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Abstract: Global Navigation Satellite Systems (GNSS) are the main source of position, navigation,
and timing (PNT) information and will be a key player in the next-generation intelligent
transportation systems and safety-critical applications, but several limitations need to be overcome
to meet the stringent performance requirements. One of the open issues is how to provide precise
PNT solutions in harsh propagation environments. Under nominal conditions, the former is typically
achieved by exploiting carrier phase information through precise positioning techniques, but these
methods are very sensitive to the quality of phase observables. Another option that is gaining
interest in the scientific community is the use of large bandwidth signals, which allow obtaining a
better baseband resolution, and therefore more precise code-based observables. Two options may
be considered: (i) high-order binary offset carrier (HO-BOC) modulations or (ii) the concept of
GNSS meta-signals. In this contribution, we assess the time-delay and phase maximum likelihood
(ML) estimation performance limits of such signals, together with the performance translation
into the position domain, considering single point positioning (SPP) and RTK solutions, being an
important missing point in the literature. A comprehensive discussion is provided on the estimators’
behavior, the corresponding ML threshold regions, the impact of good and bad satellite constellation
geometries, and final conclusions on the best candidates, which may lead to precise solutions under
harsh conditions. It is found that if the receiver is constrained by the receiver bandwidth, the best
choices are the L1-M or E6-Public Regulated Service (PRS) signals. If the receiver is able to operate at
60 MHz, it is recommended to exploit the full-bandwidth Galileo E5 signal. In terms of robustness and
performance, if the receiver can operate at 135 MHz, the best choice is to use the GNSS meta-signals
E5 + E6 or B2 + B3, which provide the best overall performances regardless of the positioning method
used, the satellite constellation geometry, or the propagation conditions.

Keywords: GNSS; Cramér–Rao bound; time-delay and phase ML estimation; SPP and RTK
positioning; precise positioning; GNSS meta-signals; high-order BOC signals

1. Introduction

Global Navigation Satellite Systems (GNSS) are the main source of position, navigation,
and timing (PNT) information in several engineering fields. The main advantages are their
global coverage and that the satellite-based infrastructure is already deployed and maintained
by governmental institutions. The latter allows the user to exploit GNSS freely and the ability to
design both mass-market and dedicated receivers. These remarkable advantages will make GNSS
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a key player in the next-generation intelligent transportation systems and several safety-critical
applications. However, even if the navigation research community has been developing positioning
methodologies for decades, there are still several limitations that may limit the use of GNSS in the
most stringent applications, i.e., lane-level precision for autonomous driving in highly populated
cities with harsh propagation conditions. One of the key open problems is how to achieve precise
PNT solutions under harsh environments, i.e., affected by multipath, deep fading, signal blockage,
or non-line-of-sight (NLOS) conditions. Using standard GNSS signals, it is known that code-based
techniques (i.e., only relying on the time-delay estimation between the receiver and a set of visible
satellites) do not provide precise PNT information. The standard way to provide such precise
navigation capabilities is by exploiting carrier phase information. Indeed, this measurement is linked
to the wavelength, which is much smaller than the baseband signal resolution (i.e., for a legacy
Global Positioning System (GPS) L1-C/A signal, the wavelength is 19.4 cm, while the baseband
signal resolution is around 300 m). The two main solutions are precise point positioning (PPP) [1]
and real-time kinematic (RTK) positioning [2]. However, the main problem of these techniques is
that they are very sensitive to the quality of phase observables, i.e., it is unlikely that they provide
a robust solution under harsh propagation conditions, at least exploiting standard GNSS signals.
Therefore, in order to provide robust and precise solutions, new alternatives must be accounted for.
A possible alternative is to robustify the signal processing, for instance resorting to outlier mitigation
techniques [3,4]. Another option is to increase the receiver complexity and exploit large bandwidth
signals, which allow obtaining a better (i.e., with respect to standard signals) baseband resolution,
and therefore more precise code-based observables. The latter can be achieved by using (i) high-order
binary offset carrier (HO-BOC) modulations or (ii) GNSS meta-signals, which is the combination of
two GNSS signals at different frequency bands as a single signal.

It is a fact that there is an increasing interest in the topic of GNSS meta-signals. The authors are
not aware if this is the case on the industry side, but on the academic side, the European Space Agency
(ESA) is funding (or has recently funded) projects related to the study of HO-BOC signals and GNSS
meta-signals, in order to obtain more precise code-based pseudoranges [5–7]. For instance, one of the
main goals of the latest one [7] is to assess if such GNSS meta-signals are an option to achieve sub-meter-
or decimeter-level positioning in harsh propagation conditions (i.e., multipath and urban canyons),
mainly because carrier phase-based positioning techniques are known to fail in such challenging
scenarios as the phase ambiguity resolution needs precise phase observables. However, there are very
few contributions discussing the concept of meta-signals [8,9]; therefore, before considering realistic
harsh propagation conditions, an important missing point in the literature is the characterization of
the ultimate positioning performance limits of such signals (i.e., resorting to fundamental estimation
performance bounds), which is the goal of this article. In that perspective, in a recent contribution,
we provided the derivation of a compact joint time-delay and phase estimation Cramér–Rao bound
(CRB) and the time-delay ML estimation (MLE) performance limits of different GPS and Galileo signals,
including two Galileo-based meta-signals [10]. However, no further discussion was provided on the
impact on the position estimation, considering both code and phase observables.

With respect to [10], the main contributions of this article are:

• An overview of the GNSS meta-signals, including combinations of GPS, BeiDou, and Galileo
signals.

• A comparison of GNSS meta-signals with a set of representative HO-BOC signals.
• A short discussion of the use of very large bandwidth meta-signals.
• The impact of the time-delay MLE behavior (related to the secondary peaks of the autocorrelation

function (ACF)) on the phase MLE and the convergence to the phase CRB.
• The performance limits of code-based SPP considering the use of GNSS meta-signals, for both

good and bad satellite geometries; results for HO-BOC-based SPP are also provided.
• The application of GNSS meta-signals in the context of precise carrier phase-based RTK

positioning, to assess whether exploiting the signal phase information is worthwhile for large



Sensors 2020, 20, 3586 3 of 27

bandwidth signals; again, both good and bad satellite geometries are considered; for completeness,
the results for HO-BOC-based RTK are also provided.

• Recommendations on the best candidates that may lead to precise PNT under harsh conditions.

Notice that the goal of this article is to obtain the asymptotic positioning performance limits, that is
the estimation errors only related to the GNSS signal and not to external errors. Therefore, we do not
consider ionospheric/tropospheric delays, orbital or satellite clock errors, or environment-specific effects
such as multipath [11]. Moreover, these external errors are the same whatever the processing. Then,
we are interested in the asymptotic region of the MLE, which is characterized with respect to (w.r.t.)
the signal-to-noise (SNR) ratio and considering only the thermal noise. Refer for instance to [12] for the
analysis of the specific impact of external errors and different types of corrections.

2. GNSS Signal Model, Meta-Signals, and HO-BOC Signals

2.1. Signal Model

The GNSS signals broadcast by the different satellite constellations are typically built as a
multilayer structure: (i) a low rate navigation message, encoded as binary phase-shift keying
(BPSK) bits; (ii) a fast rate ranging code, so-called pseudo-random noise (PRN) code, with good
autocorrelation and cross-correlation properties in order to allow individual satellite signals’ processing
(i.e., quasi orthogonality); (iii) a subcarrier that modulates the PRN code and shapes the autocorrelation
function (ACF), i.e., no subcarrier is employed for the legacy GPS L1-C/A signal or binary offset
carrier (BOC)-type subcarriers in modernized GPS and some Galileo signals; (iv) a carrier that is used
to allocate the complete signal into the corresponding frequency. Notice that the signal may have data
bits or not, depending on whether it belongs to a data component or a pilot component. In the sequel,
and without loss of generality, we do not account for navigation data bits within the observation time.

