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Abstract

Systemic lupus erythematous (SLE) is a chronic autoimmune disease associated with genetic and 

environmental risk factors. However, the extent to which genetic risk is causally associated with 

disease activity is unknown. We utilized longitudinal targeted maximum likelihood estimation to 
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estimate the causal association between a genetic risk score (GRS) comprised of 41 established 

SLE variants and clinically important disease activity as measured by the validated systemic lupus 

activity questionnaire (SLAQ) in a multi-ethnic cohort of 942 individuals with SLE. We did not 

find evidence of a clinically important SLAQ score difference (> 4.0) for individuals with a high 

GRS compared to those with a low GRS across nine timepoints after controlling for sex, ancestry, 

renal status, dialysis, disease duration, treatment, depression, smoking, and education, as well as 

time-dependent confounding of missing visits. Individual SNP analyses revealed that 12 of the 41 

variants were significantly associated with clinically relevant changes in SLAQ scores across 

timepoints 8 and 9 after controlling for multiple testing. Results based on sophisticated causal 

modeling of longitudinal data in a large patient cohort suggest that individual SLE risk variants 

may influence disease activity over time. Our findings also emphasize a role for other biological or 

environmental factors.

INTRODUCTION

Systemic lupus erythematosus (SLE) is a complex, heterogeneous autoimmune disease 

caused by both genetic and environmental factors. A substantial genetic component to SLE 

is supported by data demonstrating high heritability of the disease, a higher concordance rate 

of SLE in monozygotic twins than dizygotic twins or siblings, and a high sibling recurrence 

risk ratio (i.e. greater likelihood of disease given that one’s sibling is affected, compared 

with disease prevalence in the general population).1 The strongest genetic risk factor 

established for SLE resides within the major histocompatibility complex (MHC) on 

chromosome 6, where HLA-DRB1*03:01 and other MHC variants have been strongly 

implicated.2,3 Recent genome-wide association studies (GWAS) have also identified more 

than 40 independent loci related to SLE onset.4 A weighted genetic risk score (GRS) 

comprised of these variants was significantly higher on average in SLE cases compared to 

healthy controls.5 However, measures of association between genetic variants and SLE are 

generally modest (with odds ratios [ORs] ranging from 1.1–2.3), gene-environment 

interactions are poorly understood, and there is little awareness of how genetic profiles 

impact disease activity.1, 6

Autoimmune diseases such as SLE are commonly treated with immunosuppressive therapy, 

and large efforts are dedicated to the development of targeted therapies such as biologic 

agents.7 In order to accurately determine the effect of treatment, it is critical to understand 

the factors that influence variation in disease activity, including genetic susceptibility. While 

genetic risk has been demonstrated to be associated with disease onset, the extent to which it 

is associated with disease activity over time has not been extensively studied. Previous 

studies have found significant associations between individual gene variants and more severe 

clinical SLE characteristics, such as production of antibodies against double-stranded DNA 

(ds-DNA), nephritis, and early age at diagnosis.8 One study found that a weighted GRS 

comprised of 22 SLE risk loci demonstrated significant associations with ds-DNA, 

immunologic disorder, renal disorder, hematologic disorder, and early age at diagnosis.5 

Further understanding of how genetic variants influence disease activity may lead to 

personalized, targeted treatments for patients with SLE.1 This study aimed to examine 

clinically important marginal effects of a GRS composed of 41 established genetic risk loci 
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on disease activity over a period of nine years, accounting for time-dependent confounding 

of missing visits, in a multi-ethnic cohort of SLE patients. We were also interested in 

conducting individual SNP analyses in order to determine whether specific genetic variants 

were associated with disease activity.

RESULTS

Demographic and disease characteristics are shown in Table 1. Over 90% of study 

participants were female, which is consistent with the striking female predominance of the 

disease. The mean age of participants at enrollment was 56.2 (± 13.6) years, with mean 

disease duration of 9.1 (± 8.3) years and average age at diagnosis of 33.5 (± 13.0). The mean 

follow-up time for participants was 6.7 (± 2.7) years. The average Systemic Lupus Activity 

Questionnaire (SLAQ) score at baseline was 12.5 (± 7.9). Treatment of patients included 

plaquenil (56%), oral prednisone or other glucocorticoid (46%), other disease modifying 

therapy (31%), cyclophosphamide or cholorambucil (3%), or biologics (1%).

