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Abstract: Marine organisms are an important source of natural products with unique and diverse
chemical structures that may hold the key for the development of novel drugs. Docosahexaenoic
acid (DHA) is an omega-3 fatty acid marine natural product playing a crucial regulatory role in the
resolution of inflammation and acting as a precursor for the biosynthesis of the anti-inflammatory
specialized pro-resolving mediators (SPMs) resolvins, protectins, and maresins. These metabolites
exert many beneficial actions including neuroprotection, anti-hypertension, or anti-tumorigenesis. As
dysregulation of SPMs is associated with diseases of prolonged inflammation, the disclosure of their
bioactivities may be correlated with anti-inflammatory and pro-resolving capabilities, offering new
targets for drug design. The availability of these SPMs from natural resources is very low, but the
evaluation of their pharmacological properties requires their access in larger amounts, as achieved by
synthetic routes. In this report, the first review of the total organic syntheses carried out for resolvins,
protectins, and maresins is presented. Recently, it was proposed that DHA-derived pro-resolving
mediators play a key role in the treatment of COVID-19. In this work we also review the current
evidence on the structures, biosynthesis, and functional and new-found roles of these novel lipid
mediators of disease resolution.

Keywords: marine sources; DHA; SPMs; resolvins; protectins; maresins; synthetic approaches;
anti-inflammatory activity

1. Introduction

The oceans cover more than two-thirds of the earth’s surface, and it is estimated that
the marine environment hosts most of the organisms living on earth. The number of marine
species that inhabit the oceans is not known yet, although it is estimated that marine species
include about 1–2 million of total earth species. Due to its phenomenal biodiversity, the
marine world is the most valuable natural resource, and it is a very challenging, competitive,
and aggressive environment that demands organisms’ adaptation to this unique habitat and
the subsequent production of quite specific and potent biologically active compounds [1,2].

In the last decade, the marine environment has attracted the attention of researchers;
however, oceans, as a source of novel marine drugs, remain quite unexplored. It is esti-
mated that more than 10,000 marine natural products (MNPs), with therapeutic potential
for healthcare, have been extracted and isolated from bacteria, sponges, algae, bryozoans,
cnidarians, tunicates, molluscs, fungi, and other marine organisms. These compounds,
mostly primary and secondary metabolites, demonstrated a unique and diverse chemical
structure that may hold the key for the development of novel drug hits and leads. These
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compounds demonstrated significant biological activities including anticancer, anticoagu-
lant, antiviral, antibacterial, antidiabetic, antihypertensive, antioxidant, anti-inflammatory,
antimalarial, and antituberculosis properties [3]. Geographical locations can define differ-
ent secondary metabolites and their concentration due to environmental factors such as
salinity, temperature, pollution levels, light intensity, and predation balance [4,5]. Among
the compounds that demonstrated significant biological activities are peptides isolated
from fish, algal polysaccharides, carotenoids and phenolic compounds from shellfish and
seaweeds, and omega-3 fatty acids from fish oil [6].

Omega-3 fatty acids are polyunsaturated fatty acids (PUFA) and have a vast nutraceu-
tical potential with beneficial effects against a diversity of diseases (Table 1).

Table 1. Nutraceutical potential of omega-3 fatty acids.

Health Benefits of Dietary Supplementation Reference

Reduce risks of macular degeneration and cancers [7]
Protect against atherosclerotic heart disease and sudden coronary death [8]

Have beneficial effect in patients with Meibomian gland dysfunction (MGD) [9]
Reduce risks of developing cardiovascular disease (CVD), coronary heart disease

(CHD), and myocardial infarction (MI) [10]

Reduce risks of Parkinson’s and Alzheimer’s disease [11]
Decrease systolic and diastolic blood pressure [12]
Inhibit pro-inflammatory signalling cascades [13]

Amongst omega-3 PUFA, docosahexaenoic acid (DHA, 22:6n-3) is particularly im-
portant, and despite the availability of desaturase and elongase enzymes required for the
biosynthesis of DHA (Scheme 1), its synthesis is minimal in humans [14], and DHA must
be obtained from dietary sources, particularly from seafood such as mackerel, salmon,
herring, tuna, sardines, and products derived from seafood [15,16] or seaweeds [17].

Scheme 1. Pathway of alpha-linolenic and conversion to DHA.
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Omega-3 fatty acids, including DHA, are mainly found esterified with glycerol as
triacylglycerols (TAG), as components of phospholipid structure (PL), as cholesterol esters
(CE), and as free fatty acids (FFA) [18].

DHA has a long and highly unsaturated chain with 22 carbons and 6 double bonds
(Figure 1).

Figure 1. DHA chemical structure and DHA esters found in marine organisms: TAG, triacylglycerols;
PL, phospholipid with R’ = serine, choline, and ethanolamine; FFA, free fatty acid; CE, cholesterol ester.

DHA is essential for the growth, maintenance, and development of normal brain
and visual function. It is a structural constituent of cell membranes and has a significant
influence on cellular behaviour, fluidity, permeability, anti-inflammatory processes, and
neuronal signalling [19]. Several studies also indicate that n-3 PUFA are essential for
proper foetal development, where DHA plays a crucial role for optimal vision, cognitive
development, and behaviour [20,21]. In order to prevent deficiencies associated with a
low DHA intake, the WHO recommended a daily intake of DHA + EPA (eicosapentaenoic
acids) at 250 mg for adult [22].

Based on a work developed by Cardoso et al. [14,18], the highest content of DHA can
be found in chub mackerel (2128 mg/100 g), Atlantic salmon (1773 mg/100 g), or European
eel (3447 mg/100 g). Additionally, microalgae Thraustochytrium aureum ATCC 34,304 are
rich in DHA (6590 mg/100 g of dry matter) [14].

2. From DHA to SPMs and Their Functional Role

DHA is a substrate for cyclooxygenases (COXs) and lipoxygenases (LOXs), being
enzymatically oxidized to mono-, di-, and tri-hydroxyDHA (HDHAs), oxidized to epoxides,
oxidized to oxo-DHA metabolites, or oxidized to neuroprostanes, among other compound
families. HDHAs include the specialized pro-resolving mediators (SPMs) or docosanoids,
comprising D-series resolvins (RvD), protectins (PD), and maresins (MaRs) (Figure 2),
which are available at sites of acute inflammation, acting in a specific tissue [23], and
potent lipid mediators, with benefits of the prevention and treatment of several diseases.
HDHAs have shown benefits of neuroprotection, benefits against the risks of cardiovascular
diseases, and anti-tumour properties, among others [24].
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Figure 2. Structure of the SPMs D-series resolvins, protectins, and maresins, which are metabolites
derived from DHA.

Four types of SPMs have been classified depending on the precursor molecule that
they derive from and the enzyme implicated in metabolic cascade: lipoxins (LXs), RvD and
RvE, PD, and MaRs. Lipoxins (LXs) result from a biosynthetic pathway of omega-6 fatty
acid: araquidonic acid. LXs were the first SPM to be described and studied due to their
essential role in various inflammatory diseases [25]. Resolvins from EPA (E-resolvins) and
from DHA (D-resolvins) and protectins and maresins from DHA are structurally distinct
from LXs resulting from a different metabolic pathway from omega-3 fatty acids.

SPMs are active in subnanomolar doses in between the picogram and nanogram levels,
promoting stereospecific activation of cellular receptors on diverse cells of immune system
and organ-specific protectors. SPMs have special functions and direct action on inflamma-
tion control and resolution phase. They can act on immune cells such as neutrophils and
macrophages, endothelial and epithelial cells, and lymphocytes [26,27].

Given the influence of uncontrolled inflammation to diverse human pathologies,
the identification of endogenous control mechanisms in acute inflammatory response has
become essential. Inflammation reaction is an essential protective mechanism for preserving
health and normally is well-organized and controlled, leading to a quick response and
normal tissue structure repair. However, if the wound healing response is dysregulated, it
can be characterized by a weak inflammatory response that can lead to tissue destruction by
harmful stimuli or chronic unresolved inflammation. This event may culminate in diverse
pathologies such as arthritis, cardiovascular disease, neurodegenerative diseases such as
Alzheimer’s and Parkinson′s, asthma, cancer, and autoimmune diseases [27,28]. Following
microbial infection or tissue injury, the release of pro-inflammatory lipid mediators is among
the first signalling events, promoting the recruitment of neutrophils (polymorphonuclear
leukocytes (PMN)) [29]. Although the acute inflammatory response is protective, when
an excess of PMN congregates or swarms in tissues, it can lead to tissue damage that
ultimately amplifies inflammation, causing a wide range of acute, chronic, and systemic
inflammatory disorders [27,29–31]. Thus, it becomes crucial to understand the underlying
mechanisms and specialized mediators involved in the resolution process.

Known as immunoresolvents and recognized by their potent stereoselective, pro-
resolving, and anti-inflammatory actions, SPMs can stimulate the resolution of inflam-
mation without immune suppression [27,32–34]. Each family of SPM will promote the
recruitment and activation of monocytes and will block neutrophil recruitment, which
will lead to both the resolution of inflammation and homeostasis through the combined
actions of these mediators [29]. SPMs are enzymatically produced in human body fluids
and organs, being involved mainly in the resolution of inflammation, wound healing,
and neuroprotection. The use of SPMs can reduce the treatment with antibiotics against
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infection and is a new approach to the development of alternative and effective therapies
for several diseases [24,35]. The identification of resolvins, protectins, and maresins is
of great importance, as these potent lipid mediators provide the first molecular basis for
many of the health benefits attributed to DHA. However, for many of them, the specific
molecular mechanisms remain unclear [29,36–38]. Thus, disclosure of the biosynthetic
pathways for conversion of DHA to SPMs, along with their structural elucidation and
bioactivities evaluation, is crucial to the understanding of inflammation resolution. By
promoting the resolution of inflammation, clearance of microbes, reduction in pain, and
promotion of tissue regeneration via specific cellular and molecular mechanisms, they
have gained the attention of the scientific community [39]. The anti-inflammatory and
pro-resolution functions of SPMs are attained by binding to specialized G-protein-coupled
receptors (GPCRs). Between these GPCRs are GPR32, FPR2/ALX, GPR18 for resolvins,
RORα and ALX/FPR2 for maresins, and GPR84 and GPR120 for protectins [35,40,41].

Some of the molecular and cellular effects of DHA-derived SPMs are summarized
in Table 2. Within the resolvins family, RvD1, RvD2, RvD3, RvD4, RvD5, and RvD6
were identified as well as the series of lipid mediators’ aspirin-triggered forms (AT-RvD),
differing in their stereochemistry (Schemes 2 and 3), as well as protectins PD1 and MaR1
and MaR2.

Table 2. DHA-derived SPM actions in disease models and cell targets.

SPM Target Bioaction Reference

RvD1 Polymorphonuclear
leukocyte

Decreases infiltration in murine skin air pouch model; limits infiltration
in renal ischaemic injury [36,42,43]

Microglial cells Inhibits IL-1β expression in vitro [36]
Vascular inflammation
(arterial angioplasty)

Attenuates cell proliferation, leukocyte recruitment, and neointimal
hyperplasia [44]

Alzheimer’s disease Stimulates phagocytosis of Aβ by Alzheimer’s disease macrophages [45]
Pain Controls inflammatory pain [46]

AT-RvD1 Pain Controls inflammatory pain [47]
Temporomandibular joint

inflammation Limits PMN infiltration to CFA-inflamed TMJ [48]

Arthritis Antihyperalgesic [49]

Fibromyalgia Reduces mechanical allodynia and thermal sensitization and prevents
depressive behaviour [50]

Postsurgical cognitive
decline Improves postoperative decline and attenuates memory [51]

PD1 Polymorphonuclear
leukocyte Upregulates CCR5 expression; reduces tissue infiltration [52,53]

Macrophages Stimulates phagocytosis of apoptotic polymorphonuclear leukocyte [54]
T Cell Promotes apoptosis in vitro [55]

Glial cells Reduces cytokine production [56]

Epithelial cells Protects from oxidative stress-induced apoptosis (retinal pigment
epithelium) [38]

Eosinophils Decreases recruitment in response to allergen [57]

RvD2 Macroglia Prohibits or reduces the activation of macroglia and microglia,
respectively [58]

- Downregulates TNF-α, IL-1β, iNOS, NF-k, NO, and ROS production [35]
Burn wound Prevents secondary thrombosis and necrosis [48]

RvD3 and
AT-RvD3 Neutrophils Regulates neutrophils and mediators, reducing murine peritonitis and

dermal inflammation [59]

RvD4
Protection and resolution of

inflammation during
bacterial infection

Stops leukocyte influx to the site of infection in the dorsal pouch cavity
as well as the inflammation-initiating eicosanoids by reducing levels of

PGD2 and LTB4

[60]

RvD5 Bacterial infection Increases survival and lower antibiotic requirement [48]

RvD6 Corneal nerve
Decreases inflammation and increases wound healing and nerve

regeneration by decreasing the expression of the ACE2 receptor, furin,
and integrins.

[61]

MaR1 Pain Controls inflammatory pain [37]
Tissue regeneration Promotes tissue regeneration in planaria [37]

Neuroprotection
Treats amyotrophic lateral sclerosis and spinal muscular atrophy

Accelerates clearance of neutrophils and a reduction in macrophage
accumulation at the lesion site

[62,63]

MaR2 Macrophage phagocytosis Anti-inflammatory activity [64]
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Scheme 2. D-series resolvins biosynthesis by LOX mechanism.

Scheme 3. D-series resolvins biosynthesis by aspirin-triggered COX-2.

In the next sections, the biosynthesis and the total organic synthesis of these pro-
resolving mediators are presented and discussed.

3. Resolvins from DHA

Pro-resolving oxylipins biosynthesized from DHA, commonly known as Rvs, are
primarily anti-inflammatory in nature [65]. Resolvins have strong ability to respond for reg-
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ulation of pro-inflammation and actively stimulate resolution via monocyte/macrophage
uptake of debris, apoptotic PMN, and by clearing microbes [36,66,67]. Chunrong and co-
workers [35] revealed that these metabolites can have even more potent anti-inflammatory
and pro-resolving activities than their precursors. The Rvs derived from DHA are Rvs
of D-series and were reported as neuroprotective agents, exerting their protective effect
against cell injury-induced oxidative stress [38,68,69]. The six identified resolvins and the
aspirin-triggered forms are biosynthesized by aspirin-triggered cyclooxygenase-2 [24,26,35]
(see Section 3.1). Due to the stereospecific activation of cellular receptors, each SPM carries
defined biological functions with cell type- and organ-specific properties [70]. Recently,
the beneficial roles of resolvins against diabetes and kidney disease were revised [71]. In
various experimental kidney disease models, RvD1 was found to restore kidney tubule
function, inhibit NF- κB and IL-6 activation [72], increase regulatory T cells, and attenuate
tubular injury [73] and to attenuate fibrosis, fibroblast proliferation, and collagen deposition
in an experimental model of unilateral ureteral obstruction [74]. Resolvins also suppress
tumour growth and enhance cancer therapy [75].

3.1. Biosynthesis of D-Series and Aspirin-Dependent D-Series Resolvins

D-Series Rvs biosynthesis occurs in mononuclear cells, such as macrophages and
neutrophils, endothelial cells, fibroblasts, and monocytes (under inflammatory condi-
tions), and in vascular cells and tissues [35,76]. There are two pathways to biosynthesize
RvDs: by the lipoxygenase (LOX) mechanism (Scheme 2) or through the aspirin-triggered
cyclooxygenase-2 (COX-2) pathway (Scheme 3) [27,29,35].

The biosynthetic conversion of DHA to D-series Rv (RvD1-RvD6) is illustrated in
Scheme 3. The initial step proceeds via lipoxygenation of DHA at carbon 17 catalysed by
15-lipoxygenase (15-LO) to give (17S,4Z,7Z,10Z,13Z,15E,19Z)-17-hydroperoxydocosahexaenoic
acid (abbreviated as 17S-HpDHA), which is transformed into the corresponding
17S-hydroxyDHA (17S-HDHA) by a peroxidase. A second lipoxygenation by 5-LO at
carbon 7 is followed by catalysis with a peroxidase to give RvD5. Dehydration affords an
intermediate epoxide, which when hydrolysis-catalysed by a hydrolase gives RvD1 and RvD2.
Lipoxygenation at carbon 4 catalysed by 5-LO gives a hydroperoxide, which generates RvD6
under peroxidase catalysis or is dehydrated to form a 4,5-epoxide, which in turn, under
hydrolase catalysis, gives RvD3 and RvD4. The steps covering 5-lipoxygenation and epoxide
formation can occur within a single cell type or via transcellular biosynthesis [29].

Alternatively, RvDs biosynthesis can be initiated by the aspirin-dependent acetylated
COX-2 enzyme to give the 17R-series RvDs. In fact, acetylated COX-2 in the presence of
aspirin acts as a modified dioxygenase by introducing an oxygen molecule with opposite
stereochemistry [29]. The RvDs biosynthesized through aspirin and acetylated COX-2
also undergo lipid oxidation catalysed by 15-LO and 5-LO, epoxidation, and hydrolysis
processes, forming AT-RvDs (Scheme 3).

The biosynthetic pathway of AT-RvDs could partly explain some anti-inflammatory
effects of aspirin since COX-2 in its presence biosynthesizes metabolically more stable
SPM epimers, with pro-resolving and anti-inflammatory activities [29,77]. As shown in
Schemes 2 and 3, RvDs and AT-RvDs differ in their R/S configuration of each OH group
containing chirality centre. AT-RvDs are equally potent anti-inflammatory agents, but the
“R” isomers have longer biological half-lives and have a higher resistance to the metabolic
inactivation by oxidoreductases [59,78].

3.2. Total Synthesis of D-Series Resolvins

The availability of resolvins from natural resources is low, but they can be generated
in vitro via one-pot single enzyme incubation [43,79], although in vivo RvD1 requires two
lipooxygenation steps. However, for the evaluation of their biological and pharmacological
properties, it is of great importance to have an easy access to these compounds, which has
challenged scientists to develop synthetic routes towards resolvins.
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3.2.1. Resolvin D1

The first total synthesis of RvD1 was carried out by Serhan et al., via a Sonogashira
reaction, whose studies also covered RvD1 natural product structure assignment [29,79]. In
2012, Rodríguez and Spur [80], inspired by Serhan et al. reports [29,79], reported an elegant
and successful approach, also based on the Sonogashira reaction, by reacting the alkyne
component containing part A and the iodide containing part B, as depicted in Scheme 4 [80].
The starting material was 2-deoxy-3,4-O-isopropylidene-d-erythro-pentopyranose (1), used
twice to install a double bond through Wittig olefination (Scheme 4A,B). The synthesis of
the cis-isomer 2 was achieved in 43% yield by reaction of 1 with the phosphorane resulting
from the treatment with base of [(ethoxycarbonyl)propyl] triphenylphosphonium bromide.
Dess–Martin periodinane oxidation of the primary alcohol gave the aldehyde, which was
again submitted to another Wittig reaction with the appropriate phosphorane, followed
by cis-trans isomerism with iodine/benzene to afford the trans-trans diene isomer 4 in
80% yield. Cleavage of the trimethylsilyl group with potassium fluoride afforded the
triple bond required for the Sonogashira reaction, in which precursor 5 reacts with the
iodoester 8, installing RvD1 parent structure, as depicted in Scheme 4. The synthesis of
8 was carried out by Wittig reaction of 1 with propylenetriphenylphosphorane, followed
by treatment with butyl lithium and acid work-up, providing 8 in 19.7% overall yield
from 1 (Scheme 4A). The Sonogashira reaction gave compound 9 in high yield, which was
submitted to isopropylidene cleavage in acid medium generated by CH3COCl in methanol.
After reduction of the triple bond with Zn (Cu/Ag) and hydrolysis of the ester with lithium
hydroxide, the RvD1 was obtained in 56.7% yield from precursor 9 (yield over the last
three steps).

Recently, in 2019, Kobayashi et al. [81] reported the synthesis of RvD1 also using a
Sonogashira reaction but changing the reaction partners. In this approach, the iodoester
10 reacted with the alcohol with the terminal triple bond to afford RvD1 after reduction
with Zinc, deprotection with tert-butyl ammonium fluoride, and ester hydrolysis, in overall
yield of 72.5%.

The preparation of the iodoester 10 was accomplished in fifteen steps in an overall
yield of 2.3% starting from butyrolactone. After the first seven steps to obtain the epoxide
12 [81], Swern oxidation of the primary alcohol was followed by treatment with base to
generate epoxide ring opening and elimination, giving the unsaturated aldehyde 13, the
hydroxy group of which was then protected with the tert-butyldimethylsilyl (TBS) group.
Then, reaction with TMSC(Li)N2 [82,83] afforded the trans-enyne 15 in very good yield. Hy-
drozirconation with Cp2Zr(H)Cl, obtained in situ from Cp2ZrCl2 and diisobutylaluminium
hydride (DIBAL) [84], followed by iodinolysis of the zirconium species formed, gave 16 in
reasonable yield (75%). Removal of silyl groups with tert-butylammonium fluoride (TBAF)
and resilylation to have all free hydroxy groups protected with the TBS group was followed
by regioselective deprotection with piridinium p-toluenesulfonate (PPTS) to afford the free
primary hydroxy group. Swern oxidation gave the aldehyde 19, which was submitted
to the Wittig reaction, providing the target iodoester 10, one of the Sonogashira reaction
partners.

The synthesis of the Sonogashira reaction partner 11 was carried out starting from
epoxide 20 [81], which reacted first with lithium acetylide and then with potassium carbon-
ate for trimethylsilyl cleavage, giving 11 in 59% overall yield (Scheme 5).
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Scheme 4. A RvD1 total synthesis as reported in 2012 by Rodríguez and Spur [80] (A). Synthesis of
compound 5. Reagents and conditions: i. KN(TMS)2, MeO2C-(CH2)2CH2PPh3

+ Br−, THF, −70 ◦C
to rt, 43%; ii. Dess–Martin periodinane, CH2Cl2, rt, 84%; iii. 1.TMS-C≡C-CH = CHCH2PPh3

+ Br−,
nBuLi, THF, −70 ◦C to 0 ◦C; 2. I2, benzene, rt, 87%; iv. KF·2H2O, 18-crown-6, DMF, rt, 88%. (B) RvD1
total synthesis as described in 2012 by Rodríguez and Spur [80]. (B). Synthesis of compound 8.
Reagents and conditions: i. CH3CH2CH2PPh3

+ Br−, NaN(TMS)2, Et2O, −78 ◦C to rt, 60%; ii. I2,
Ph3P, imidazole, toluene, 60 ◦C, 82%; iii. LDA, THF, −78 ◦C, 40%; Synthesis of RvD1 via Sonogashira
reaction. Reagents and conditions: i. Pd(PPh3)4, CuI, piperidine, benzene, rt, 86%; ii. CH3COCl cat.,
CH3OH, 0 ◦C, 90%; iii. Zn(Cu/Ag), CH3OH, H2O, 50 ◦C, 5 h, 67%; iv. LiOH 1N, CH3OH, H2O, 0 ◦C,
then sat. NaH2PO4, 94%.
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Scheme 5. Synthesis of RvD1, as reported by Kobayashi et al. [81]. Reagents and conditions.
Sonogashira reaction: i. Pd (PPh3)4, CuI, tBuNH2, rt, 15 min; ii. TBAF, THF, rt, 2 h, 78% over two
steps; iii. Zn (Cu/Ag) (excess), MeOH/H2O (1:1), rt, 5 h, 93%; iv. LiOH, aq. MeOH, 42%; Synthesis of
iodoester 10: i. 1. (COCl)2, DMSO, CH2Cl2; 2. Net3, −78 ◦C to 0 ◦C, 83%; ii. TBSOTf, 2,6-lutidine,
92%; iii. TMSCHN2, LDA, THF, −78 ◦C to rt, 89%; iv. 1. Cp2ZrCl2, DIBAL (1:1), THF, −78◦C to rt;
2. I2, −78 ◦C to rt, 75%; v. 1. TBAF, THF, 2 h, rt; 2. TBSOTf, 2,6-lutidine, 79%; vi. PPTS (1.1. equiv.),
MeOH/CH2Cl2, rt, 3 h, 50%; vii. (COCl)2, DMSO; then Net3; viii. Br—Ph3P+CH2CH2CH2CO2Me,
NaHMDS, THF,−78 ◦C to 0 ◦C, 73% over the two steps; Synthesis of alcohol 11: i. TMSC≡CH, nBuLi,
THF/HMPA (1:1), rt, 4 h; ii. K2CO3, MeOH, rt, 1 h, 59% over the two steps.
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3.2.2. Resolvin D2

The first total synthesis of RvD2 was reported by Rodríguez and Spur in 2004 [85]. The
key step is again a Sonogashira reaction, in which the iodoester 22 reacts with the terminal
triple bond of the isopropylidene protected cis-diol 23 (Scheme 6). After deprotection of the
triethylsilyl (TES) group with PPTS and acid hydrolysis of the isopropylidene, the triol 26
is reduced with Zn (Cu/Ag), a stereospecific reaction affording the ester 27 in 70% yield,
the hydrolysis of which provided resolvin D2.

Scheme 6. Synthesis of resolvin D2 via Sonogashira reaction. Reagents and conditions: i. Pd (PPh3)4,
CuI,n-PrNH2,benzene, rt; ii. pyridinium, p-toluenesulfonate, CH3OH, rt; iii. 1N HCl, CH3OH/H2O,
rt; iv. Zn (Cu/Ag), aq CH3OH, 40 ◦C; v. 1N LiOH, THF, 0 ◦C, then EtOAc, satd NaH2PO4.

Starting with the pent-4-ynoic acid 28, that forms a dimagnesium complex with
methylmagnesium bromide, alkylation proceeds via reaction with allyl bromide 29 in the
presence of catalytic CuBr-Me2S, furnishing oct-7-en-4-ynoic acid 30, esterified in situ to
give 31 (Scheme 7A). Epoxidation with m-chloroperbenzoic acid (mCPBA) provided epox-
ide racemic mixture 32. The hydrolytic kinetic resolution with water in the presence of 5%
(R,R)-salen-Co (III)(OAc) catalyst in diethyl ether furnished diol 33 with >94% enantiomeric
excess, separated by column chromatography from epoxide 32(R). Both hydroxy groups
were then protected by reaction with triethylsilyl chloride, followed by reduction of the
triple bond using the Lindlar catalyst to afford quantitatively the ester 35 with a cis-double
bond. Chemoselective Swern oxidation furnished aldehyde 36 in 54% yield, which was
subjected to Takai olefination to give 22 in 50% yield.
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Scheme 7. (A) Synthesis of iodoester 22. Reagents and conditions: i. MeMgBr, CuBr-Me2S, THF, 0 ◦C
to rt; ii. 10% TMSCl, MeOH, 2,2-dimethoxypropane, rt; iii. mCPBA, NaHCO3, CH2Cl2, 0 ◦C to rt;
iv. (R,R)-(salen)CO(III)(OAc) catalyst, Et2O/H2O, 0 ◦C to rt; v. TESCl, imidazole, Et3N, DMF, 0 ◦C
to rt, 84%; vi. Lindlar catalyst, H2, Et3N, hexane, quantitative yield; vii. (COCl)2, DMSO, CH2Cl2,
Et3N, −78 ◦C to rt, 54%; viii. CrCl2, CHI3, THF, 0 ◦C, 50%. (B) Synthesis of compound 23 embodying
the terminal triple bond. Reagents and conditions: i. CH3CH2CH2Ph3P+ Br−, NaN(TMS)2, Et2O,
−78 ◦C to 0 ◦C; ii. PCC, NaOAc, CH2Cl2, 70%; iii. BuLi, THF, −78 ◦C to 0 ◦C; iv. I2, benzene, rt; v. KF,
18-crown-6, DMF, rt.

The preparation of Sonogashira reagent 23 was carried out starting with Wittig of
the sugar 1 with the phosphorane resulting from propyltriphenylphosphonium bromide
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treatment with the base, furnishing the unsaturated primary alcohol 6 with a cis-double
bond (Scheme 7B). Oxidation with pyridinium chlorochromate (PCC) afforded aldehyde
38 isolated in 70% yield. Wittig reaction with the phosphorane, formed by butyl lithium
treatment of [(2E)-5-trimethylsilylpent-2-en-4-ynyl] triphenylphosphonium bromide, gave
a mixture of isomers differing in the (Z), and the (E)-configuration of the double bond
formed, but with a catalytic amount of iodine in benzene, isomerization occurred, and
only the desired Wittig product 40 was obtained. Cleavage of TMS was accomplished with
potassium fluoride in dimethylformamide and 5% of 18-crown-6 ether to give the target
compound 23 in high yield.

In 2013, Rizzacasa et al. [86] disclosed the total synthesis of RvD2 by a convenient and
high yield approach, also based on a Sonogashira coupling. By coupling the hydroxyester
41 embodying the triple bond with the iodide 42, catalysed by (Ph3P)2PdCl2/CuI, inter-
mediate 43 was formed in high yield (Scheme 8). Isopropylidene hydrolysis gave triol 44
also in high yield, and reduction of the triple bond with Zn (Cu/Ag) afforded the ester 45
in 76% yield. Ester hydrolysis with lithium hydroxide 1M furnished resolvin D2 with the
overall yield of 43.4%. This methodology has the advantage of reducing the number of
steps from five to four, when compared with the first total synthesis previously described.

Scheme 8. Synthesis of resolvin D2, as reported by Rizzacasa et al. [86]. Reagents and conditions:
i. Ph3PdCl2, CuI, Et3N, 0 ◦C to rt, 83%; ii. MeOH, HCl, rt, 85%; iii. Zn (Cu/Ag), MeOH, H2O, 76%;
iv. LiOH, 1M, THF, 0 ◦C, 81%.

The preparation of substrates 41 and 42 is described in Scheme 9A,B, respectively. The
synthesis of compound 41 started by asymmetric dihydroxylation of compound 31 [85]
catalysed by ADmix-α, furnishing diol 46 in 69% yield. After protection of the hydroxy
groups by reaction with triethylsilyl chloride, partial reduction of the triple bond succeeded
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with sodium borohydride and nickel acetate in ethylenediamine (EDA), an efficient system
for producing pure (Z)-alkenes, which afforded the unsaturated ester 48 in 73% yield. In
agreement with the findings of Rodríguez et al. [87], Swern oxidation of 48 afforded the
aldehyde 49 in high yield, which reacted then with the Wittig reagent to give as major
product the methyl ester 50 with the (4Z,8E)-4,8-diene functionality. Desilylation with
TBAF gave 41 in 15.2% overall yield starting from compound 31.

Scheme 9. Preparation of precursors 41 (A) and 42 (B), as reported by Rizzacasa et al. [86]. Reagents
and conditions: (A). i. Admix-α, MeSO2NH2, tBuOH, H2O, 69%; ii. TESCl, imidazole, 93%;
iii. Ni (OAc)2.4H2O, NaBH4, EDA, MeOH, 73%; iv. (COCl)2, DMSO, Et3N, CH2Cl2,78%; v. 1.
TIPS-≡-CH2PPh3

+Br−, LiHMDS, −78 ◦C, then addition of 38, −40 ◦C, (3E,8Z)-isomer 49% and
(3Z,8Z)-isomer 12%; vi. TBAF. (B). CH3CH2CH2PPh3

+ Br−, NaHMDS, −78 ◦C to 0 ◦C, 74%; ii. DMP,
93%; iii. TIPS-≡-CH2PPh3

+ Br−, nBuLi, THF, −40 ◦C to 0 ◦C, (1E,3E,8Z)-isomer 57%, (1Z,3E,8Z)-
isomer 26%; iv. TBAF, 73%; v. 1. ZrCp2Cl2, iBu2AlH, THF, 0 ◦C; 2. I2, −78 ◦C, 64%.

Synthesis of 42 (Scheme 9B) started from compound 6, previously reported by Rodríguez
and Spur (Scheme 7B) [85]. Oxidation with Dess–Martin periodinane (DMP) afforded the
aldehyde 38 in very high yield (93%), when compared with the yield of 70%, previously
reported when oxidation was carried out with PCC [85]. Introduction of the enyne moiety
by Wittig reaction gave the required 3(E)-isomer 51 as the major product, in 57% isolated
yield. Desilylation with TBAF was followed by stereoselective reduction of the triple bond
with the system ZrCp2Cl2 and DIBAL, furnishing product 42, containing the required
trans-iododiene moiety, in good yield.
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3.2.3. Resolvin D3

In 2013, Petasis and co-workers developed the first total synthesis of RvD3. The
convergent and stereocontrolled synthetic pathway (Schemes 10–12) involves two Sono-
gashira cross-coupling reactions introducing key triple bonds that are stereoselectively
reduced with the mild reagent Zn (Cu/Ag) to generate triene and diene moieties in the
final steps, aiming at preventing Z/E isomerization. Starting from carboxy-γ-butyrolactone
53 (Scheme 10A) [which (S)-configuration generates the 4(S) configuration of RvD3], lac-
tone ring opening, and esterification, followed by regioselective reduction with borane
dimethyl sulfide in the presence of catalytic sodium borohydride, gave diol 55 in high yield.
Silylation of the free hydroxy groups was followed by regioselective desilylation of the
primary position with camphorsulfonic acid (CSA). After Swern oxidation of the primary
alcohol in very high yield, Corey–Fuchs homologation using LDA as base gave compound
58 in 62% yield, which is the cross-coupling partner of the first Sonogashira reaction. Its
coupling partner is compound 65, prepared from epoxide 60 with (R)-configuration, which
is maintained along the synthetic pathway, generating the 11(R)-chirality centre of RvD3.
Nucleophilic attack of 60 with TMS-acetylide anion followed by silylation of the formed
hydroxy group gave compound 61. Regioselective desilylation with CSA was followed
by Swern oxidation to give the aldehyde 63, which reacted with formylmethylenetriph-
enylphosphorane, affording the trans-isomer 64 in 86% yield. Finally, Takai olefination of
64 provided 65 as the major product from a 9:1 mixture of the E/Z isomers, embodying the
iododiene moiety required for the Sonogashira reaction and the terminal alkyne for the
second Sonogashira reaction, which is required for the total synthesis of RvD3.

Sonogashira cross-coupling of 65 and 58 was catalysed by Pd (Ph3)4/cat CuI in triethy-
lamine and benzene, affording a very high yield (92%) of enantiomerically pure compound
66, which was desilylated with sodium carbonate in methanol, giving 67 also in very
high yield.

The preparation of the 73 cross-coupling partner for the second Sonogashira reaction
used, as starting material, the epoxide enantiomer 68 (Scheme 11), which reacted with
lithiated but-1-yne attacking the less hindered carbon of the epoxide and proving alcohol
69 with the required (S) configuration. Protection of the secondary alcohol with tert-
butyldiphenylsilyl (TBDPS) group was followed by TBS cleavage to afford the primary
alcohol 70. Hydrogenation with Lindlar catalyst resulted in a stereoselective reduction
of the triple bond, giving alcohol 71 in very high yield, embodying a cis-double bond.
Swern oxidation gave the aldehyde precursor in 90%, and the stereoselective olefination
with CH3I/CrCl2, the so-called Takai olefination, afforded precursor 72 in good yield. The
protecting group TBDPS was removed, and the secondary position protected with TBS
to give 73, because in the final assembly of RvD3, removal of TBDPS with TBAF led to
product decomposition. The Sonogashira cross-coupling of 73 and 67 succeeded in very
high yield (Scheme 12). TBS removal also succeeded in giving the expected deprotected
product 75, although in low yield (27%), and the target molecule was prepared by triple
bond reduction with Zn (Cu/Ag) and ester hydrolysis, in 22% yield over the last two steps.

In 2020, Anderson and co-workers [88] developed an alternative synthetic pathway,
leading to a very original and concise synthesis of RvD3, by applying a new approach
based on the stereoselectivity of the cross-coupling of cyclic alkenylsiloxanes, used to
specifically control the stereochemistry of the installed (Z)-double bonds (Scheme 13). They
conceived a tail-to-head strategy with the building blocks 76, the RvD3 tail fragment for
the cross-coupling with the six-membered ring siloxane 77, the middle fragment that reacts
with 78, and the five-membered ring siloxane B head fragment to obtain protected RvD3,
which, in one single step, by reaction with aqueous lithium hydroxide, provided RvD3 in
very high yield. Synthesis of the building block 76 (Scheme 13) started with the Sharpless
epoxidation of the allyl alcohol 81 to afford the correct configuration of the epoxide, glowed
by Garegg iodination of the primary alcohol. Base mediated the regioselective epoxide ring
opening, and elimination afforded alcohol 83, embodying the desired (E)-iodoalkene moiety.
Synthesis of 77 started with (2E,4E)-5-bromopenta-2,4-dienal, prepared by treatment of
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pyridinium-1-sulfonate sodium hydroxide to afford glutaconaldehyde potassium salt,
followed by bromination with triphenylphosphonium bromide [89] (Scheme 13). Addition
of allyl magnesium bromide, and Sharpless resolution gave the enantio-enriched (97% ee)
alcohol 88 in 38% yield. Reaction with dimethylvinylsilyl chloride gave the intermediate
ether for the successful and high yield ring-closing metathesis mediated by the Schrock
catalyst. The preparation of 78 started with the reaction of the commercially available
acid chloride 89 with [(benzyldimethylsilyl)ethynyl] magnesium bromide to afford ketone
90 in 57% yield. Stereoselective reduction by Noyori asymmetric transfer hydrogenation
gave the alcohol in 97% yield and 99% enantiomer excess, which was then esterified with
acetic anhydride and dimethylaminopyridine (DMAP). Stereoselective reduction of the
triple bond to the (Z)-double bond was challenging and succeeded in 83% yield (Z/E:20/1).
Debenzylation, deacetylation, and cyclization occurred by treatment with TBAF, which
afforded the building block 78 in quantitative yield.

Scheme 10. Synthesis of Sonogashira cross-coupling partners 58 and 65, Sonogashira reaction, and de-
protection step to afford ester 67. Reagents and conditions: (A). i. MeOH, HCl, cat. 96%; ii. BH3.DMS,
NaBH4, THF, 10 ◦C, 86%; iii. 1. TBSCl, imidazole, DMAP, CH2Cl2; 2. CSA, CH2Cl2/MeOH, 57%;
iv. (COCl)2, DMSO, Et3N, CH2Cl2,−78 ◦C, 98%; v. 1. PPh3, CBr4, CH2Cl2, 0 ◦C; 2. LDA, THF,−78 ◦C,
62%. (B). i.nBuLi, BF3.Et2O, THF, −78 ◦C; 2. 60; 3. TBSCl, imidazole, DMAP, CH2Cl2, 63%; ii. CSA, rt,
CH2Cl2/MeOH, 77%; iii. (COCl)2, DMSO, Et3N, CH2Cl2, −78 ◦C, 90%; iv. Ph3P = CHCHO, PhMe,
2 h, 83%; v. CHI3, CrCl2, THF, 0 ◦C, 84%; (C). i. Pd(PPh3)4, CuI cat., Et3N, PhH, rt, 92%; ii. Na2CO3,
MeOH, rt, 91%.
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Scheme 11. Synthesis of Sonogashira cross-coupling partner 73. Reagents and conditions: i. nBuLi, BF3

Et2O, THF,−78 ◦C; ii. 68, 73%; ii. TBDPSCl, imidazole, DMAP, CH2Cl2, 89%; iii. CSA, CH2Cl2/MeOH,
rt, 97%; iv. H2/Lindlar cat., EtOAc, rt, 94%; v. (COCl)2, DMSO, Et3N, CH2Cl2, −78 ◦C, 90%; vi. CHI3,
CrCl2, THF, 0 ◦C, 59%; vii. 1. TBAF, THF, rt; 2. TBSOTf, lutidine, CH2Cl2, rt, 69%.

Scheme 12. Synthesis of RvD3—the second Sonogashira reaction. i. Pd (PPh3)4, CuI cat., Et3N, PhH,
rt, 92%; ii. TBAF, THF, 27%; iii. 1. Zn/Cu/Ag, MeOH/H2O; 2. NaOH, H2O, MeOH, 22% (over the
two steps).
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Scheme 13. Synthesis of RvD3, as reported by Anderson and co-workers [88], and preparation of the
building blocks 76 (A), 77 (B), and 78 (C). Reagents and conditions: Total synthesis: i. 1. Pd(dba)2,
TBAF, THF, 16 h; 2. Ac2O, py, CH2Cl2, 56% for 79 and 32% for 80, both over the two steps ii.
LiOH, THF/H2O (1:1), 99%; (A). Preparation of 76: i. 1. Ti(O-iPr)4, (L)-(+)-DIPT, TBHP, 3 Å MS,
CH2Cl2, −20 ◦C, 75%, 92% ee; 2. I2, PPh3, imidazole, CH2Cl2, 53%; iii. Ac2O, DMAP, Et3N, CH2Cl2,
0 ◦C to rt, 2 h, 93%; (B). Preparation of 77. i.KOH, 58% [X8]; ii. Ph3PBr2, 50% (isolated yield) [89];
iii. 1.CH2=CHCH2MgCl, THF, 0 ◦C; 2. Ti(O-iPr)4, (L)-(+)-DIPT, TBHP, 3 Å MS, CH2Cl2, −20 ◦C,
97%ee, 38% yield over the two steps; iv. 1. CH2 = CHSiMe2Cl, Et3N, CH2Cl2; 2. Schrock catalyst,
PhH, 87%; Preparation of 78: i. BnMe2SiC≡CMgBr, 57%; ii. 1. RuCl(S, S)TsDPEN, iPrOH; 2. Ac2O
cat., DMAP, Et3N, CH2Cl2, 88%, 97% ee; iii. Pd/CaCO3, quinoline, H2, PhMe-cyclohexene (10:1),
83%; iv. TBAF, THF, quantitative yield.

3.2.4. Resolvin D4

The complete stereochemistry of RvD4 was established only in 2016 [60], and later
in 2018, an organic total synthesis was reported [90], allowing multi-milligram to scale
up, thus enabling commercial production of RvD4. The approach is based on assembling
three building blocks, the first one consisting of C14–C22, fragment 94, with a terminal
carbonyl group which reacts with the C10–C13 fragment 93 through a Wittig olefination
providing, after desilylation, the cross-coupling partner 106 embodying the terminal triple
bond required for the Sonogashira reaction (Scheme 14). However, the authors found
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out that iodoester C1–C9 95 was contaminated with the iodolactone 107, a secondary
product resulting from intramolecular cyclisation, which could not be separated from 95
(Scheme 15). This problem was overcome by running Sonogashira reaction with the ester
and lactone mixture. After reduction with Zn (Cu/Ag) affording compounds 108 and 109,
treatment of the mixture with potassium carbonate in methanol hydrolysed both the ester
and the lactone, providing RvD4 as a single product.
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Scheme 14. Preparation of the building blocks for the synthesis of RvD4, as 
reported by Serhan et al. [90]. (A). Synthesis of C10–C13 fragment; (B). 
Preparation of C14-C22 fragment; C. Synthesis of Sonogashira cross-coupling 
partner 106. Reagents and conditions: (A). i. I2, imidazole, PPh3, CH2Cl2,4h; ii. 
PPh3, MeCN, reflux, 12 h; (B). i. cat.PTSA-H2O, DHP, 5 min; ii. But-1-yne, 
nBuLi, BF3.Et2O, THF, 3 h; iv. TBSCl, imidazole, DMF, 3 h; Ni (OAc)2.4H2O, 
NaBH4, H2N(CH2)2NH2, H2, EtOH, 12 h; v. MgBr2, Et2O, 4 h; vi. (COCl)2, DMSO, 
Et3N, CH2Cl2, 0.5 h; vii. Ph3P=CHCHO, Net3, PhH, 12 h; (C). i. NaHMDS, THF, 
−78 °C, 3 h; ii. TBAF, THF, 40 °C, 48 h. 

  

Scheme 14. Preparation of the building blocks for the synthesis of RvD4, as reported by
Serhan et al. [90]. (A). Synthesis of C10–C13 fragment; (B). Preparation of C14-C22 fragment; (C). Syn-
thesis of Sonogashira cross-coupling partner 106. Reagents and conditions: (A). i. I2, imidazole, PPh3,
CH2Cl2,4h; ii. PPh3, MeCN, reflux, 12 h; (B). i. cat.PTSA-H2O, DHP, 5 min; ii. But-1-yne, nBuLi,
BF3.Et2O, THF, 3 h; iv. TBSCl, imidazole, DMF, 3 h; Ni (OAc)2.4H2O, NaBH4, H2N(CH2)2NH2, H2,
EtOH, 12 h; v. MgBr2, Et2O, 4 h; vi. (COCl)2, DMSO, Et3N, CH2Cl2, 0.5 h; vii. Ph3P=CHCHO, Net3,
PhH, 12 h; (C). i. NaHMDS, THF, −78 ◦C, 3 h; ii. TBAF, THF, 40 ◦C, 48 h.
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Scheme 15. Sonogashira reaction and final steps conducting to the total synthesis of RvD4, as reported
by Serhan et al. [90]. Reagents and conditions: i. Pd(PPh3)4, CuI, nBuNH2, PhH, 12 h; ii. Zn(Cu/Ag),
MeOH (aq.), 40 ◦C, 12 h; iii. K2CO3, MeOH, 12 h.

3.2.5. Resolvin D5

The first total synthesis of RvD5 was reported by Rodríguez and Spur in 2005 [91].
The chirality centres 7(S) and 17(S) were installed via epoxide 110, obtained by hydrolytic
kinetic resolution of the epoxide racemic mixture in the presence of water and (R, R)-salen-
Co (III)(Oac) (111) catalyst (Scheme 16). The preparation of the precursor of RvD5 C1-C9
moiety started by nucleophilic epoxide ring opening with the alkynide resulting from
treatment of 112 with butyllithium to afford the alcohol 113, which was then protected
with the benzoyl group. After cleavage of the tetrahydropyranyl group, the resulting
primary alcohol 115 was oxidized with Jones reagent, and in situ esterification gave ester
116. After Lindlar reduction, the isomer embodying the cis double bond was formed in very
high yield (98%). Debenzylation with EtSH and aluminum trichloride gave the primary
alcohol, the oxidation of which, followed by Takai olefination [92], afforded iodide 120,
one of the reaction partners to afford the total synthesis of RvD5. The synthesis of the
C15-C22 precursor 126 followed a similar strategy, starting with the reaction of epoxide
110 with the anion of but-1-yne generated with butyllithium (Scheme 17). Benzoylation
of the alcohol, Lindlar reduction, debenzylation, Swern oxidation, and Takai olefination
afforded a mixture of the trans/cis-vinyl iodides difficult to separate, with the trans-isomer
being the major product and present in proportion 4:1. The mixture was submitted to
Sonogashira reaction with iodide 126, but only the more reactive trans-vinyl alkene reacted
to afford 128 in 50% yield. After cleavage of TMS, a second Sonogashira reaction gave the
methyl ester 130. Controlled hydrogenation with Lindlar catalyst, deactivated by Net3,
afforded the dibenzoyl precursor 131 in good yield (Scheme 18). Ester hydrolysis and
benzoyl deprotection with the lipase Candida rugosa succeeded in 75% yield, while attempts
to use hydrolysis in mild alkaline conditions only hydrolysed the ester, and stronger basic
conditions required for benzoyl deprotection led to product degradation.
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Scheme 16. Synthesis of precursor 120 for the construction of the C1-C9 moiety of RvD5 [91].
Reagents and conditions: i. 111, H2O, 0 ◦C to rt, 45% yield, >99% ee; ii. nBuLi, BF3.Et2O, THF, −70
◦C, 85%; iii. BzCl (2 equiv), Py, 0 ◦C to rt, 92%; iv. PPTS cat., MeOH, rt, 88%; v. Jones reagent, acetone,
0 ◦C; vi. 10% TMSCl, MeOH, 2,2-dimethoxypropane, rt, 93% over the last two steps; vii. H2, Lindlar
cat., hexane, 98%; viii. EtSH, AlCl3, CH2Cl2, −35 ◦C, 86%; ix. Py.SO3, DMSO, CH2Cl2, Et3N, 86%;
x. CrCl2, CHI3, THF, rt, 52%.

Scheme 17. Preparation of precursor 126 for the construction of the C15-C22 moiety of RvD5 [91].
Reagents and conditions: i. HC≡CCH2CH3, nBuLi, BF3.Et2O, THF, −70 ◦C, 80%; ii. BzCl (2 equiv),
Py, 0 ◦C to rt, 94%; iii. H2, Lindlar cat., hexane, 96%; iv. EtSH, AlCl3, CH2Cl2, −35 ◦C, 85%; v. Py.SO3,
DMSO, CH2Cl2, Et3N, 84%; vi. CrCl2, CHI3, THF, rt, trans-vinyl iodide/cis-vinyl iodide (4:1).
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Scheme 18. First total synthesis of RvD5 [91]. Reagents and conditions: i. Pd (PPh3)4, CuI, PrNH2,
benzene, rt, 50% (128), 54% (130); ii. AgNO3, MeOH, H2O, NaCN; iii.H2, Lindlar cat., Et3N, hexane,
84%; iv. Lipase from Candida rugosa, H2O (CaCl2, NaCl), THF, 75%.

In 2017, Kobayashi and co-workers [93] developed a new approach for the synthesis
of RvD5 by assembling the key building blocks via Wittig reaction—namely, the C14-C22
aldehyde synthon 133, which reacted with the C11-C13 phosphonium salt that, after
deprotection of TBS, afforded the C11-C22 alcohol 136, which was transformed in the
iodide 137. Reaction with triphenylphosphane afforded phosphonium salt 138, the Wittig
reaction of which with the C1-C10 aldehyde 135 gave RvD5 fully protected precursor
139 (Scheme 19). Selective TBS deprotection of the primary functionality with PPTS in
methanol was followed by oxidation to carboxylic acid and esterification by reaction with
diazomethane. Treatment with TBAF gave the ester 141 with the free hydroxy groups
at positions 7 and 17, the hydrolysis of which with lithium hydroxide afforded RvD5
in 5.6% overall yield from aldehyde 133. The synthesis of synthon 133 (Scheme 20A)
started from commercially available 3-(trimethylsilyl) prop-2-yn-1-ol 142. Reduction with
lithium aluminium hydride to install the double bond, oxidation of the primary alcohol
to aldehyde with pyridinium chlorochromate (PCC), and aldol reaction conducted to the
preparation of ester 143 in 69% yield over the three steps. After protecting the hydroxy
group with the tert-butyldimethylsilyl(TBS) group, DIBAL reduction generated the terminal
aldehyde, the Wittig reaction of which with the ylide resulting from basic treatment of the
triphenyl(propyl)phosphonium bromide, followed by TBS cleavage, gave racemic alcohol
146 in 74% yield over the three steps. Sharpless regio- and stereoselective epoxidation
afforded epoxide 147 in 47% isolated yield. After protection of the hydroxy group with
TBS, the nitrile was installed by reaction with diethylaluminum cyanide via epoxide ring
opening and Peterson olefination to give 148. Nitrile reduction with DIBAL afforded the
aldehyde 133, isolated in 73% yield.

The synthon 135 was prepared starting from compound 144 (Scheme 20B). Reduction
with DIBAL to generate aldehyde 145 was followed by Wittig olefination, giving the
cis-alkene 149, desilylated with TBAF to afford diol 150 in 91% yield over the three steps.
Regioselective protection of the primary alcohol with the TBS group was followed by
Sharpless asymmetric epoxidation, giving compound 152 in high enantiomeric excess
and 44% yield. Reaction with diethylaluminum cyanide afforded nitrile 155 in very high
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yield, which was finally reduced with DIBAL, giving the aldehyde synthon 135, isolated in
82% yield.

In Figure 3, a summary of both the methodologies here reviewed for the total synthesis
of RvD5 is given, indicating the number of steps required, the key reactions for assembling
the building blocks, and the yields and number of steps required for the preparation of
the building blocks. Both approaches are, indeed, strategic, very elegant, and successful,
involving stereo- and regioselective reaction steps culminating in the total synthesis of
RvD5, a complex structure with multiple cis- and trans-double bonds and two chirality
centres with (S)-configuration.

Scheme 19. Synthesis of RvD5, as reported by Kobayashi and co-workers [93]. Reagents and
conditions: i. NaHMDS, THF, −70 ◦C, 8 h; ii. PPTS, MeOH, rt, 77% over the two steps; iii. I2, Ph3P,
imidazole, 85%; iv. Ph3P, MeCN, quant.; v. NaHMDS, −90 ◦C to 0 ◦C; vi. PPTS, MeOH, 53% over the
two steps; vii. PCC; viii. NaClO2, 81% over the two steps; ix. CH2N2; x. TBAF, 44% over the two
steps, xi. LiOH, THF, MeOH, H2O, 45%.
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Scheme 20. Preparation of C14-C22 synthon 133 (A) and C1-C10 synthon 135 (B). Reagents and
conditions: (A). i. LiAlH4; ii. PCC; iii. MeCOOBu/LDA, 69% over the three steps; iv. TBSCl,
imidazole, 89%; v. DIBAL; vi. PrPPh3Br, NaHMDS, THF, −90 ◦C to rt, 12 h, vii. TBAF, 74% over
the three steps; viii. tBuOOH, