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miR-122, the expression of which is regulated by several transcription factors, such as HNF1A, was recently reported to be
associated with type 2 diabetes (T2DM) and hepatocellular carcinoma. HNF1A variants can cause diabetes and might be
involved in the development of primary liver neoplasm. Differences in miR-122 expression among different types of diabetes
have not been studied. This study aimed to investigate differences in serum miR-122 levels in Chinese patients with different
forms of diabetes, including T2DM, type 1 diabetes (T1DM), HNF1A variant-induced diabetes (HNF1A-DM), glucokinase
variant-induced diabetes (GCK-DM), and mitochondrial A3243G mutation-induced diabetes (MDM). In total, 12 HNF1A-DM
patients, 24 gender-, age-, and body mass index-matched (1 : 2) T2DM patients and 24 healthy subjects were included in this
study. In addition, 30 monogenic diabetes (11 GCK-DM and 19 MDM) and 17 T1DM patients were included. Fasted blood
biochemistry and miR-122 were measured. The results showed that the HNF1A-DM patients had lower miR-122 levels [0.046
(0.023, 0.121)] than T2DM patients [0.165 (0.036, 0.939), P = 0 02] and healthy controls [0.249 (0.049, 1.234), P = 0 019]. The
area under the curve of the receiver operating characteristic curve for miR-122 to discriminate HNF1A-DM and T2DM was
0.687 (95% CI: 0.52–0.86, P = 0 07). There was no difference in serum miR-122 among HNF1A-DM, GCK-DM, MDM, and
T1DM patients. Lower serum miR-122 is a unique feature of HNF1A-DM patients and might partially explain the increased risk
for liver neoplasm and abnormal lipid metabolism in HNF1A-DM patients.

1. Introduction

Diabetes mellitus (DM) is a chronic metabolic disorder
characterized by progressive hyperglycemia and usually
accompanied by lipid metabolism disorder. Maturity-onset
diabetes of the young (MODY) is a rare monogenic form of
diabetesmellitus that accounts for 2–5%of total diabetes cases
and is often misdiagnosed as another type of diabetes [1–3].
The liver-enriched transcription factor (LETF) HNF1A is
a transcriptional factor that is essential for liver differentia-
tion and regulates a number of genes involved in lipid and
glucose metabolism [4, 5]. It is well known that HNF1A
variant-induced diabetes (HNF1A-DM) is the most com-
mon form of MODY.

MicroRNAs (miRs) are small noncoding RNA molecules
that regulate gene expression at the posttranscriptional level
[6]. miR-122 is one of the most abundant liver-specific miRs.
It plays important roles in hepatocyte development, differen-
tiation, and metabolism and is involved in several important
aspects of liver pathophysiological processes, including fatty
acid and cholesterol metabolism, hepatocarcinogenesis, and
hepatitis C virus (HCV) replication [7–10]. In patients with
chronic liver diseases, such as HCV infection and hepatocel-
lular carcinoma (HCC), serum miR-122 levels are generally
lower than those in healthy controls [11, 12]. Recently,
miR-122 has been shown to have adverse metabolic effects
in the general population. miR-122 levels were positively
associated with the future development of insulin resistance,
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metabolic syndrome, and type 2 diabetes (T2DM) [13, 14].
Of note, miR-122 was shown to have a strong positive asso-
ciation with LETFs such as HNF1A and may be one of the
downstream factors of this transcription factor [15–18].
Therefore, we hypothesized that serum miR-122 levels are
reduced in HNF1A-DM patients and that low serum miR-
122 is a potential biomarker for HNF1A-DM. In this study,
we compared the levels of serum miR-122 among Chinese
patients with different forms of diabetes, including HNF1A-
DM, T2DM, type 1 diabetes (T1DM), glucokinase variant-
induced diabetes (GCK-DM), and mitochondrial A3243G
mutation-induced diabetes (MDM).