In general, the signal at the receiver antenna is the superposition of a set of signals at different
frequency bands, plus environmental effects such as multipath and/or interferences. The latter two
effects are out of the scope of this contribution, and because of the quasi orthogonal PRN code design,
we can focus on one of these signals to define the model to be exploited. Therefore, we consider
the transmission of a band-limited GNSS signal c(t) (bandwidth B), which contains both the PRN
and subcarrier, over a carrier frequency fc (λc = c/ fc), from a transmitter (satellite) T to a receiver
R. If T and R follow a relative uniform radial movement, then the T-to-R distance, pTR (t), can be
approximated by a first-order distance-velocity model [13–16],

‖pTR (t)‖ , ‖pR (t)− pT (t− τ (t))‖ = cτ (t) ' d + vt,

τ (t) ' τ + bt, τ =
d
c

, b =
v
c

, c = 299, 792, 458 m/s, (1)

where d is the T-to-R relative radial distance and v is the T-to-R relative radial velocity. Note that
the previous formula is characterized by a time-delay (τ) due to the propagation path and a dilation
(1− b) induced by the Doppler effect. The complex analytic signal at the output of the receiver’s
antenna can be written as:

xA(t) = αRc ((1− b) (t− τ)) ej2π fc(1−b)te−j2π fcτ + nA(t), (2)

with e the Euler number (exponential function), nA(t) a zero-mean white complex Gaussian noise,
and where the gain αR depends on the transmitted signal power, the transmitter/receiver antenna
gains, polarization vectors, and the radial distance between T and R [17,18]. Notice that the following
the standard narrowband assumption (2) can be approximated as [19,20]:

xA(t) ≈ αRc (t− τ) ej2π fc(1−b)te−j2π fcτ + nA(t), (3)
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and because we are only interested in the processing of time-delay and phase information, (3) can
be further simplified considering that during the observation time (i.e., 1 ms), both T and R are
static, that is their respective positions are constant pT(t) = pT and pR(t) = pR. In that perspective,
the propagation delay τ (t) is constant τ (t) = τ = ‖pTR‖

c , and the baseband output of the receiver’s
Hilbert filter is given by:

x (t) ≈ αc (t− τ) + n (t) , (4)

with n(t) a complex white Gaussian noise within the filter bandwidth with unknown variance σ2
n

and α = αRe−j2π fcτ . The discrete vector signal model is built from N = N2 − N1 + 1 samples at
Ts =

1
Fs

, where Fs is the sampling frequency:

x = αc (τ) + n, (5)

x = (x (N1Ts) , . . . , x (N2Ts))
>,

n = (n (N1Ts) , . . . , n (N2Ts))
>,

c (τ) = (c (N1Ts − τ) , . . . , c (N2Ts − τ))>,

where n ∼ CN
(
0, σ2

nIN
)
. Since the transmitter/receiver antenna gains and polarization vectors

are in general unknown, α is assumed to be an unknown complex parameter as well [18,21–24].
Thus, the unknown deterministic parameters [25] can be gathered in a vector ε = (σ2

n , τ, α, α∗)>,
where α∗ is the complex conjugate of α. The model in (5) can be reparametrized to make explicit the
phase parameter,

x = ρc′ (θ) + n, c′ (θ) = c (τ) ejϕ, ρ ∈ R + , θ> = (ϕ, τ) , (6)

and then, the unknown deterministic parameters are ε = (σ2
n , ρ, θ>)>; ρ is the amplitude of the signal;

and θ gathers the unknown phase ϕ and time-delay τ.

2.2. Generalized AltBOC

The GNSS meta-signal is a basic concept that consists of processing two GNSS signals transmitted
at two different carrier frequencies as a single GNSS signal [8,9]. In order to process both signals
jointly, the so-called alternate binary offset carrier (AltBOC) modulation or the alternate linear offset
carrier (AltLOC) modulation [26] can be used, the goal being to express the two signals as a single
one. The reader can refer to [27] and the previous references for a more exhaustive definition of the
generalized alternate binary offset carrier (AltBOC) modulation and the corresponding spectral and
ACF properties. The idea to process two GNSS signals located at two different bands jointly comes
from the proposal made by the the Galileo Signal Task Force group in the year 2000. In the original
proposal, an AltBOC signal was considered to transmit two independent signals in two separate bands
using a unique high power amplifier (HPA). An AltLOC signal was also studied at the time, but it
was quickly dropped because its envelope was not constant. Notice that a constant envelope signal at
the transmitter is interesting in order to enhance the HPA efficiency. However, as was shown in [26],
once the transmitter filters the intermodulation products and the harmonics of the AltBOC signal,
the transmitted signal yields to an AltLOC modulation. Therefore, two different GNSS signals can be
jointly processed at the receiver as a single AltLOC-modulated signal.

The easiest form of AltLOC-modulated signal is the one where two independent PRN codes are
multiplexed. Let us define the subcarrier with cosine and sine phasing as SCcos(t) = cos (2πFsubt) and
SCsin(t) = sin (2πFsubt), respectively, where Fsub represents the subcarrier frequency. Then, we can
build the single side band (SSB) subcarrier SCSSB and its conjugate SC∗SSB as,

SCSSB(t) =
1√
2
(SCcos(t) + j · SCsin(t)) ; SC∗SSB(t) =

1√
2
(SCcos(t)− j · SCsin(t)) (7)
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where j represents the imaginary part. The two-code AltLOC can be defined as,

c(t) = cA(t)SC∗SSB(t) + cB(t)SCSSB(t) = [cA(t) + cB(t)] SCcos(t) + j · [cB(t)− cA(t)] SCsin(t) (8)

where cA(t) and cB(t) represent the GNSS signals at the low (A) and high (B) frequency bands,
respectively. Note from Equation (8) that the codes cA(t) and cB(t) are not required to have the
same chip rate. We use the notation AltLOC(p, q, w, b) to represent the AltLOC receiver signal. Thus,
given the fundamental frequency f0 = 1.023 MHz, p is the real number used to represent the subcarrier
frequency Fsub through the equality Fsub = p f0; q is the real number used to represent the lower code
chip rate fc,A through the equality fc,A = q f0; w is the real number used to represent the upper code
chip rate fc,B through the equality fc,B = w f0; and b is the real number used to represent the receiver
bandwidth BW through the equality BW = b f0.

2.3. GNSS Meta-Signals

In the previous contribution [27], we defined the original Galileo E5 signal, which uses an
AltBOC(15,10), and the corresponding combinations with the Galileo E6 band signal, E5B + E6
and E5A + E6 meta-signals, being modulated as a single AltBOC(35,10,5) and AltBOC(50,10,5).
These signals can be alternatively defined using the previous AltLOC modulation. In addition,
several other signal combinations using individual GPS, Galileo, and BeiDou signals can be considered.
The complete set of GNSS meta-signals considered in this article includes the following combinations:

• Galileo E5 = E5A + E5B, generated as an AltBOC(15,10) [28] and taken as a reference.
• GPS L5 + L2C, generated through an AltLOC(25,10,1,75). The central frequency of this meta-signal

is located at fc = 1175 f0.
• Galileo E5B + E6, generated through an AltLOC(35,10,5,112). The central frequency of this

meta-signal is located at fc = 1215 f0.
• Galileo E5A + E6, generated through an AltLOC(50,10,5,132). The central frequency of this

meta-signal is located at fc = 1200 f0.
• Galileo E5 + E6, generated through an AltLOC(42.5,CE5(t),5,132). CE5(t) represents the

full-bandwidth Galileo E5 signal. The central frequency of this meta-signal is located at fc = 1207.5 f0.
• BeiDou B2A + B3, generated through an AltLOC(45,10,10,120). The central frequency of this

meta-signal is located at fc = 1195 f0.
• BeiDou B2 + B3, generated through an AltLOC(37.5,CB2(t),10,125). CB2(t) represents the

full-bandwidth BeiDou B2 signal, characterized by an AltBOC(15,10) modulation [29,30].
The central frequency of this meta-signal is located at fc = 1202.5 f0.

Notice that for all the signals, we only consider the corresponding pilot components, i.e.,
E5 is generated as E5AQ + E5BQ or the combination of E5B and E6 is generated as E5BQ + E6B.
For completeness, we provide the different meta-signals power spectral density (PSD) in Figure 1,
where we make explicit the individual signals main lobes: E5A, L5, E5B, B2A, and B3 signals using a
BPSK(10) (i.e., a BPSK with a chip rate 10 times faster than the one of the GPS L1-C/A), E6 BPSK(5),
and L2 BPSK(1) signal.

In addition and because it is difficult to extrapolate the behavior of the different signals from their
PSD in Figure 1, we show the corresponding ACF in Figure 2. In the two top subplots (a) and (b),
we show the comparison of the main ACF peak, where as expected, a wider PSD implies a narrower
ACF. What is not evident to guess from the PSD is the shape of the different ACFs in Subplots (c)–(h).
In the “standard” signal combinations, the L2 + L5, B2A + B3, E5B + E6, and E5A + E6, narrower main
ACF peak implies higher secondary peaks and closer to the main one. The values and position of these
secondary peaks are also given for completeness. As will be discussed in the results, these secondary
peaks are one of the main drivers of the estimators’ performance. Remarkably, the combinations with
the full-bandwidth B2 and E5 signals, that is the combination of AltBOC(15,10) with the signals in the
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B3 and E6 bands, respectively, exhibit much lower secondary peaks. Despite their nice ACF shape,
as far as the authors’ knowledge, these combinations have never been discussed in the literature.
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-65
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-55

-50
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Main Lobe

E5A=L5 BPSK(10) 

Main Lobe

E5B=B2A BPSK(10) 

Main Lobe

L2 BPSK(1) 

Main Lobe

Figure 1. PSD for the different GNSS meta-signals.

2.4. Other Large Bandwidth GPS, Galileo, and BeiDou Signal Combinations

Notice that the previous signal combinations considered signals in the L5/E5, E6, and L2 bands.
The main goal of such combinations is to have a larger bandwidth and narrower ACF main peak,
which in turn may lead to better time-delay estimation performance, and therefore a better position
estimation. Since the goal is to have a narrower ACF, one may seek to exploit other signal combinations
with the GPS, BeiDou, and Galileo signals in the L1/E1/B1 band. The ACFs for these large bandwidth
meta-signals are summarized in Figure 3: GPS L2 + L1, GPS L5 + L1, Galileo E6 + E1, Galileo E5 + E1,
BeiDou B3 + B1, and BeiDou B2 + B1.

First, notice that as expected, the main ACF peak is narrower than the narrower Galileo E5A + E6B
combination previously considered. However, the price to be paid is larger secondary peaks, which are
also closer to the main one. This is an effect that can also be seen in Figure 2c–f, and as already stated,
it is a critical point to take carefully into account. Indeed, large secondary peaks must be avoided to
minimize the effect of possible false locks. As will be discussed in the rest of the article and being
especially clear for the E5A + E6 signal, these possible false locks have a strong impact on the ML
behavior (i.e., on the ML threshold, and therefore on the optimal receiver operation point). This is the
main reason why these large bandwidth meta-signals are not useful in practice because even if in the
asymptotic regime, the time-delay estimation performance may be better, the SNR needed to achieve
such a regime is not worth exploiting these signals. In addition, in terms of computational complexity,
notice that such combinations need a bandwidth in the order of 400 MHz, exceeding the real-time
processing capabilities. Therefore, these combinations were briefly introduced for completeness,
but are not taken into account in this contribution.
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Figure 2. (a) Main ACF peak comparison for different meta-signals w.r.t. E5: L2C + L5, B2A + B3,
E5B + E6 and E5A + E6. (b) Main ACF peak comparison for different meta-signals w.r.t. E5 and
E5A + E6: Beidou B2 + B3 and Galileo E5 + E6. The comparison of each individual meta-signal ACF
with the Galileo E5 is given in the remaining subplots. (c) GPS L2C + L5Q, (d) Galileo E5B + E6B,
(e) BeiDou B2AQ + B3Q, (f) Galileo E5A + E6B, (g) BeiDou B2 + B3Q and (h) Galileo E5 + E6B. (i.e., in all
plots, the vertical axis represents the normalized autocorrelation). The magnitude and position of the
first secondary peak are given for completeness.
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Figure 3. ACF for other very large bandwidth Galileo, BeiDou (a) and GPS (b) signal combinations,
(i.e., in both plots, the vertical axis represents the normalized autocorrelation). For comparison the
Galileo E5 ACF and the Galileo E5A + E6 meta-signal ACF are also shown.

2.5. On the ACF of High-Order BOC Signals

As has been previously stated, an option to increase the code-based observables’ precision is the
use of single-band HO-BOC signals. Note that the BOC modulation is generally denoted BOC(p, q),
where p refers to the sub-carrier frequency fsc = p · 1.023 MHz (i.e., sc(t) = sign [sin (2π fsct)] with sign
the sign function) and q to the ranging code frequency fc = q · 1.023 MHz [31]. In GPS, an HO-BOC
modulation is used in the modern military M signal, i.e., L1-M. In Galileo, the Public Regulated Service
(PRS) signal in the E1 band uses also an HO-BOC subcarrier, as well as the corresponding PRS in the
E6 band. In the case of BeiDou, the B1A HO-BOC-modulated signal is defined as an authorized service.
It is important to notice that even if we provide the discussion and results considering these types of
modulation, which are useful to benchmark the interest of GNSS meta-signals, the HO-BOC-modulated
signals-in-space available are all regulated/military signals. This implies that these signals are not and
will not be available in mass-market receivers.

In this article, we consider the following representative set of HO-BOC signals:

• GPS L1-M, BOCsin(10,5)
• Galileo E1 PRS, BOCcos(15,2.5)
• Galileo E6 PRS, BOCcos(10,5)
• BeiDou B1A, BOCcos(14,2)

The corresponding ACF for these four signals is depicted in Figure 4 and compared to the Galileo
E5 ACF. Notice that the ACF shape of the E1-PRS BOCcos(15,2.5) and B1A BOCcos(14,2) is very similar
to the one for the Galileo E5; therefore, we can expect a similar achievable performance (i.e., CRB and
asymptotic MLE performance). In terms of the MLE behavior, these two signals have much larger ACF
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secondary peaks, which will certainly have an impact on the MLE convergence, as will be discussed
in the results. Regarding the L1-M and E6-PRS, the ACF shape is also similar, with a slightly wider
main peak w.r.t. Galileo E5 and secondary peaks that are larger, but further apart. Therefore, one can
expect the convergence not to be degraded and a slightly worse achievable performance compared to
the Galileo E5.

Time-delay and phase MLE performance results for the four HO-BOC signals are provided
in Section 4. The corresponding SPP and RTK positioning results, considering a good satellite
geometry, are discussed in Section 7. It is important to notice that, due to the construction of the signal,
the bandwidth needed to process these HO-BOC signals will always be lower than the one needed for
the Galileo E5 or the different meta-signals.

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
-1

-0.5

0

0.5

1

Galileo E5

L1-M BOCsin(10,5)

E1-PRS BOCcos(15,2.5)

E6-PRS BOCcos(10,5)

B1A BOCcos(14,2)

Figure 4. ACF for different high-order (HO)-BOC signals (i.e., the vertical axis represents the
normalized autocorrelation). For comparison the Galileo E5 ACF is also shown.

