2, ERCC6, FAAP24, FEN1, MAP3K1, NFKB1, NFKB2, PNKP, POLQ, PRKCB,
SLC22A5, SNAI1, TLR4 (100,000; 100)

Cis12 (Cisplatin) Bladder 5.40 ATP7B, BCL2, BCL2L1, CDKN2C, ERCC2, FAAP24, GSTO1, MAP3K1, MAPK3, MT2A, NFKB1, NFKB2,
POLD1, POLQ, PRKCB, SNAI1, TLR4, TP63 (10,000; 100)

Cis14 (Cisplatin) Bladder 5.16 BARD1, BCL2, BCL2L1, CDKN2C, FAAP24, FEN1, FOS, GSTP1, MAP3K1, MAPK13, MAPK3, MSH2,
NFKB1, POLD1, POLQ, PRKAA2, PRKCB, SLC22A5, SLC31A2, SNAI1, TWIST1 (10,000; 100)

Cis17 (Cisplatin) Bladder 5.10 ATP7B, BCL2, BCL2L1, FEN1, GSTP1, MAP3K1, MAPK3, MT2A, NFKB1, PNKP, POLQ, PRKAA2, PRKCB,
SLC31A2, TLR4, TP63 (100,000; 100)

Car1 (Carboplatin) Ovarian 4.22 AKT1, EIF3K, ERCC1, GNGT1, GSR, MTHFR, NEDD4L, NLRP1, NRAS, RAF1, SGK1, TIGD1, TP53,
VEGFB, VEGFC (100,000; 100)

Car9 (Carboplatin) Ovarian 4.32 AKT1, ATP7B, EIF3I, ETS2, GNGT1, HRAS, KRAS, LIG3, MTHFR, MTR, NRAS, RAD50, SCN10A, TIGD1,
TP53, VEGFB (10,000; 100)

Car51 (Carboplatin) Ovarian 4.34 AKT1, EGF, EIF3I, ERCC1, ETS2, GNGT1, KRAS, MTHFR, MTR, NEDD4L, NLRP1, NRAS, RAD50, RAF1,
SGK1, TIGD1, TP53, VEGFB, VEGFC (10,000; 100)

Car73 (Carboplatin) Ovarian 4.09 AKT1, ATP7B, ETS2, GNGT1, HRAS, NLRP1, SCN10A, VEGFB (100,000; 1000)

Oxa1 (Oxaliplatin) Colorectal 5.10 BRAF, FCGR2A, IGF1, MSH2, NAGK, NFE2L2, NQO1, PANK3, SLC47A1, SLCO1B1, UGT1A1 (10; 10)

Oxa21 (Oxaliplatin) Colorectal 5.10 BRAF, IGF1, IGF1R, KLF3, MSH2, NAT2, NFE2L2, NQO1, PANK3, PRSS1, SIAE, SLC47A1, SLCO1B1,
UGT1A1 (1000; 100)

C—the box-constraint; σ—the kernel-scale (sigma)
Bolded gene signatures are those that exhibited the best overall performance in discriminating among TCGA patient outcomes
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TCGA data from patients with bladder, ovarian, and colorectal
cancer, respectively. This cross-validation approach was indepen-
dent of the cell line data; namely, the genes and hyper-parameters
of signatures were used, but the GE data used were exclusively
derived from patients. Patients were evenly distributed in 5
groups with an equal (or near-equal) ratio of disease-free and
recurrent patients. The majority of the cisplatin gene signatures
showed an overall accuracy >50%. The cisplatin gene signature
that performed best under the k-fold analysis (6-resistance level;
BARD1, BCL2, BCL2L1, PRKAA2, PRKCA, PRKCB, and TWIST1) showed
an overall accuracy of 71.2% (84.4% accurate for sensitive patients
and 53.9% accurate for resistant patients). The accuracy of the
carboplatin and oxaliplatin gene signatures did not exceed 60%. In
general, treating the patient data as a held-out test set yielded
higher performance estimates than training and evaluating the
models on the patient data using k-fold cross-validation.