2. Materials and Methods

2.1. Study Participants. In total, 107 volunteers were recruited
from in- and outpatients at Peking University People’s
Hospital, Beijing, China. Eighty-three DM cases included
11 GCK-DM, 12 HNF1A-DM, 19 MDM, 17 T1DM, and 24
T2DM patients. Twelve HNF1A-DM patients carried the
heterozygous variants reported to cause diabetes (A311D,
IVS8+1G>A, P379A, R131W, R200W, R229Q, R263C,
T10M, or V567I). Eleven GCK-DM patients carried het-
erozygous variants reported to cause diabetes (V412E,
S445R, R250C, Y234H, R186Term, R36W, R377H, G44S,
or R43H). Eleven MDM patients carried mitochondrial
tRNALeu(UUR)A3243G mutation. If the patients had unde-
tectable or low C peptide levels and persistently positive
antibody associated with T1DM, they were diagnosed as
having T1DM. In this study, T2DM was defined as fasting
plasma glucose (FPG)≥ 7.0mmol/l and/or 75 g OGTT 2h
plasma glucose (2-hPG)≥ 11.1mmol/l (1999 World Health
Organization criteria), a self-reported history of diabetes
diagnosed by a physician or the use of antidiabetic agents.
Twenty-four control subjects met the following criteria: (1)
body mass index (BMI)< 24 kg/m2, (2) without hyperglyce-
mia, hypertension, and other chronic diseases, (3) normal
liver enzyme levels, alanine transaminase (ALT)< 50U/L,
aspartate aminotransferase (AST)< 50U/L, and (4) no intake
of any lipid-lowering drugs or alcohol. T2DM patients and
healthy subjects were matched (1 : 2) according to gender,
age, and BMI with HNF1A-DM patients in this study. All
participants signed written informed consent. The study
program was approved by the Ethics Committee of Peking
University People’s Hospital.

2.2. Biochemical Measurements and Clinical Data Collection.
Blood and urine samples were collected from the study sub-
jects after 8 h fasting. Genomic DNA was extracted from
peripheral whole blood samples using the Blood DNA Mini
Kit (SIMGEN, Hangzhou, China). Genotyping was con-
ducted by polymerase chain reaction (PCR) amplification
and Sanger sequencing. HbA1c, plasma glucose, ALT, AST,
total cholesterol (TC), triglyceride (TG), high-density lipo-
protein cholesterol (HDL-c), low-density lipoprotein choles-
terol (LDL-c), and creatinine (CRE) levels and the urinary
albumin/creatinine ratio (ACR) were determined as previ-
ously described [19]. Systolic and diastolic blood pressures
were measured using a sphygmomanometer after resting

for at least 5min. Weight and height were measured to calcu-
late the BMI by the formula: weight (kg)/height2 (m2). Waist
and hip circumferences were also measured.

2.3. miR-122 Level Measurement by Quantitative Real-Time
(RT-q) PCR. Serum miR-122 levels were measured as
described previously [13]. Briefly, total RNA was extracted
from plasma by using a miRNeasy Serum/Plasma Kit
(Qiagen, Hilden, Germany) according to the manufacturer’s
specifications. RNA yield and integrity were assessed by
using a NanoDrop 2000 spectrophotometer (Thermo Scien-
tific, Waltham, MA, USA) and agarose gel electrophoresis
and ethidiumbromide staining, respectively.miR-122 expres-
sion was quantified by RT-qPCR. Reverse transcription was
conducted in a 10μl reaction mixture and containing 50 ng
RNA, 2μl PrimeScript Buffer (TaKaRa, Japan), 2μl RTprimer
(Applied Biosystems, Foster City, CA, USA), and 0.5μl
PrimeScript RT Enzyme Mix I (TaKaRa) in a GeneAmp®
PCR System 9700 (Applied Biosystems) at 37°C for 15min,
followed by 85°C heat inactivation for 5 s. The RT reaction
mixture was stored at −20°C. qPCRs were run in a Light-
Cycler® 480 II Real-time PCR Instrument (Roche, Switzer-
land), using 10μl PCR reaction mixtures containing 1μl
cDNA, 3.5μl nuclease-free water, 5μl 2×LightCycler 480
Probes Master (Roche), and 0.5μl TaqMan® microRNA
Assay (catalog number 4427975; Applied Biosystems). Reac-
tions were run in a 384-well optical plate (Roche) at 95°C for
10min followed by 40 cycles of 95°C for 10 s and 60°C for
30 s. All reactions were conducted in triplicate. The miR-
122 expression level was normalized to the level of Syn-
cel-miR-39 and was calculated using the 2−ΔΔCt method.

2.4. Statistical Analysis. Normally distributed continuous
variables are presented as the means and standard deviations
(SDs), and nonnormally distributed variables are presented
as the medians and interquartile ranges (IQRs). Differences
between groups were determined using Student’s t-test for
variables with a normal distribution. A P value < 0.05 was
considered statistically significant. All statistical analyses
were conducted using SPSS (Chicago, IL, USA) version 20.0.

3. Results

3.1. Clinical Features of and Serum miR-122 Levels in the
Study Population. The clinical and biochemical characteris-
tics of the patients and control subjects are presented in
Table 1. Serum miR-122 levels were significantly lower in
HNF1A-DM patients [0.046 (0.023, 0.121)] than in T2DM
patients [0.165 (0.036, 0.939), P = 0 02] and healthy controls
[0.249 (0.049, 1.234), P = 0 019]. To check whether HNF1A-
DM patients could be discriminated from T2DM patients on
the basis of serum miR-122, a receiver operating characteris-
tic (ROC) curve was generated; the area under the ROC curve
(AUC) for miR-122 was 0.687 (95% CI: 0.52–0.86, P = 0 07).

Serum miR-122 levels of GCK-DM, MDM, and T1DM
patients were [0.086 (0.041, 0.357)], [0.094 (0.038, 0.440)],
and [0.048 (0.026, 0.243)], respectively. There was no differ-
ence in serum miR-122 among HNF1A-DM, GCK-DM,
MDM, and T1DM patients. When HNF1A-DM, GCK-DM,
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and MDM patients were pooled into one monogenic diabetes
group, nodifferences inmiR-122 levelswereobservedbetween
this group and T1DM and T2DM patients and healthy con-
trols. Lower LDL-c levels were observed in HNF1A-DM
patients than in T2DM patients, while HDL-c levels were
higher in femaleHNF1A-DMpatients than inT2DMpatients.

When HNF1A-DM, GCK-DM, MDM, T1DM, and
T2DM patients were pooled into one diabetes group, there
was no difference in serum miR-122 levels between diabetes
patients [0.072 (0.035, 0.357)] and healthy controls [0.249
(0.049, 1.234), P = 0 112].

3.2. Clinical Features of HNF1A-DM and Non-HNF1A-DM
Patients. When GCK-DM, MDM, T1DM, and T2DM
patients were pooled into one non-HNF1A-DM group, it
was observed that the LDL-c levels were significantly lower
in HNF1A-DM patients (1.90± 0.77mmol/l) than in non-
HNF1A-DM patients [(2.44± 0.78mmol/l), P = 0 045]. Fur-
ther, HNF1A-DM patients were diagnosed earlier than
non-HNF1A-DM patients. There were no significant differ-
ences in age, BMI, blood pressure, fasting insulin, C-peptide,
HbA1c, HDL-c, triglyceride, creatinine, and ACR levels
between the two groups. Linear regression analysis showed
that the levels of miR-122 were negatively associated with
diabetes type after adjustment for age, gender, BMI, HbA1c,
and ALT (standardized beta coefficient =−0.234, P = 0 049).

4. Discussion

This study was the first to investigate differences in serum
miR-122 levels in patients with different forms of diabetes.
The results showed that serum miR-122 levels in HNFA-
DM patients were lower than those in T2DM patients and
healthy controls, while no differences were observed among
T2DM, GCK-DM, MDM, and T1DM patients and healthy
controls. Low serum miR-122 level was associated with
HNF1A-DM, independent of age, gender, BMI, HbA1c,
and ALT. Additionally, as expected, lower LDL-c levels were
observed in HNF1A-DM patients than in patients with non-
HNF1A-DM forms of diabetes, while HDL-c levels were
higher than those in female T2DM patients. Thus, low serum
miR-122 was a unique feature of HNF1A-DM patients that
distinguished them from T2DM patients. The low serum
miR-122 might partially explain the increased risk of liver
neoplasm and abnormal lipid metabolism associated with
HNF1A-DM.

A few of studies have demonstrated that miR-122
expression levels are positively associated with multiple
LETFs, such as HNF1A, HNF3A, HNF3B, and HNF4A,
which are involved in the differentiation of the liver and glu-
cose and lipid metabolism [15, 17, 18, 20]. Wei et al. reported
that HNF4A regulates gluconeogenesis and lipid metabolism
through miR-122 expression [20]. However, Coulouarn et al.
recently reported that HNF4A does not directly drive miR-
122 expression because siRNA-mediated HNF4A silencing
did not significantly alter miR-122 expression. In contrast,
knockdown of HNF1A, HNF3A, or HNF3B resulted in
reduced miR-122 expression, suggesting that miR-122 may
be under the control of these transcription factors [15].

In fact, HNF4A acts upstream of HNF1A, mutation of which
can cause a form of MODY (MODY1) [21]. Thus, this study
confirmed thatHNF1Adirectly regulatesmiR-122 expression.

Multiple studies have shown that miR-122 regulates
cholesterol and fatty acid metabolism [13, 22–24]. Deletion
of miR-122 in the liver resulted in significant decreases in
total serum TG and cholesterol levels. Anti-miR-122 therapy
reduces circulating cholesterol levels by downregulating
cholesterol biosynthesis genes, including 3-hydroxy-3-meth-
ylglutaryl-coenzyme A synthase 1 (HMGCS1), 3-hydroxy-
3-methylglutaryl-coenzyme A reductase (HMGCR), and
phosphomevalonate kinase (PMVK) [25–27]. HNF1A-DM
patients reportedly have lower LDL-c levels and higher
HDL-c levels than T2DM patients [28, 29], and liver-specific
knockout of HNF1A in mice resulted in low LDL-c levels,
whichmight be attributed to decreased proprotein convertase
subtilisin/kexin type 9 (PCSK9) and increased LDL receptor
expression [30]. These findings indicate that HNF1A might
regulate lipid metabolism in the liver via miR-122 expres-
sion. However, further studies are needed to confirm the rela-
tionships among HNF1A, miR-122, and lipid metabolism.

Several studies have revealed that primary liver tumors,
including benign liver adenomatosis and HCC, are clustered
in HNF1A-DM families [31–33]. HNF1A plays a key role in
hepatocarcinogenesis. miR-122 expression is suppressed in
human HCC, and downregulation of miR-122 is associated
with metastasis and poor prognosis in HCC patients [34].
Therefore, it is possible that suppressed miR-122 expression
might account for the association between HNF1A-DM
and HCC.

Recent studies confirmed serum miR-122 is increased in
T2DM patients and is associated with insulin resistance, obe-
sity, metabolic syndrome, and T2DM [13, 14]. In this study,
serum miR-122 levels were lower in HNF1A-DM than in
T2DM patients and controls. Since miR-122 increases
around the time of the onset of acute liver failure and liver
damage or drug-induced hepatitis can promote elevated liver
enzyme and miR-122 levels [35, 36], to identify a real associ-
ation between HNF1A and miR-122, all subjects with ele-
vated liver enzymes and patients receiving agents that affect
the miR-122 level, such as statins, and patients consuming
alcohol, were excluded in this study. Thus, it is not surprising
that, despite the small sample size, this study could identify a
difference in serum miR-122 between HNF1A-DM and
T2DM patients. Unfortunately, the results of ROC analysis
to distinguish HNF1A-DM and T2DM did not reach a statis-
tical significance (AUC=0.687, P = 0 07). A further study
with a large sample size is needed.

This study had some limitations. Firstly, as mentioned
above, the sample size was small. Because of the low preva-
lence of HNF1A-DM, cooperation among multiple centers
would help in collecting more HNF1A-DM samples. How-
ever, the results of the current study do provide valuable clues
for further research. Secondly, for a small sample size study,
assay errors for a given sample should be avoided. Although
a widely accepted method for measuring miR-122 was
adopted in this study, more sensitive and accurate quantifica-
tion methods, such as digital PCR, would help improve the
reliability of the results.
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In conclusion, this study showed that miR-122 expression
is decreased in HNF1A-DM patients compared to T2DM
patients and healthy subjects, which might partially explain
the abnormal lipid metabolism and an increased risk for liver
neoplasms in HNF1A-DM patients and help us understand
the nature of HNF1A-DM. The results also provided clues
to further explore the pathophysiology of HNF1A-DM and
the clinical characteristics of HNF1A-DM patients.
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