Table 2 shows estimated marginal difference in the expected self-reported SLAQ score for 

participants with a high GRS (≥ 33.0, the median GRS) vs. a low GRS (< 33.0) after 

controlling for sex, ancestry, disease duration, renal transplant status, dialysis, treatment, 

depression, smoking, and education. No consistent clinically important difference of SLAQ 

score between groups was demonstrated throughout the nine years of follow-up period 

(Figure 1). Additional analyses examining the association of GRS without the HLA-
DRB1*03:01 allele tag SNP on expected SLAQ score showed similar results (data not 

shown). Analyses excluding renal transplant status or dialysis to further assess any evidence 

of collinearity of these variables also reflected similar results (data not shown). Analyses of 

the GRS based on extremes (i.e. the first and fourth quartiles) indicated no clinically 

important difference of SLAQ score between groups throughout the follow-up period after 

controlling for covariates (Supplementary Table 1). Analyses examining the effect of GRS 

extremes without the HLA-DRB1*03:01 on SLAQ score were similar (data not shown).

Individual SNP analyses demonstrated that clinically meaningful SLAQ score differences 

were observed for two SNPs at time point 8 and ten SNPs at time point 9 after adjusting for 

covariates and correcting for multiple testing (Table 3). Eight of the 12 risk SNP associations 

were associated with an increased SLAQ score, indicating higher disease activity. We found 

no significant association between DRB1*03:01 and SLAQ score at any of the time points.

DISCUSSION

Our study describes the first longitudinal study examining how genetic factors influence 

disease activity in a large multi-ethnic cohort of individuals with SLE. Using a robust 

method of statistical analysis, our findings do not support a strong causal relationship 

between an overall GRS comprised of established SLE SNPs and disease activity as 

measured by the validated self-reported SLAQ. While results from analyses of the GRS and 

SLAQ score provided some evidence for an inverse relationship at years 1–5, the magnitude 

of these SLAQ score differences is not within the range established as clinically important.9 

Results from individual SNP analyses provide important insight to the overall GRS findings; 
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specifically, evidence for significant associations between certain SNPs and SLAQ score at 

two time points during the longitudinal study was demonstrated. Some SLE risk alleles were 

associated with an increased SLAQ score, while others were associated with a decreased 

SLAQ score. Of the 41 SNPs tested across various time points, 12 were associated with 

clinically significant SLAQ score differences. Score differences varied, depending on risk 

SNP tested, and help to explain the overall null findings that were observed when all risk 

SNPs were considered as a single combined GRS. More work is needed to further clarify the 

relationship between established SLE risk variants and patterns of disease activity for 

clinical outcomes that the SLAQ may or may not capture.

Previous studies have found significant associations between specific gene variants and SLE 

disease characteristics, which capture severity, not specifically activity. Allele 2 of the 

IL1RN polymorphism was associated with SLE disease characteristics as defined by discoid 

rash and photosensitivity.10 In a Danish study, the MBL2 gene was associated with an 

increased risk of sustained disease activity and a tendency to acquire infection, but not 

identified as a susceptibility locus.11 Taylor et al. (2008) also concluded that a common 

polymorphism within STAT4 was associated with more severe SLE characteristics, 

including production of antibodies against double-stranded DNA (ds-DNA), nephritis, and 

age at diagnosis.8 Status for ds-DNA, which can fluctuate over time with disease activity or 

severity,12–14 was previously associated with the HLA-DRB1*15:01 allele,12 as well as 

ITGAM, UBE2L3, and HLA-DRB1*03:01.5 Although we did not find a significant 

association between HLA alleles or risk variants in ITGAM and SLAQ score across time 

points, we did observe a clinically important difference in disease activity for those carrying 

1–2 copies of a risk allele in UBE2L3 (rs5754217) at time point 9. An earlier investigation 

reported significant associations between a weighted GRS comprised of 22 SLE risk loci 

and several SLE-related clinical manifestations including ds-DNA, immunologic disorder, 

renal disorder, hematologic disorder, and early age at diagnosis in individuals of European 

ancestry.5 While previous studies support the influence of genetics on certain SLE outcomes, 

our study is the first to examine the relationship between a 41 SNP GRS and SLAQ score as 

a measure of disease activity.