3. GNSS Receiver Signal Processing

3.1. GNSS ML Baseband Signal Processing and Delay/Phase CRB

The final goal of a GNSS receiver is to obtain position, velocity, and time (PVT) estimates.
Therefore, from am ML perspective and taking into account that the received signal is the superposition
of a set of signals related to the same receiver position, the optimal solution is given by the so-called
direct position estimation (DPE) [32,33]. The main disadvantage is that DPE implies solving a
high-dimensional minimization problem, which turns into a high computational complexity. Even if
DPE approaches are known to provide better position estimates under certain conditions, it has
been recently shown that the traditional two-step approach (synchronization + multilateration) is
asymptotically optimal [34]. Therefore, in this contribution, we are only interested in the latter,
which implies the individual processing of satellite signals thanks to the quasi orthogonality of PRN
codes. The goal of the first stage of the receiver is to construct a set of observables for each satellite
in view. In our case, this set includes code and phase observables, which are directly linked to the
time-delay and phase MLE. Considering the signal model (6), the time-delay and phase MLE are
defined as [24]:

τ̂ = arg max
τ

{∣∣∣∣(c (τ)H c (τ)
)−1

c (τ)H x
∣∣∣∣2
}

, (9)

ϕ̂ (τ̂) = arg
{(

c (τ̂)H c (τ̂)
)−1

c (τ̂)H x
}

, (10)
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where arg is the argument operator, max is the maximum operator, (·)H is the Hermitian operator,
and |·| is the Euclidean norm. Then, the phase is estimated as the argument of the cross-ambiguity
function evaluated at the time-delay MLE. The study of these MLEs is useful to determine the value of
the SNR at the output of the matched filter, which allows reaching the CRB, because such estimators
are known to be asymptotically efficient (e.g., in the high SNR regime) for the conditional signal model
of interest [35,36].

It is also fundamental to have the corresponding CRB, which for the time-delay and phase
estimation problem of interest was recently derived in a compact closed-form for a generic band-limited
signal in [10]. Such a CRB is very convenient because it only depends on the signal sample, and it is
summarized in the sequel for completeness. Considering the joint time-delay and phase θ> = (ϕ, τ)

estimation resorting to Model (6), the CRB is given by [37]:

CRBτ|ε =
1

2SNRout

1

F2
s

(
cH Vc
cHc − Im

{
cHΛc
cHc

}2
) =

real signal

1
2SNRout

1

F2
s

cH Vc
cHc

, (11)

CRBϕ|ε =
1

2SNRout

1 +
Im
{

cHΛc
cHc

}2

cH Vc
cHc − Im

{
cHΛc
cHc

}2

 =
real signal

1
2SNRout

, (12)

where Im represents the imaginary operator, SNRout =
|α|2E
(σ2

n/Fs)
= |α|2

σ2
n

cHc, and E the energy of the

signal. Λ and V are defined as (for N1 ≤ n, n′ ≤ N2):

(V)n,n′ =

∣∣∣∣∣∣ n′ 6= n : (−1)|n−n′ | 2
(n−n′)2

n′ = n : π2

3

; (Λ)n,n′ =

∣∣∣∣∣∣ n′ 6= n : (−1)|n−n′ |
(n−n′)

n′ = n : 0
. (13)

3.2. GNSS Code and Phase Observables

From the individual satellite delay and phase MLEs and after demodulating the navigation
data message, the receiver obtains a set of code and phase observables for each satellite in view.
Disregarding ionospheric and tropospheric delays, as well as other sources of error, for the ith satellite,
we write,

$̂i = ||pTi − pR|| + c (δtr − δti) + ε$,i, (14)

Φ̂i = ||pTi − pR|| + c (δtr − δti) + λcNi + εΦ,i, (15)

where ||pTi − pR|| =
√
(xi − xR)2 + (yi − yR)2 + (zi − zR)2 is the geometrical distance between the

receiver and the ith satellite; p>R = [xR, yR, zR] and p>Ti
= [xi, yi, zi] are the position coordinates of the

receiver and the ith satellite, respectively; δtr and δti are the receiver and satellite clock offsets w.r.t.
the GNSS time. Since in the asymptotic region, the MLE becomes unbiased, efficient, and Gaussian
distributed [36], ε$,i and εΦ,i are zero-mean white Gaussian noise terms, and their variance is driven
by the performance of τ̂ and ϕ̂(τ̂), respectively. Ni is an ambiguous term related to the (unknown)
number of phase cycles. The latter has a fractional part Bi, which depends on the initial phase of the
ith satellite clock, a fractional part Br due to the initial phase at the receiver, and an integer part Nint,i,
which is related to the satellite to receiver distance, then Ni = Bi + Br + Nint,i.

3.3. GNSS Code-Based SPP and CRB

Standard code-based SPP exploits only the code observables in (14). If we consider M visible
satellites being tracked, we have a complete set of code observations y>$ = [$̂1, . . . , $̂M], and the
unknown parameters to be inferred are γ> = [p>R , cδtr]. We can also define the noise vector as
n>$ =

[
ε$,1, . . . , ε$,M

]
, with covariance Cn,$. The standard solution to this nonlinear estimation
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problem, y$ = h (γ) + n$, is (i) to linearize the model around an initial position p0 and (ii) use an
iterative weighted least squares (WLS) estimator [38]. Considering δti and pTi as derived from the
navigation message, the resulting linearized model can be written as:

||pTi − pR|| ≈ ||pTi − p0|| − ui(p0)δp, δp = pR − p0, ui(p0) =
pTi − p0

||pTi − p0|| , (16)

ỹ$ ≈ Ĥ(p0)δ + n$, δ = [δ>p cδtr]
>,
(
ỹ$

)
i = $̂i + cδti − ||pTi − p0||, Ĥ(p0) =

−u>1 (p
0) 1

...
...

−u>M(p0) 1

 ,

(17)

with ui(p0) the unit steering vector to the ith satellite, evaluated at the position p0. For the problem
above, the solution can be found based on an iterative WLS adjustment (i.e., applying a Gauss–Newton
method [38]), where the state δ is updated with d̂δWLS as:

d̂δWLS = arg min
δ
{||ỹ$ − Ĥ(p0)δ||2W} =

(
Ĥ>(p0)WĤ(p0)

)−1
Ĥ>(p0)Wỹ$, (18)

where the optimal weighting is W = C−1
n,$. In addition, the CRB for the SPP problem (i.e., denoted

CRBspp) is given by the inverse of Fγ|γ
(
γ0) = Ĥ>(γ0)C−1

n,$Ĥ(γ0), with γ0 a selected value of γ.

3.4. GNSS Code/Phase-Based RTK Positioning and CRB

The previous SPP approach is limited by the time-delay MLE precision, which is directly linked
to the baseband signal resolution (i.e., the shape of the ACF). Precise positioning techniques rely on the
use of the signal’s phase information. Unfortunately, exploiting this information implies solving a more
complicated problem, mainly because the phase measurement is ambiguous, and the estimation of the
unknown number of cycles Ni in (15) is the bottleneck [11]. As already stated, two main approaches
are available in the literature: (i) differential techniques such as RTK [2] and (ii) PPP techniques [1].
It is important to notice that PPP techniques require a long convergence time and need high accuracy
satellite orbits, while clock and propagation (ionospheric and tropospheric) error corrections are required,
which may be obtained from a network broadcasting precise corrections. However, such corrections are
not available in real time [39,40]; thus, PPP is not suitable for safety-critical applications.

In contrast, RTK exploits the connection to a reference station at a known position, which if close
enough observes the same propagation errors as the receiver. Therefore, the goal is to combine such
observations in order to eliminate all nuisance parameters and then estimate the base-to-receiver
baseline. The combination of base and receiver observations is obtained by double-differencing,
that is subtracting the measurements from the receiver w.r.t. the base station and a pivot (reference)
satellite. A key point is that such a combination also eliminates the fractional phase parts Bi and
Br; therefore, the unknown ambiguities become integer parameters. The problem of mixed real and
integer parameter estimation was pioneered by Teunissen [41–43], and its solution typically combines
a WLS with an integer least squares (ILS). It is out of the scope to give a complete discussion on RTK,
and only a brief description is given in the sequel. The reader can refer to [11] and the references
therein for details.