Predicting cisplatin responses in patients based on smoking
history
Tobacco smoking is known as the risk factor with the greatest
contribution to the development of bladder cancer.33 Patients
with head and neck cancer who smoke while undergoing cisplatin
and radiotherapy treatment have been shown to have a shorter
overall survival rate.34 We therefore subdivided the patients based
on their smoking history and tested the thresholded gene
signatures (Supplementary Tables S8 and S9). When testing
patients who were lifelong non-smokers, the prediction accuracy
of Cis1 predicted all non-smoking patients who were recurrent
after 18 months as cisplatin-resistant (N= 5). Prediction accuracy
for disease-free patients was 57.1% (N= 14). Another gene
signature (Cis18; Supplementary Table S8) performed equally well
for non-smokers, and these two gene signatures shared the genes
BCL2, BCL2L1, FAAP24, MAP3K1, MAPK13, MAPK3, and SLC31A2. The
threshold-independent analysis predicted the disease-free status
equally well, but recurrence was less accurate (66.7%). Notably,
non-smokers comprised a small subset of the patients tested (N=
19). The threshold-independent prediction of recurrence in
patients with a smoking history was 46% accurate (N= 13), while
disease-free patients were correctly predicted at a rate of 58% (N
= 19). Recurrence in these patients was best predicted by a gene
signature built at the median GI50 threshold (Cis2). Accuracy
improved for both disease-free (57.7–61.9%) and recurrent
patients (76.0–78.6%) when excluding patients who quit smoking
more than 15 years before the diagnosis. This SVM included the
CFLAR and PRKAA2 genes, which were not present in the two gene
signatures that performed well for non-smokers.
We gradually altered the expression of each signature gene

until the misclassification was corrected to determine which genes
in these gene signatures led to the discordant predictions of
patient outcomes. Alterations in the expression of MAP3K1, MAPK3,
SLC22A5, and SLC31A2 corrected discordant predictions of patient
outcome. Alterations in BCL2L1 expression were more likely to
correct the discordant predictions of Cis1 (4 of 5) than Cis2 (2 of
4). If the change exceeded ≥3 times the highest or lowest
expression of that gene and the prediction remained unchanged
between different patients, then the impact of that gene on the
signature was considered to be limited. By these criteria, the
expression of PRKAA2, NFKB1, NFKB2, and TWIST1 was not able to
be altered to correct a discordant prediction.

Cytosine methylation levels of genes in cisplatin models
Tobacco smoking has a significant impact on cytosine methylation
levels in the genome.35 CpG island methylation is associated with
smoking in pack years in a subset of the TCGA patients with
bladder urothelial carcinoma.28 We suspected that the level of
methylation measured in the SVMs that performed best for
smoking and non-smoking patients might differ and exert
possible concomitant effects on GE. When ranking each gene

from Cis1 by the highest methylation level and GE, 88 of 1080
patient–gene combinations showed the expected inverse correla-
tion between methylation levels and GE (i.e., high methylation and
low GE). Methylation and GE levels were more frequently inversely
than directly correlated (i.e., high methylation and high GE; N=
17). However, the direct correlation was more common in patients
with a recent smoking history (70.5%). This pattern was also
observed for Cis2, which best predicted recurrence in smokers. In
cases where methylation and GE were directly correlated, we
propose that smoking may alter expression through other effects,
e.g., mutagenic effects, rather than solely by epigenetic inactiva-
tion through methylation.

DISCUSSION
Using GE signatures, we derived both GI50 threshold-dependent
and -independent ML models that predict the chemotherapy
responses to cisplatin, carboplatin, and oxaliplatin, respectively.
The cisplatin gene signature Cis1 (Supplementary Table S6A) most
accurately predicted the response of patients with bladder cancer
after 18 months, and Car1 (Supplementary Table S6B) best
predicted the response of patients with ovarian cancer after 4
years. Oxa1 (Supplementary Table S6C) more accurately predicted
disease-free patients than patients with recurrent disease at the 1-
year treatment threshold. The thresholds that best represented
the time-to-recurrence differed between the platin drugs in
patients with each cancer type. Cisplatin gene signatures
exhibited noticeably improved performance when smoking
history was taken into account.
The three platin drugs produced distinctly different gene