Some differences in findings between previous studies of disease severity measured by ds-

DNA status and disease activity measured by SLAQ score in the current study may be 

explained by the self-reported nature of the SLAQ score, which could be influenced by a 

number of factors that were not measured or appropriately controlled for in our analysis. We 

found SLAQ score within individuals to be highly variable over time, indicating that it may 

be driven by characteristics not closely linked to genetics, such as psychosocial and other 

biological factors. Indeed, previous studies have demonstrated that specific factors such as 

age, sex, income, education, as well as presence of renal and lung disease are associated 

with SLAQ scores.9, 15 Our results indicate primarily a non-linear and clinically non-

significant relationship between the GRS and SLAQ after controlling for these other factors, 

suggesting that established genetic risk factors for developing SLE, when considered 

together, do not play a major role in disease activity, at least as measured with the SLAQ 

score. However, we identified specific genetic variants through individual SNP analysis 

causally associated with disease activity, even after correction for multiple testing.

Gianfrancesco et al. Page 4

Genes Immun. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Strengths of this study include the application of causal methods to an important research 

hypothesis focused on a comprehensive, validated clinical outcome instrument for SLE. 

Traditional longitudinal methods, such as simple random effects models, are likely to be 

subject to bias from time-dependent confounding: time-varying covariates that could 

influence variation in disease activity and the measurement process, and that are also 

affected by the baseline exposure.16 However, using our approach, we were able to much 

better control for these covariates using longitudinal-targeted maximum likelihood 

estimation (L-TMLE). Additional studies examining the extent to which the GRS is 

associated with other measures of disease activity using methods that account for time-

varying covariates are warranted; our current study is a model of how future investigations 

can be approached. Our study also focused on a large number of established genetic variants 

for SLE risk with large effect sizes.

In addition, the current study included a large, multi-ethnic group of individuals, which is 

important for external validation of our findings. While power was limited for analyzing 

each race/ethnicity group separately, overall results were consistent when the study sample 

was restricted to Caucasian participants only (controlling for intra-European principal 

components), the largest group in our patient cohort. Further, we do not present analyses 

stratified by ancestry due to the fact that the GRS was predominately derived from risk 

alleles associated with SLE in European populations and may underrepresent relative 

genetic risk of non-Europeans. Future studies examining other populations using population-

specific SLE risk alleles are needed.

Study limitations include examination of the GRS as a binary variable, which is unlikely to 

fully capture the relationship between the GRS values and shifts in disease activity. 

However, extreme quartiles were utilized for analyses and comparable finding were 

demonstrated. Further, use of a binary variable reduces the increased likelihood of positivity 

violations and extrapolation that would occur when using a continuous variable. Additional 

risk SNPs will no doubt be identified through larger GWAS in SLE, and pathway analysis 

may soon inform sub-score development for future longitudinal studies of a GRS and 

disease activity in SLE. Additional limitations include reliance on prevalent cases to 

estimate effects over time, self-report of symptoms in the SLAQ score, and imputation of 

missing covariates using the last value forward method. We also accounted for informative 

measurement (i.e. selection bias) as well as possible given the data; however, there may be 

additional unmeasured time-dependent covariates that influence whether or not a participant 

was interviewed at time t. In other words, the sequential randomization assumption may not 

hold for the measurement process.16 There was some attrition over the nine-year follow-up 

period. While we controlled for the potentially informative measurement process with L-

TMLE, the wider confidence intervals at later time points reflect, in part, the fewer number 

of individuals interviewed in the later years of the study, which may also contribute to a 

higher potential for positivity violations.

In summary, SLE is a multifactorial disease with both genetic and environmental risk 

factors. In line with previously demonstrated associations of genetic factors with disease 

severity, for example ds-DNA status as examined in other studies,5, 12–14 we observed 

evidence of clinically important differences in SLAQ scores for individual SNPs. We did not 
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observe a clinically important association of the overall GRS with disease activity as 

measured by the SLAQ score, which highlights the strong potential for heterogeneous 

genetic effects influencing disease activity over time. Genetic susceptibility appears to play a 

role in the development of SLE, as well as some measures of disease activity and severity. 

However, other biological and unknown environmental factors may also contribute 

significantly to disease activity. Future work to identify specific patient subgroups based on 

genetic and environmental factors and the development of corresponding targeted treatment 

interventions is needed, and has the potential to improve SLE symptoms.