If we consider M + 1 visible satellites being tracked at both the base station and the receiver,
the code and phase double difference (DD) observations and the corresponding linearized model are
(subscript 0 and superscript B are used to refer to the pivot reference satellite and the base station,
respectively; superscript R refers to quantities related to the receiver):



Sensors 2020, 20, 3586 12 of 27

y>$ =
[
$̂R,B

1,0 , . . . , $̂R,B
M,0

]
, $̂R,B

i,0 = $̂R
i − $̂B

i −
(

$̂R
0 − $̂B

0

)
(19a)

y>Φ =
[
Φ̂R,B

1,0 , . . . , Φ̂R,B
M,0

]
, Φ̂R,B

i,0 = Φ̂R
i − Φ̂B

i −
(

Φ̂R
0 − Φ̂B

0

)
, (19b)

y ≈ Dz + nΦ,$, y =

[
yΦ

y$

]
, z =

[
b
a

]
, D =

[
B A
B 0

]
, B =

−(u1(pB)− u0(pB))
>

...
−(uM(pB)− u0(pB))

>

 , (19c)

with A = λcI, B is the double-difference geometry matrix, z the set of unknown parameters,
b = pR − pB the baseline vector between the receiver and base station, and a the vector of DD
integer ambiguities. The designed matrix D relates the state estimate z to the vector of observations y.
Finally, the noise is:

nΦ,$ =

[
nΦ

n$

]
, Cn =

[
CnΦ CnΦ ,n$

C>nΦ ,n$
Cn$

]
, Cn{Φ,$} = [−1M,1 I]


σ2
{Φ,$}0

0
. . .

0 σ2
{Φ,$}M

 [−1M,1 I]>

The solution to this problem (i.e., which has no closed-form solution because of the integer
ambiguities) is typically obtained via a three-step decomposition and solved using the LAMBDA
method [41,44]:[

b̂
â

]
︸︷︷︸

ẑ

= min
b∈R3

a∈ZM

∥∥∥∥∥y−D

[
b
a

]∥∥∥∥∥
2

Cn

= min
b∈R3

a∈RM

∥∥∥∥∥y−D

[
b̄
ā

]∥∥∥∥∥
2

Cn

+ min
a∈ZM

‖ā− a‖2
Cā

+ min
b∈R3

∥∥b̄|a− b
∥∥2

Cb̄|a
. (20)

We can identify: (i) a first WLS problem where the integer nature of the ambiguities is disregarded,
the so-called float solution, (ii) a second ILS [11], for which an integer ambiguity solution is obtained,
and (iii) a third WLS refinement or correction step, the so-called fixed solution. The CRB associated
with the float solution, the so-called CRBreal , is given by the inverse of Fz|z

(
z0) = D>C−1

n D. The mixed
real/integer CRB associated with the fixed solution, the so-called CRBreal/integer, was discussed in [45].

4. GNSS Meta-Signal and HO-BOC Signals Delay/Phase Estimation Results

In the problem of interest, the first step of the receiver (see Section 3.1) is the time-delay and phase
ML estimation. Therefore, in order to assess the performance for the different GNSS meta-signals
and HO-BOC signals in Section 2, we compared the delay and phase MLEs (9) and (10) with the
corresponding CRBs in (11) and (12). In the rest of the article, we consider the following sampling
frequencies:

• Galileo E5 AltBOC(15,10)—Fs = 60 MHz.
• GPS L2C - L5Q AltLOC(25,10,1,75)—Fs = 75 MHz.
• Galileo E5BQ + E6B AltLOC(35,10,5,112)—Fs = 112 MHz.
• BeiDou B2AQ + B3Q AltLOC(45,10,10,120)—Fs = 120 MHz.
• Galileo E5AQ + E6B AltLOC(50,10,5,132)—Fs = 133 MHz.
• BeiDou B2 + B3Q AltLOC(37.5,CB2(t),10,125)—Fs = 125 MHz.
• Galileo E5 + E6B AltLOC(42.5,CE5(t),5,132)—Fs = 135 MHz.
• GPS L1 - M BOCsin(10,5)—Fs = 30 MHz.
• Galileo E1 PRS BOCcos(15,2.5)—Fs = 40 MHz.
• Galileo E6 PRS BOCcos(10,5)—Fs = 30 MHz.
• BeiDou B1A BOCcos(14,2)—Fs = 40 MHz.

The MLEs and CRBs were computed considering α = (1 + j) ·
√

SNRin/2, where j represents
the imaginary number. The root mean squared error (RMSE) for the MLE was obtained from 1000
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Monte Carlo runs. Notice that the SNRout in the following results refers to the SNR at the output of the
MLE, and the maximum is given by:

SNRout =
Fs |α|2 cHc

σ2
n

=
C
N0

TPRNLc, (21)

where C/N0 (dB-Hz) is the carrier-to-noise density ratio, TPRN is the single code duration, Lc is the
number of codes, and therefore, TI = TPRN× Lc is the coherent integration time. Then, we could verify
that SNRout = 25 dB and TI = 10 ms implied a C/N0 = 45 dB-Hz, which was a nominal GNSS value.
The results for the different meta-signals considered in this article are summarized in Figure 5.

• First, notice from Subplot (a) that there was a difference of: (i) 2 dB between E5 and L2 + L5 and
(ii) 1.44 dB between L2 + L5 and E5B + E6. Among the rest of the meta-signals, the maximum
difference of 1.6 dB was exhibited between E5B + E6 and E5A + E6. Therefore, overall and after
the convergence of the delay MLE, we had a maximum factor equal to three among meta-signals.

• Considering SNRout = 25 dB as a reference value, the time-delay standard deviation was
(i.e., following the order in Figure 5a) roughly (results in cm): 12, 7.5, 5.4, 4.2, 3.7, 5.3, and 4.6.

• What was more interesting was the impact of the subcarrier, i.e., the ACF, into the time-delay CRB
values and the MLE convergence. Comparing the results in Figure 5 with the corresponding ACFs
in Figure 2, it was clear that:

(1) a narrower ACF main peak implied better time-delay estimation capabilities (see Subplots (a)
and (b) in Figure 2), i.e., a lower CRB,

(2) larger secondary peaks and closer to the main one directly impacted the convergence to the
CRB and the ML threshold. This was directly related to possible false locks, which were
more probable at lower SNR when the ACF secondary peaks were large and close to the
main one of interest. For instance, for Galileo E5, E5 + E6 and B2 + B3, these secondary
peaks (see Subplots (g) and (h) in Figure 2) only slightly affected the convergence to the CRB,
which was reached for SNRout = [16–18] dB. In contrast, larger secondary peaks in L2 + L5,
B2A + B3, E5B + E6, and E5A + E6 led to a convergence in SNRout = [20–24] dB.

• Regarding the phase CRB and MLE, the latter converged only if the corresponding time-delay MLE
did. This was because the phase MLE (10) was given by the argument evaluated at the time-delay
MLE. Therefore, as discussed above for the time-delay, large secondary peaks directly degraded
the convergence to the CRB, which would have an impact on carrier phase-based positioning
techniques (see Section 6). It is important to notice also the performance gain around 15 dB (a factor
of 30) between delay and phase estimates.

We could conclude that in terms of robustness (i.e., being able to operate at lower SNRs), the best
choices were Galileo E5 and the combinations with the full-bandwidth E5 and B2, i.e., E5 + E6 and B2 + B3.

The time-delay/phase MLEs and the corresponding CRBs results for the different HO-BOC
signals are summarized in Figure 6. The results were also compared to the MLEs and CRB obtained
with Galileo E5. Taking into account the ACF shape in Figure 4, again, the impact of the secondary
peaks was clear, which induced false locks and therefore a convergence degradation, which translated
to a MLE threshold behavior that was shifted to the right. This effect was similar to the one discussed
for the GNSS meta-signals, shown in Figure 5. For the HO-BOC signals considered, we can point out
the following:
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Figure 5. The comparison of the different time-delay CRBs (m) is shown in Subplot (a). Time-delay and
phase RMSE (m) and the corresponding CRBs (m) for the different GNSS meta-signals are shown in
Subplots (b) Galileo E5, (c) GPS L2C + L5Q, (d) Galileo E5B + E6B, (e) BeiDou B2AQ + B3Q, (f) Galileo
E5A + E6B, (g) BeiDou B2 + B3Q and (h) Galileo E5 + E6B.



Sensors 2020, 20, 3586 15 of 27

• As already anticipated, the achievable performance for the time-delay estimation, with the E1-PRS
and the B1A signals, was almost the same compared to Galileo E5. This was determined by the
shape of the ACF main peak and the signal bandwidth considered.

• Because of the much larger secondary peaks of the E1-PRS and the B1A signals, which were
roughly located at the same position, the convergence region to the CRB was degraded w.r.t.
the Galileo E5 signal (i.e., [2–3] dB).

• Regarding the L1-M and E6-PRS signals, because the ACF main peaks were wider, then the
time-delay CRB was slightly degraded compared to E5 (i.e., roughly 2 dB).

• Because the secondary peaks of the L1-M and E6-PRS signals were further apart from the main one
and their value was not extremely large, w.r.t. Galileo E5, the convergence region was not affected.

• Again, as for the different GNSS meta-signals, the convergence of the phase MLE was driven by
the convergence of the time-delay MLE; therefore, only the L1-M and E6-PRS signals provided a
performance similar to the Galileo E5 signal.

We could conclude that in terms of robustness and with only a slight performance degradation
w.r.t. the Galileo E5 signal, the best choices were the L1-M and E6-PRS HO-BOC signals
(i.e., BOCsin(10,5) and BOCcos(10,5)). In the results provided, notice that these two signals used
a sampling frequency Fs = 30 MHz, which was half of the bandwidth exploited for Galileo E5, i.e.,
using Fs = 60 MHz.
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Figure 6. Time-delay/phase RMSE and CRBs (m) for different GNSS HO-BOC signals: (a) GPS L1-M
BOCsin(10,5), (b) Galileo E1-PRS BOCcos(15,2.5), (c) Galileo E6-PRS BOCcos(10,5) and (d) BeiDou B1A
BOCcos(14,2)

5. GNSS Meta-Signal SPP Performance Results

In the previous Section 4, we assessed the achievable performance limits for time-delay and phase
estimation, considering a set of representative meta-signals. In the sequel, we assess how the previous
time-delay estimates translate into the position domain considering the standard WLS SPP solution
in Section 3.3. Notice that the covariance of the code observables noise Cn,$ was set according to the
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corresponding MLE precision. We considered two satellite constellation scenarios, with a good and
bad geometric dilution of precision (GDOP), respectively, which are shown in Figure 7.

(1) Nominal conditions with a good GDOP (Subplot (a) in Figure 7).
(2) Constrained satellite visibility, or bad GDOP (Subplot (b) in Figure 7). Even if it is out of the scope

to consider realistic multipath channels, this scenario was representative of an urban canyon
situation, where part of the sky may be blocked by buildings.

Without loss of generality and with the aim to determine the ultimate performance w.r.t. the SNR
at the output of the estimator, we considered that all satellites were received with the same power.
For instance, if the high-elevation satellites were received with a C/N0 around 45 dB-Hz, the low
elevation satellites with a C/N0 around 40 dB-Hz, and the receiver used a coherent integration time
TI = 10 ms, this would translate into an ultimate SPP performance in the range SNRout = [20–25] dB.

(a) Nominal good geometric dilution of
precision (GDOP) constellation

(b) Constrained visibility (bad GDOP)
constellation

Figure 7. Satellite constellation skyplots for both nominal (a) and non-nominal conditions (b).

The SPP performance results (i.e., position RMSE) for the good GDOP scenario are summarized
in Figure 8. First, notice that the CRBs are shown together for the different meta-signals in Subplot (a).
We can easily identify the same tendency as in Figure 5a, and as expected, better time-delay estimation
performance implied a better position estimate.

• Again, if we considered SNRout = 25 dB as a reference value, the position standard deviation was
(i.e., following the order in Figure 8a) roughly: 18 cm, 11 cm, 8 cm, 6.5 cm, 5.5 cm, 8 cm, and 7 cm.
Therefore, w.r.t. the time-delay results at SNRout = 25 dB previously discussed, the geometry
matrix induced a slight performance degradation.

• Any of the meta-signals could be considered as a precise code-based positioning alternative.
• Obviously, the convergence time due to false locks into secondary peaks of the ACF directly

translated to the corresponding convergence into the position domain CRB. This further supported
the fact that in terms of SNR robustness, the best choices were Galileo E5 and the combinations
with the full-bandwidth E5 and B2, i.e., E5 + E6 and B2 + B3. The slight performance improvement
obtained with the other signal combinations was not worth the threshold degradation.
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Figure 8. The comparison of the different SPP CRBs (m) is shown in Subplot (a). Nominal good GDOP
scenario SPP RMSE (m) and the corresponding CRBs (m) for the different GNSS meta-signals are
shown in Subplots: (b) GPS L2C + L5Q, (c) Galileo E5B + E6B, (d) BeiDou B2AQ + B3Q, (e) Galileo
E5A + E6B, (f) BeiDou B2 + B3Q and (g) Galileo E5 + E6B.
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The SPP performance results for the bad GDOP constrained satellite visibility scenario are
summarized in Figure 9. The previous results with a good GDOP for Galileo E5 are shown as a
reference. Overall, we can see that considering a bad GDOP only degraded the performance, but did
not change the behavior of the CRBs and MLEs. The positioning standard deviation performance
results for the reference value SNRout = 25 dB were as follows (i.e., recall that the E5 nominal
performance in the previous scenario was 18 cm): (i) E5, 1.15 m; (ii) L2 + L5, 69 cm; (iii) E5B + E6, 52 cm;
(iv) B2A + B3, 40 cm; (v) E5A + E6, 32 cm; (vi) B2 + B3, 51 cm; and (vii) E5 + E6, 44 cm. Notice that the
performance degradation was remarkable; therefore, in some safety-critical applications operating in
harsh propagation conditions, meta-signals may not provide the precision needed.
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Figure 9. Non-nominal bad GDOP scenario SPP RMSE (m) and the corresponding CRBs (m) for the
different GNSS meta-signals: (a) GPS L2C + L5Q, (b) Galileo E5B + E6B, (c) BeiDou B2AQ + B3Q,
(d) Galileo E5A + E6B, (e) BeiDou B2 + B3Q and (f) Galileo E5 + E6B. The RMSE/CRB SPP performance
for Galileo E5 under nominal good GDOP conditions is shown for comparison.

In conclusion, as for the time-delay estimation and regardless of the satellite geometry, the best
compromise in terms of robustness, performance, and estimator behavior was provided by Galileo E5
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and the full-bandwidth E5 + E6 and B2 + B3 combinations, meta-signals providing better performance,
but requiring a double bandwidth.

6. GNSS Meta-Signal RTK Performance Results

So far, we have discussed the ultimate time-delay and phase MLE performance obtained with
both meta-signals and HO-BOC signals and the meta-signal-based SPP performance considering both
good and bad satellite geometries. The remaining open point is the impact of the phase MLE behavior
on positioning techniques that exploit such phase information. To address this point, we considered
the RTK positioning problem in Section 3.4. Again, we considered the two scenarios depicted in
Figure 7. In this case and taking into account the three-step RTK solution in (20), we wanted to assess
the performance of the float solution (denoted as RMSEreal), the fixed solution considering all the
estimates (denoted as RMSEmixed), and the fixed solution considering only the estimates that were
declared as a correct ambiguity fix (denoted as RMSEcorrect amb), the latter only shown for the bad
GDOP scenario. The position RMSEs for the RTK performance were obtained from 104 Monte Carlo
realizations.

6.1. Nominal Conditions: Good Satellite Geometry Scenario

The RTK performance results for the good GDOP scenario are summarized in Figure 10.
The first thing to point out is the huge performance gain provided by a correct exploitation
of the phase information, which was clear from the gap between CRBreal and CRBreal/integer.
For instance, considering the reference Galileo E5 signal and a SNRout = 25 dB, CRBreal = 18 cm,
and CRBreal/integer = 2 mm. Several interesting conclusions can be extracted from these results:

• The convergence to the RTK CRBreal/integer was driven by the phase MLE threshold region, that is
for every meta-signal, the RMSEmixed (i.e., fixed solution considering all the estimates and not only
the correct fix ones) started to deviate from the corresponding CRB at the same point as the phase
estimate deviated from the phase CRB, which in turn was driven by the time-delay MLE behavior.
Recall that such slow convergence (or intermediate threshold behavior) was directly related to the
false locks due to large secondary peaks. Therefore, a first conclusion was that subcarriers that
induced large secondary ACF peaks strongly impacted the achievable RTK performance.

• The second interesting point was that when the RMSEmixed started to deviate from the CRB,
it rapidly joined thefloat solution behavior (i.e., RMSEreal). Therefore, it was fundamental to
characterize the threshold region correctly. Below such SNRout, there was no reason to try to fix
the phase ambiguities, and therefore, a straight WLS could be used instead. This supported the
statement that RTK typically does not work in harsh propagation conditions, at least for some of
the signals.

• The impact of the two previous points can also be seen on the fixing success rate, which is shown
in Figure 11. In the results presented in Figure 10, only when the success rate was equal to
100%, the RMSEmixed was on CRBreal/integer. When the noise increased and the fixing probability
decreased, the RMSEmixed rapidly deviated from the optimal.

Overall, because the goal was to maximize the operation region correctly exploiting the phase
information, the best performance was provided by the E5 signal, for which the threshold was
SNRout = 16 dB. Therefore, we could conclude that in the nominal RTK case, there was no sense in
exploiting GNSS meta-signals (i.e., except E5). In addition, among the meta-signals, E5 + E6 and B2 + B
3 provided a clear advantage w.r.t. the other signal combinations.
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Figure 10. Nominal good GDOP scenario RTK RMSE (m) and the corresponding CRBs (m) for the
different GNSS meta-signals: (a) GPS L2C + L5Q, (b) Galileo E5B + E6B, (c) BeiDou B2AQ + B3Q,
(d) Galileo E5A + E6B, (e) BeiDou B2 + B3Q and (f) Galileo E5 + E6B.

6.2. Non-Nominal Conditions: Constrained Satellite Visibility (Bad GDOP) Scenario

The RTK performance results for the constrained satellite visibility scenario are summarized in
Figure 12. In this case, we can point out the following:

• First, notice the performance degradation on the achievable RTK performance, that is between
the nominal CRBreal/integer (good GDOP scenario) and the corresponding one for the current bad
GDOP case. At SNRout = 25 dB. the former was CRBreal/integer = 2 mm (nominal) and the latter
CRBreal/integer = 1.5 cm (non-nominal).

• With respect to the nominal case where the best performance was obtained with Galileo E5, in the
bad GDOP scenario and for the range of SNR considered, using this signal barely improved the
float solution for SNRout > 24 dB. Therefore, in this case, the geometry matrix had a strong impact
on the ILS compared to the WLS results in Figure 9. This result came from a drastic drop of the fix
success rate, as shown in Figure 11. A wrong fix could completely spoil the solution, and a 100%
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fix was needed for RMSEmixed to be on CRBreal/integer. However, notice that compared to L2 + L5,
E5B + E6, E5A + E6, or B2A + B3, where the threshold effect was more severe, considering E5
was still useful in the range SNRout =[16–20] dB. However, there was no need to try to exploit the
phase and fix the ambiguities; therefore, the user could directly keep a code-based RTK solution.

• For high SNR regimes (i.e., SNRout > 22 dB), we could see the impact of the time-delay precision,
which allowed RMSEmixed < RMSEreal . This was clear looking at the E5A + E6 and B2A + B3
signals, which provided the lowest CRBs (see Figure 8a). However, in any case, the performance
improvement was not worth the estimator behavior at lower SNRs.

• Again, only the full-bandwidth combinations E5 + E6 and B2 + B3 provided a consistent
performance, improving the Galileo E5, together with the highest success ratio, as shown in
Figure 11. Considering that we had an ambiguity fixing measure, these signals provided
the best trade-off, when the performance was fixed, on CRBreal/integer as given by the
RMSEcorrect amb, and when not fixed, the performance was equal to or better than the float solution
(i.e., RMSEmixed ≤ RMSEreal).

• It is also worth pointing out that the behavior of RMSEcorrect amb for all the meta-signals except
E5 + E6 and B2 + B3 was due to the very low fix success ratio (i.e., the worst one being E5A + E6),
which implied that very few realizations from the 104 Monte Carlo runs were averaged. That was
the reason why the RMSE with a correct ambiguity fix was not always on CRBreal/integer.
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Figure 11. Nominal (a) and non-nominal (b)—good and bad GDOP, respectively—scenario RTK fixing
success rate.

As a conclusion, even if in the previous good GDOP scenario, the best choice was Galileo E5,
it was clear that regardless of the satellite geometry, the best performance and robustness tradeoff was
provided by the full-bandwidth Galileo E5 + E6 and BeiDou B2 + B3 combinations, the latter being
slightly better. In addition, for these two signals, the fixing success rate was maximized.
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Figure 12. Non-nominal bad GDOP scenario RTK RMSE (m) and the corresponding CRBs (m) for
the different GNSS meta-signals: (a) GPS L2C + L5Q, (b) Galileo E5B + E6B, (c) BeiDou B2AQ + B3Q,
(d) Galileo E5A + E6B, (e) BeiDou B2 + B3Q and (f) Galileo E5 + E6B.

To conclude the meta-signal-based RTK positioning performance analysis, it was interesting
to assess which was the convergence point of the different meta-signals in a bad GDOP scenario;
in other words, when RMSEmixed = CRBreal/integer and, thus, the method correctly exploited the
phase information. This result is shown in Figure 13, where the most remarkable point was that the
convergence of the MLE to CRBreal/integer was driven by the time-delay estimation precision. A lower
CRBreal (i.e., better time-delay estimation precision) implied a faster convergence to CRBreal/integer
(i.e., the threshold region at a lower SNR). In this case, the threshold was in the range SNRout = [28− 36]
dB, the best case obtained with E5A + E6 and the worst one by Galileo E5, which provided the best
performance under nominal conditions.
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Taking into account these convergence results, the performance ones in Figure 12 and the success
rate in Figure 11, further confirmed that the best choices were the Galileo E5 + E6 and BeiDou B2 + B3
combinations.
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Figure 13. Non-nominal bad GDOP scenario RTK RMSE/CRB (m) convergence at high SNR.

7. GNSS HO-BOC Signals vs. Galileo E5 Positioning Performance Results

Finally, to complete the discussion, we summarize in Figure 14 the SPP and RTK positioning
results using the four HO-BOC signals (see Section 2.5), which were compared against the Galileo E5
signal performance. We only show the results for a good satellite geometry because in the bad GDOP
case, the conclusions were the same as for the Galileo E5 signal in Section 6.2.

• First, notice that for the SPP, the same time-delay threshold behavior was obtained, the L1-M
and E6-PRS HO-BOC signals being the ones that provided a the best robustness with a slight
performance degradation w.r.t. E5. The E1-PRS and B1A signals achieved a similar E5 asymptotic
performance, but needed the better [3–4] dB of SNR at the output of the MLE.

• In the RTK positioning case, CRBreal/integer, which mainly depended on the carrier signal
wavelength λc, was slightly better for the HO-BOC signals, which operated at a higher frequency
in the L1/E1/B1 band. Under nominal conditions, this implied that the carrier phase-based
solution was improved by the L1-M and E6-PRS signals, because they preserved the same
threshold behavior. In contrast, as for the SPP case, the threshold for the E6-PRS and B1A signals
was degraded [1–2] dB.

• Notice that for a bad GDOP and because the RTK convergence was driven by the time-delay
estimation performance (refer to Figure 13), the four HO-BOC signals behaved similar to or worse
than the Galileo E5.

We could conclude that the L1-M and E6-PRS signals are recommended, in scenarios with bad
satellite geometries for SPP and for nominal conditions in the RTK case. In the latter case and
considering an SPP solution, the E1-PRS and B1A signals provided a performance similar to Galileo E5.
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(a) Nominal good GDOP SPP results for different HO-BOC signals.
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Figure 14. CRB and RMSE for the SPP (a), CRB and RMSE for RTK (b) under nominal conditions and
for different HO-BOC signals. The RMSE/CRB SPP and RTK performance for Galileo E5 are shown
for comparison.

8. Conclusions and Outlook

In this contribution, we provided a comprehensive analysis of the achievable positioning
performance limits, for both code-based SPP and carrier phase-based RTK approaches, using the
complete set of GNSS meta-signals and some representative HO-BOC signals. The analysis was
conducted by resorting to previously derived CRB expressions, which depended only on the signal
samples and the corresponding MLE. First, the time-delay and phase MLE performance was assessed,
which in turn drove the position RMSE behavior. Several remarkable conclusions were drawn
throughout the article, summarized in the sequel:

• Time-delay/phase estimation: Regarding the time-delay estimation, while the achievable precision
was linked to the ACF main peak width, the MLE threshold behavior was driven by the secondary
peaks of the ACF. This implied that signals with large secondary peaks close to the main one
did not converge directly to the CRB, but had a transitory region, therefore being less robust to
SNR variations. From the set of meta-signals, only the combinations with the full-bandwidth
B2 and E5 signals, that is the combination of AltBOC(15,10) with the signals in the B3 and
E6 bands, respectively, exhibited low secondary peaks and minimized the impact on the MLE
threshold. It was also shown that using much larger bandwidth combinations with signals in
the L1/E1/B1 band was not worthwhile because this induced larger secondary peaks. In terms
of phase estimates, the performance was directly linked to the corresponding time-delay MLE,
therefore following the same threshold behavior. In terms of robustness and performance, the best
choices were E5 + E6 and B2 + B3. For the set of HO-BOC signals considered: (i) the achievable
time-delay performance with E1-PRS and B1A was similar to E5, but with larger secondary peaks,
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which worsened the threshold behavior; and (ii) the time-delay achievable performance with the
L1-M and E6-PRS signals was slightly worse compared to E5, but without threshold degradation.

• SPP: As for the time-delay estimation, it was shown that regardless of the satellite geometry,
the best compromise in terms of robustness, performance, and estimator behavior was given
by Galileo E5 and the full-bandwidth E5 + E6 and B2 + B3 combinations, the meta-signals
providing greater precision, but requiring double the bandwidth. If HO-BOC signals were
considered: (i) the E1-PRS and B1A signals are recommended for nominal conditions, achieving a
performance similar to Galileo E5 with half the bandwidth; and (ii) the L1-M and E6-PRS signals
are recommended for bad satellite geometries.

• RTK: Under nominal conditions, it was shown that it made no sense to exploit GNSS meta-signals
as the Galileo E5 signal already provided the best achievable performance. These results were
slightly improved if using L1-M and E6-PRS HO-BOC signals. For RTK positioning under bad
satellite visibility conditions it was shown that the convergence of the Galileo E5 signal was
significantly worsen; therefore, regardless of the satellite geometry, the best performance and
robustness trade-off was provided by the full-bandwidth Galileo E5 + E6 and BeiDou B2 + B3
combinations, the latter being slightly better. In addition, for these two signals, the fixing success
rate was maximized. In the HO-BOC-based RTK under non-nominal conditions, as for E5, both
signals provided poor performances.

As a final remark, the following recommendations could be extracted from this article: (i) if the
receiver is constrained by the signal bandwidth and the user has access to restricted codes, it is
recommended to use the E1-PRS or B1A signal under nominal conditions, and L1-M or E6-PRS
under non-nominal conditions; (ii) if the receiver is able to operate at 60 MHz, it is recommended to
exploit the full-bandwidth Galileo E5 signal; and (iii) in terms of robustness and performance, if the
receiver can operate at 135 MHz, the best choice is to use the GNSS meta-signals E5 + E6 or B2 + B3.
These meta-signals provided the best overall performances regardless of the positioning method used,
the satellite constellation geometry, or the propagation conditions.

It is worth noting that the present article provided the ultimate achievable performance using
HO-BOC and GNSS meta-signals, but further analysis could be conducted: (i) performance loss w.r.t.
the optimal under multipath conditions; (ii) the impact of high-dynamic conditions; (iii) coherent vs.
non-coherent architectures in very weak signal conditions; (iv) analysis w.r.t. external errors such as
ionospheric/tropospheric delays, orbital or satellite clock errors; or (v) a specific receiver design to
avoid false locks to secondary ACF peaks or meta-signal tracking strategies.

Author Contributions: Conceptualization and methodology, J.V.-V., F.V. and E.C.; software and validation,
L.O. and D.M.; writing—original draft preparation, L.O., D.M. and J.V.-V. ; writing—review and editing, F.V. and
E.C.; supervision, E.C.; project administration, E.C. and J.V.-V.; funding acquisition, J.V.-V. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was partially supported by the DGA/AID projects (2019.65.0068.00.470.75.01,
2018.60.0072.00.470.75.01) and the TéSA Lab Postdoctoral Research Fellowship.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zumberge, J.F.; Heflin, M.B.; Jefferson, D.C.; Watkins, M.M.; Webb, F.H. Precise point positioning for the
efficient and robust analysis of GPS data from large networks. J. Geophys. Res. 1997, 102, 5005. [CrossRef]

2. Langley, R.B. RTK GPS. GPS World 1998, 9, 70.
3. Medina, D.; Li, H.; Vilà-Valls, J.; Closas, P. Robust Statistics for GNSS Positioning under Harsh Conditions:

A Useful Tool? Sensors 2019, 19, 5402. [CrossRef]
4. Li, H.; Medina, D.; Vilà-Valls, J.; Closas, P. Robust Kalman Filter for RTK Positioning Under Signal-Degraded

Scenarios. In Proceedings of the 32nd International Technical Meeting of the Satellite Division of the Institute
of Navigation (ION GNSS + 2019), Miami, FL, USA, 16–20 September 2019; pp. 16–20.

http://dx.doi.org/10.1029/96JB03860
http://dx.doi.org/10.3390/s19245402


Sensors 2020, 20, 3586 26 of 27

5. European Space Agency (ESA). Advanced Open-Loop Techniques for High-Sensitivity GNSS Receivers
Applied to BOC Signals; Invitation to Tender (ITT) AO9439—Closing Date: 09/10/2018; ESA: Noordwijk,
The Netherlands, 2018.

6. European Space Agency (ESA). Enhanced GNSS Signals in Space and User Receiver Processing; Invitation to
Tender (ITT) AO9585—Closing Date: 12/06/2019; ESA: Noordwijk, The Netherlands, 2019.

7. European Space Agency (ESA). Innovative Technologies for Robust High-Accuracy Position in Harsh Environments;
Invitation to Tender (ITT) AO10262—Closing Date: 18/05/2020; ESA: Noordwijk, The Netherlands, 2020.

8. Issler, J.; Paonni, M.; Eissfeller, B. Toward centimetric positioning thanks to L- and S-Band GNSS and to
meta-GNSS signals. In Proceedings of the 2010 5th ESA Workshop on Satellite Navigation Technologies and
European Workshop on GNSS Signals and Signal Processing (NAVITEC), Noordwijk, The Netherlands, 8–10
December 2010; pp. 1–8.

9. Paonni, M.; Curran, J.T.; Bavaro, M.; Fortuny, J. GNSS Meta-Signals: Coherently Composite Processing of
Multiple GNSS Signals. In Proceedings of the ION ITM, Tampa, FL, USA, 8–12 September 2014.

10. Das, P.; Ortega, L.; Vilà-Valls, J.; Chaumette, E.; Vincent, F.; Davain, L. Performance Limits of GNSS
Code-based Precise Positioning: GPS, Galileo & Meta-Signals. Sensors 2020, 20, 2196.

11. Teunissen, P.J.G.; Montenbruck, O. (Eds.) Handbook of Global Navigation Satellite Systems; Springer: Cham,
Switzerland, 2017.
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