signatures. The composition of the initial gene sets exhibited
some overlap between platin drugs (N= 67 between any two
platins), but the expression of only ATP7B, BCL2, and MSH2 was
correlated with the GI50 values of more than one platin drug. The
expression of BCL2L1, GSTP1, MAP3K1, MAPK3, MT1A, and MT2 was
correlated with cisplatin GI50 values, but not with carboplatin and/
or oxaliplatin GI50. Similarly, the carboplatin GI50 was correlated
with AKT1, EGF, ERCC1, KRAS, LIG3, MTHFR, MTR, RAD50, and TP53,
while oxaliplatin GI50 was correlated with ATM, BCL2, CLCN6,
ERCC2, ERCC6, and UGT1A1. Despite the close similarity between
cisplatin and carboplatin GI50 responses (see Fig. 4), MFA only
related the expression of one gene (ATP7B) to GI50 levels of both
drugs. BCL2 and MSH2 correlated with both the cisplatin and
oxaliplatin GI50 values (BCL2 levels did not correlate with
carboplatin GI50). The increase in misclassification caused by the
elimination of MSH2 from any gene signature in which it was
present was significant; for example, misclassification of Cis14 and
Oxa21 (Table 1) was increased by 28.2% and 19.1%, respectively
(Supplementary Table S2A and S2C). These differences may reflect
the spectrum of activity, sensitivity, and toxicity of these signature
genes.22–24,36,37

Our previous validation using patient expression and CN data
for other chemotherapy drugs on other datasets6,27 exhibited
better performance than what is reported in this study. We
investigated the possibility that disease and molecular hetero-
geneity in platin-treated patients may have affected the accuracy
of our results. Model predictions were re-evaluated after stratifying
clinical features, such as time-to-disease recurrence, cancer stage,
and metastatic lymph node count. Patients with advanced stage
breast cancer (stage III and IV) were analyzed separately from
patients with earlier stage diagnoses (stage I and II). The cisplatin
gene signature Cis1 performed best on stage IV patients (overall
accuracy of 72.4% at a 2-year recurrence threshold), while Oxa1
similarly performed best in predicting late stage cancers (74.5%
accurate for stage III and 71.4% accurate for stage IV at a 2-year
recurrence threshold). Cis5 was also more accurate for patients
with later stage cancers (72.4% overall accuracy at 18 months).
The accuracies of gene signatures were similar across all stages
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(e.g., Car1 ranged from 58 to 74%). Cisplatin-treated patients with
bladder cancer and oxaliplatin-treated patients with CRC in TCGA
were also stratified by lymph node status (N0, N1, and N2 [the
dataset of patients with bladder cancer only included two N3
patients, which were combined with N2 patients in the analysis;
N3 was not presented in patients with CRC]). In TCGA patients
with bladder cancer, Cis1 exhibited ~60% accuracy across all
categories; however, it performed better in sensitive N0 and N1
patients than N2. Cis2 was less accurate for N2 patients than for
N0 and N1 patients. Sensitive N2 patients were more likely to be
misclassified (<40%) than relapsed N2 patients. In TCGA patients
with CRC, Oxa1 was 88% accurate in identifying N2 patients (95%
accurate for sensitive N2 patients [n= 19], and 67% accurate for
relapsed N2 patients [n= 6]). Oxaliplatin gene signatures were less
accurate for N1 patients than N0 and N2 patients. Thus,
heterogeneity in the disease stage and metastatic phenotypes
adversely confounds the overall accuracies of our predictions.
Gene signature models derived from cell lines and tested on

patients differed in their respective outcome measures. The exact
GI50 cell line threshold that best predicts patient outcomes is not
known, and different groups use different methods to establish
thresholds for GI50 values.38,39 Therefore, we developed ML
models for platin drugs that predict drug responses without
relying on arbitrarily set GI50 thresholds. For cisplatin, SVM
ensemble averaging generated at different resistance thresholds
showed a small increase in accuracy compared with most gene
signatures, better representing the sensitive, disease-free class
(59% accuracy). Interestingly, ensemble averaging of only the
gene signatures built using a moderate GI50 threshold yielded
results that better represented the resistance class. This result
more closely matched the accuracy of Cis1, and may be due to
the greater overall impact of Cis1 on the ensemble prediction.
When limiting ensemble averaging to only those gene signatures
with the highest area under the curve (AUC) at each resistance
threshold, differences in predictions were negligible. Ensemble ML
potentially avoids problems with poor performance and over-
fitting by combining gene signatures that individually perform
slightly better than chance.40

Reconciliation of gene signatures without features known to
be related to chemoresistance with tumor biology is challen-
ging. Our thresholding approach may reveal potentially
important genes and pathways associated with platin resistance.
A preferable method would be to explore pathways related to
signature genes to improve accuracy, identify potential targets
for further study of chemoresistance, and expand the model
parameters by considering alternate states other than those
captured in the original signature.41 Signatures for resistance
may be useful for developing targeted interventions to re-
sensitize tumors. For example, the mismatch repair (MMR) gene
MSH2 is commonly present in gene signatures at high resistance
levels for oxaliplatin, which is of interest because MMR
deficiency has been shown to predict oxaliplatin resistance.37

Indeed, MLH1-, MSH2-, and MSH6-deficient cells are more
susceptible to oxaliplatin, although an MMR deficiency is
associated with cisplatin resistance.36 The autoimmune
disease-associated gene SIAE, which exhibits a strong negative
correlation with the oxaliplatin response in patients with
advanced CRC,42 was selected in the majority of thresholded
oxaliplatin gene signatures (Supplementary Table S2C). The
gene BCL2, which was commonly selected for cisplatin (Fig. 5a),
was rarely selected for oxaliplatin (Fig. 5c). At the highest levels
of resistance to cisplatin, gene signatures were enriched for
genes belonging to DNA repair, anti-oxidant response, and
apoptotic pathways, as well as drug transporters (Fig. 5a). These
gene pathways are known to be involved in cisplatin resis-
tance43,44 and these specific genes may be explored in
subsequent studies designed to identify their contributions to
the chemotherapy response in a biochemical context.

Log-loss evaluates the accuracy of a classifier by penalizing
erroneous classifications and is relevant in cases where data are
imbalanced and/or have an unequally distributed error cost. We
assessed whether ML gene signatures based on log-loss
minimization improved the accuracy of predicting patient
responses (Supplementary Table S3) and compared them to gene
signatures generated by minimizing cell line misclassification.
When gene signatures generated from both methods were highly
similar (generated at the same GI50 threshold, consisting of a
similar number of genes and ≥80% shared genes), the prediction
accuracy of outcomes of TCGA patients with cancer was nearly
indistinguishable, as accuracy can vary over different relapse
thresholds. When significant differences in predictions were
observed, the misclassification-based gene signatures were
generally more accurate (Cis1, Cis17, and the “12-Resistant”
carboplatin gene signature were +8.3%, +5.6%, and +3.9% more
accurate than the log-loss gene signature, respectively). Oxalipla-
tin gene signatures were dissimilar across all GI50 thresholds, as
the log-loss minimized ML gene signatures often contained
greater numbers of genes than the misclassification-based gene
signatures. Many of these larger gene signatures were less
accurate in predicting patient outcomes than gene signatures
that minimized misclassification rates, consistent with the
observation that this evaluation and model selection method is
more prone to overfitting. This pattern was also noted for gene
signatures generated at extreme GI50 thresholds for all three platin
drugs, in which the response was, by definition, somewhat
imbalanced.
The prediction of responses to combination chemotherapy with

the gene signatures described here may be feasible. Not included
in the present analysis were signatures for methotrexate,
vinblastine, and doxorubicin, which comprise the MVAC cocktail
used to treat bladder cancer. This lack of analysis was primarily
due to the small number of patients treated with this drug
combination in the TCGA bladder cancer dataset (N= 11).
Individual signatures for several of these drugs have been derived
and analyzed using the patient data from Molecular Taxonomy of
Breast Cancer International Consortium (METABRIC).27 A reason-
able approach to predicting responses to combination che-
motherapy would be to first determine the probability of
sensitivity or resistance to individual drugs, after accounting for
the misclassification rate for each (defined as d1, …, dk). The ML
classifiers output these probabilities, analogous to their misclassi-
fication rates in a set of patients treated identically. If the model
predicts that the patient is sensitive to drug d1 with 90%
probability, sensitive to drug d2 with 5% probability, and the errors
are independent, then the probability of sensitivity to the
combination is 1− (1− 0.9) * (1− 0.05)= 90.5%, and the prob-
ability of resistance is 9.5%, assuming no synergistic effects
between drugs. If interactions or dependence among errors are
suspected, the combined probability of resistance to the pair d12
could be estimated based on the features that are shared by the
signatures of both drugs. The probability of sensitivity to the
combination would then be: 1− (1− d12) * (1− d3) *…* (1− dk).
The predictive accuracy for the same gene signature might be

able to provide good differentiation between the two datasets.
Cis3 (Supplementary Table S6A) had an AUC of 0.64 when
validated against TCGA patients with bladder cancer. However,
the AUC was lower when applied to the dataset reported by Als
et al.31 (AUC= 0.18). Patient metadata in the latter study only
indicated patient survival times, while we based the expected
TCGA patient outcomes on time to disease recurrence. As the
basis of our expected outcomes differed between datasets, these
differences may serve as a confounding factor when determining
the accuracy of gene signatures. The datasets also differed in how
expression was measured (microarray vs. RNA-seq). The relevance
of gene signatures based on training and testing data from
different platforms can affect the accuracy of validation, which
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might not be improved by data normalization. In the present
study, datasets were subjected to z-score normalization. Other
techniques to correct for some of these effects have been
described and could be applied in subsequent studies.45

In summary, we describe GI50 or IC50 threshold-independent ML
gene signatures that predict the chemotherapy responses of
patients with cancer to platin agents. Ensemble ML produced
combined signatures that were more accurate than most
individual gene signatures generated with different thresholds.
Genes associated with cisplatin response included genes that
exacerbate resistance in patients with a history of smoking. The
methodology described here should be adaptable to other drugs
and cancer types. With a range of gene signatures for multiple
drugs, the efficacy of treatment might be improved by tailoring
treatment to a patient’s specific tumor biology and reduce
treatment duration by limiting the number of different therapeutic
regimens prescribed before achieving a successful response.46

MATERIALS AND METHODS
Data and preprocessing
Cell-line datasets. Microarray GE and data obtained from breast
cancer cell lines were used to train ML-based gene signatures of
drug responses based on respective growth or target inhibition
data (GI50 or IC50). Cell lines were treated with either cisplatin (N=
39), carboplatin (N= 46), or oxaliplatin (N= 47).13 Bladder cancer
cell line GE and IC50 measurements for cisplatin were obtained
from CancerRxGene (N= 17).46 However, all models (gene
signatures) used to evaluate patient data were trained on breast
cancer cell line data because the number of bladder cancer cell
lines was insufficient to produce accurate signatures.

Datasets from patients with cancer. RNA-seq GE and survival
measurements were downloaded from TCGA for patients with
bladder urothelial carcinoma (N= 72 patients treated with
cisplatin),28 ovarian epithelial tumors (N= 410 treated with
carboplatin),29 and colorectal adenocarcinoma (N= 99 treated
with oxaliplatin).30 GE values for cisplatin-treated patients with cell
carcinoma of the urothelium (N= 30)31 and oxaliplatin-treated
patients with CRC (N= 83)32 were obtained from the Gene
Expression Omnibus. Clinical metadata and GE for TCGA patients
were obtained from Genomic Data Commons (https://gdc.cancer.
gov/), while methylation HM450 (Illumina) data for these patients
were downloaded from cBioPortal.47

Development and pre-processing of biochemically-inspired gene
sets. Initial gene sets used to develop signatures for each drug
were identified from previous publications (see Supplementary
References, Section B) and databases, such as PharmGKB and
DrugBank.48,49 The evidence supporting each gene contained in
the final signatures is independent scientific evidence that the
genes selected are not the result of spurious associations. The final
gene sets were chosen using MFA with the breast cancer cell line
data to analyze interactions between GE, CN, and GI50 data for the
drug of interest.50 Genes whose GE and/or CN showed a direct or
inverse correlation with GI50 were selected for SVM training.
Because the number of genes related to the GI50 for oxaliplatin
exceeded the number of cell lines available for training, we limited
the input for the oxaliplatin ML model to those genes whose GE
were related to the GI50. Similarly, the number of correlated genes
in cisplatin-treated cells exceeded the number of cell lines. For
cisplatin, genes whose expression correlated with the GI50 were
eliminated if they showed no or little expression in TCGA patients
with bladder cancer (i.e., RNA-seq counts by Expectation
Maximization [RSEM] were <5.0 for the majority of individuals).
This approach reduced the overall number of genes for the SVM
analysis, and thus helped to avoid a data to size sample
imbalance. For cisplatin, the MFA was repeated using IC50 values

for 17 bladder cancer cell lines; however, the available CN data for
these genes generally showed a lack of variation in the cell lines.
Instead, the available IC50 values for three other cancer drugs
(doxorubicin, methotrexate, and vinblastine) were compared with
the IC50 of cisplatin using MFA.
The direct application of an SVM model to patient data

without a normalization approach is imprecise when training
and testing data are not obtained using similar methodology
(i.e., different microarray platforms). Expression levels were
normalized by conversion to z-scores using MATLAB to compare
the cell line GE microarray data and the patient RNA-seq GE
datasets.51 Although log2 intensity values from microarray
data were not available for TCGA samples, RNA-seq-based
GE data and log2 intensities from microarray data are highly
correlated.52

Machine learning
SVMs were trained with breast cancer cell line GE datasets13 with
the Statistics Toolbox in MATLAB51 using a method similar to the
procedure reported by Dorman et al.6 Rather than employing a
linear kernel, we used a Gaussian kernel function (fitcsvm) and
then tested the data with leave-one-out cross-validation (using
the options “crossval” and “leaveout”). A greedy BFS algorithm was
used to improve the classification accuracy.53 BFS leaves out
individual genes from the initial MFA-qualified gene set and then
trains a cross-validated Gaussian kernel SVM on the training
samples, removing the gene with the highest misclassification
rate. The procedure is repeated until all genes have been
evaluated. The gene subset with the lowest misclassification rate6

or log-loss statistic25 based on cross-validation is selected as the
gene signature for subsequent testing with patient GE and clinical
data. K-fold cross-validation of the misclassification-based gene
signatures was performed using MATLAB software, as described in
Zhao et al.25

SVMs minimized using the log-loss classification function were
also generated with both the software described in Zhao et al.
(uses a multiclass compatible “fitcecoc” function)25 and with a
modified version of the software described above (using
“fitSVMPosterior” to compute posterior probabilities). Computed
probabilities differed between “fitSVMPosterior” and “fitcecoc”
(range: 0.02–0.04); thus, the resulting gene signatures will differ
between the two programs. When given unbalanced data (e.g.,
lower resistance thresholds), “fitSVMPosterior” will warn that some
classes are not represented, and thus those folds will not predict
the labels for those missing classes. The log-loss gene signatures
described in this manuscript were generated with the multiclass
compatible “fitcecoc” function software.25

Derivation of gene signatures for different drug resistance
thresholds
We have previously set a conventional GI50 threshold that
distinguishes sensitivity from resistance at the median of the
range of drug concentrations that inhibited cell growth by 50%.6

We hypothesized that different gene signatures would be derived
for different levels of drug resistance by varying this threshold. ML
experiments for classifying resistance or sensitivity at GI50 values
generated a series of optimized Gaussian SVM gene signatures
whose performances were assessed with patient expression data
for each signature. A heat map illustrating the frequencies of
genes appearing in these gene signatures was created with the R
language hist2d function.
A composite gene signature was created by ensemble

averaging of all gene signatures generated at each resistance
threshold. Ensemble averaging combines signatures by averaging
the weighted accuracy of a set of related models.40 The decision
function for the ensemble classifier is the mean of the decision
function scores of the component classifiers, weighted by the
AUC.
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Significance of cell line-derived gene signatures
The significance of the derived SVMs (regardless of whether the
observed performance of the gene signatures could have arisen
by chance) was first assessed using a permutation analysis with
randomized cell line labels and with random sets of genes, as
described previously.6 Using the median cisplatin GI50 as the
resistance threshold, 10,000 gene signatures based on random
gene selection (15 genes) had higher rates of misclassification
than the best median SVM gene signatures (2 signatures with
7.7% misclassification). Cisplatin, carboplatin, and oxaliplatin GE
data for random cell line label combinations (n= 10,000)
generated only 8, 1, and 1 signatures, respectively, with lower
error rates than the best biochemically-inspired signatures.
When minimizing for log-loss (rather than misclassification), the
random gene analysis (10,000 iterations; median cisplatin GI50
threshold) only resulted in gene signatures with a higher log-
loss than the signature generated with the initial cisplatin gene
set. The log-loss-based random label analysis (n= 2000
combinations) resulted in 3.4% of random label gene signatures
with a lower log-loss than the cisplatin signature at the same
GI50 threshold (5.27). This finding was not entirely surprising
since it depends on the GI50 threshold used for labeling. The
differences between GI50 values for cell lines close to the
median GI50 used in this analysis were almost negligible (e.g.,
5.11 vs. 5.12) and likely within the measurement error for these
values.
Regarding the specificity of the cisplatin gene signatures,

the best-performing cisplatin gene signatures (Cis1 and Cis2)
were used to evaluate participants who were treated with
other drugs (using an 18-month post-treatment threshold).
Among these patients, 36.5% of patients who were disease-free
were predicted accurately with the Cis1 signature (N= 178;
22% less accurate than platin-treated patients), and 62.9% of
patients with recurrent disease were predicted accurately (N=
70; 8.1% less accurate). Cis2 was 43.8% accurate at predicting
disease-free non-platin-treated patients (N= 178; 12.3% lower
accuracy) and 60.0% accurate at predicting patients who
relapsed (N= 70; 2.9% less accurate). GE changes in patients
treated with platin drugs were better modeled by cancer cell-
line-based predictors than in patients receiving other drug
treatments.
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