MATERIALS AND METHODS

Participants

Data were collected from participants of the Lupus Outcome Study (LOS) at the University 

of California, San Francisco (UCSF). This longitudinal cohort study was designed to 

prospectively investigate health and quality of life outcomes in a set of SLE patients who 

were also participants in a larger study of SLE genetic risk factors and outcomes.8, 17 

Participants were followed from January 2004 – December 2012. Study methodology and 

details have been reported previously.18, 19 Participants had a diagnosis of SLE confirmed by 

medical record review by a rheumatologist or a nurse working under a rheumatologist’s 

supervision. The cohort was composed of 942 individuals self-identified as Caucasian, 

African American, Hispanic, Asian, or mixed race/ethnicity. The Committee on Human 

Research at UCSF approved this study and all participants provided informed consent prior 

to enrollment.

Data Collection

Participants completed up to nine annual structured telephone interviews comprised of 

questions related to various events and exposures. Disease activity was measured by a 

validated comprehensive self-reported measure, the Systemic Lupus Activity Questionnaire 

(SLAQ). The SLAQ identifies clinical outcomes such as disease symptoms including weight 

loss, fatigue, fever, skin rash, vasculitis, alopecia, lymphadenopathy, shortness of breath, 

chest pain with deep breath, Raynaud’s, abdominal pain, stroke syndrome, seizures, 

forgetfulness, depression, headache, muscle pain, muscle weakness, joint pain or stiffness, 

and joint swelling.9, 20 Items were weighted and aggregated into a scoring system, resulting 

in scores ranging from 0 to 47, with higher scores indicating greater disease activity over the 

prior three months. A conservative estimate of the minimal clinically important difference 

for SLAQ score in the current study was considered to be 4.0 points, as previously 

indicated.9

Participants were genotyped using the Illumina Immunochip platform.21 Quality control 

procedures included removal of subjects for low genotyping (<5%), sex mismatch, and 

relatedness (1st degree as determined by identity-by-descent analysis). A GRS was 

calculated for each individual from 41 established SLE susceptibility loci (Supplementary 

Table 2)5,14, 22–29 with proxies if available for SNPs not genotyped on the Immunochip. The 

GRS was calculated by summing the number of independent risk alleles for each locus 

across the 41 loci; missing genotypes (<5%) were assumed to be the most frequent 
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genotype. We also calculated a GRS without HLA-DRB1 (DRB1*03:01 allele tag SNP, 

rs2187668),3 the strongest genetic predictor of SLE, to examine if this factor had a major 

influence on the GRS.

Study data included sex and disease duration (as calculated by age at time of interview 

minus age at diagnosis). Renal transplant and dialysis status at time of interview were self-

reported (yes/no), and depression was measured using the Center for Epidemiologic Studies 

Depression (CESD) scale.30 Treatment was categorized as type of medication at time of 

interview: oral prednisone or other glucocorticoid; plaquenil; or other [including biologics 

(etanercept, rituxan, belimumab, anakinra, infliximab, adalimumab, or abatacept); 

cyclophosphamide or chlorambucil; or other disease modifying therapy (methotrexate, 

cyclosporine, leflunomide, mycophenolate mofetil, tacrolimus, or sulfasalazine)]. Genetic 

ancestry was represented by the top four principal components determined with 

EIGENSTRAT using 878 independent (r2 < 0.2) Immunochip SNPs.

Statistical Analyses

L-TMLE was used to estimate the marginal association of the GRS on SLE disease activity 

during the nine-year observation period.31 L-TMLE allows for estimation of the cumulative 

genetic impact of the baseline exposure (GRS) while accounting for time-varying covariates 

and non-monotone observation process.32 Despite the study’s best efforts, cohort members 

occasionally missed their yearly interviews; however, individuals did not generally miss 

more than two years in a row. Instead of censoring at the time of the first missed interview 

(which would substantially reduce the data set), L-TMLE was used to control for the 

possibly informative measurement process; that is, to account for missing time points 

(interviews) that may have been influenced by time-varying covariates.

Our primary research question aimed to examine the causal effect of the GRS on clinically 

important disease activity as measured by SLAQ score at each time point (year) t, while 

accounting for the observation process. Let A be an indicator that patient had a GRS above 

the median in the dataset, and Δt be an indicator that the patient was interviewed at time t. 
Our causal parameter was the expected difference in the counterfactual SLAQ score at time t 
if all patients had high vs. low GRS and were interviewed at time t: E[Yt(A=1, Δt=1) − 

Yt(A=0, Δt=1)], where Yt(A=a, Δt=1) is the counterfactual outcome at time t if possibly 

contrary-to-fact the patient’s GRS was A=a and he/she was interviewed at time t Δt=1.33 The 

time-dependent covariates (disease duration, depression, treatment, smoking status, dialysis, 

renal transplant status and education) may affect both the outcome Yt as well as observation 

process Δt. These covariates are also impacted by the exposure GRS A. Therefore, time-

dependent confounding is present and standard regression methods are likely to yield biased 

estimated, even though exposure GRS is randomized within sex-ancestry strata.16, 34, 35 

However, more sophisticated methods allow us to estimate the statistical parameter, best 

approximating our causal parameter of interest.

Our statistical estimand was the longitudinal G-Computation formula,16 which will equal 

our causal parameter if the needed assumptions are met. Specifically, we need the sequential 

randomization and positivity assumptions to hold: that is, at each time t, the counterfactual 

outcome Yt(A=a, Δt=1) is independent of the observation process at t, given the measured 
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past, and there is a positive probability of being observed (Δt=1) within all covariate-

measurement histories. Furthermore, by incorporating data-adaptive methods, L-TMLE is 

able to minimize the potential bias due to regression model misspecification and maximize 

precision of the estimates. In this analysis, Super Learner was used to build the best 

weighted combination of candidate algorithms as measured by the cross-validated mean 

squared error.36 The library of candidate prediction algorithms in Super Learner included 

linear regression; linear regression with interactions; the mean; stepwise regression; and 

stepwise regression with interactions.

For comparison, we also examined the association of being in the most extreme quartiles of 

GRS on average SLAQ score. Specifically, we defined the patient as exposed (A=1) if he/she 

had a GRS in the upper 25 percentile and as unexposed (A=0) if he/she had a GRS in the 

lower 25 percentile. Again, we adjusted for potentially informative measurement, baseline 

confounders (sex and ancestry), and accounted for time-dependent confounding.

We tested the association between the GRS (above or below the median and in the extreme 

quartiles) and disease activity as measured by SLAQ across nine time points: baseline (T1) 

and eight additional time points (T2-T9). We were specifically interested in SLAQ 

differences between the two groups that were clinically meaningful (greater than 4.0 

points).9 We examined each time-point separately to better control for informative 

missingness by using time-updated covariates to fit the observation status at time t, and 

because disease activity in SLE patients varies both between and within individuals over 

time.37 We restricted the sample to the subset of participants who had no complete 

missingness (i.e. missing values at all time points) for the following variables: sex, ancestry 

as measured by EIGENSTRAT principal components, disease duration, depression, 

treatment, smoking status, genetic risk score, dialysis, renal transplant status, and education 

(n=903). An assessment of multicollinearity between these variables was conducted by 

examining variance inflation factors (VIF); all variables were retained (VIFs ≤1.2). For 

missing values of the data that remained in the subset of 903 individuals (< 3% for each 

variable), information was imputed using last value carried forward. As described above, 

individuals with missing outcomes (SLAQ score) were accounted for by conditioning on the 

observation process (Δt).

Due to the limitation of a binary GRS and inability to determine whether specific genetic 

variants are associated with disease activity, we also conducted individual SNP analyses. We 

defined the patient as exposed (A=1) if he/she carried 1–2 risk alleles and as unexposed 

(A=0) if he/she carried 0 risk alleles for each SNP. Individual SNP analyses were corrected 

for multiple testing using Bonferroni adjustment. All analyses were conducted with the 

‘ltmle’ package in R v3.2.0 (www.r-project.org).38 We created 95% confidence intervals 

(CIs) and conducted two-sided hypothesis tests controlling the type I error rate at 5% 

(α=0.05).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Genetic risk score (GRS) and longitudinal clinically significant disease activity
#Dashed line indicates clinically important difference
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Table 1

Characteristics of SLE Participants at Baseline (n= 942)

Mean ± SD or N(%)

Age, years 56.2 ± 13.6

Sex

 Females 866 (91.9)

 Males 76 (8.1)

Race/Ethnicity

 African American 104 (11.0)

 Asian 80 (8.5)

 Caucasian 617 (65.5)

 Hispanic 82 (8.7)

 Mixed Ethnicity 59 (6.3)

Disease Duration, years 9.1 ± 8.3

Age at Diagnosis, years 33.5 ± 13.0

Genetic Risk Score (Binary, n=903)

 High (≥ 33) 498 (55.0)

 Low (< 33) 405 (45.0)

Genetic Risk Score (Extremes, n=493)

 Upper 25% (≥ 36) 257 (52.0)

 Lower 25% (≤ 30) 236 (48.0)

Systemic Lupus Activity Questionnaire Score 12.5 ± 7.9

 (Range 0 – 47)

Treatment

 Oral prednisone or other glucocorticoid 429 (45.5)

 Plaquenil 525 (55.7)

 Biologics 8 (0.9)

 Cyclophosphamide or Cholorambucil 27 (2.9)

 Other Disease Modifying Therapy 288 (30.6)

Depression 15.3 ± 12.7

 (Range 0 – 59)

Smoker

 Ever 519 (57.2)

 Never 388 (42.8)

Renal Transplant Status

 Yes 6 (0.6)

 No 936 (99.4)

Dialysis

 Yes 39 (4.1)

 No 903 (95.9)

Education

 Less Than High School Graduate 25 (2.7)
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Mean ± SD or N(%)

 High School Graduate 128 (13.6)

 Some College 247 (26.2)

 Associate/Trade Degree 176 (18.7)

 Bachelor’s Degree 215 (22.8)

 Master’s, Doctoral, Post-Baccalaureate Degree 151 (16.0)

n= Number of observations
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Table 2

Estimates of the Marginal Association of Genetic Risk Score (GRS) and Disease Activity (SLAQ score) 

Amongst Individuals Over Study Period#

Expected Difference (High vs. Low GRS)
(95% CI) p-value

L-TMLE

 T1 (n=872) −1.7 (−2.7, −0.7) 0.001

 T2 (n=791) −1.5 (−2.7, −0.4) 0.01

 T3 (n=780) −1.4 (−2.5, −0.3) 0.01

 T4 (n=726) −1.2 (−2.3, −0.1) 0.03

 T5 (n=691) −2.1 (−3.4, −0.8) 0.001

 T6 (n=618) −0.5 (−2.2, 1.3) 0.61

 T7 (n=534) −1.0 (−2.4, 0.4) 0.17

 T8 (n=485) −1.3 (−4.3, 1.7) 0.39

 T9 (n=448) −2.6 (−5.4, 0.1) 0.06

n= Number of observations without missing outcome at time t.

#
Adjusted for sex, ancestry, disease duration, renal status, renal involvement, dialysis, treatment, depression, smoking, and education.
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Table 3

Estimates of the Clinically Important Marginal Associations of Individual SNPs and Disease Activity (SLAQ 

score) Amongst Individuals Over Study Period#*

SNP Risk allele Time point 8 Time point 9

Risk allele associated with a clinically important increased SLAQ score

rs3184504 A 4.82 (3.10, 6.55) –

rs17696736 G 4.24 (2.53, 5.95) –

rs2618473 A – 4.30 (1.95, 6.65)

rs11574914 A – 4.28 (1.71, 6.86)

rs7197475 T – 5.72 (3.56, 7.89)

rs3135388 A – 4.39 (2.38, 6.39)

rs3024505 T – 7.50 (5.27, 9.73)

rs5754217 T – 5.63 (3.69, 7.57)

Risk allele associated with a clinically important decreased SLAQ score

rs1167796 T – −5.90 (−7.65, −4.14)

rs9888739 T – −5.27 (−7.11, −3.43)

rs5029937 A – −5.58 (−7.61, −3.56)

rs725613 G – −5.59 (−7.69, −3.50)

Estimates reflect differences in the expected SLAQ score for participants with 1–2 vs. 0 risk alleles (95% CI).

#
Adjusted for sex, ancestry, disease duration, renal status, renal involvement, dialysis, treatment, depression, smoking, and education.

*
All p-values Bonferroni corrected and ≤ 0.001
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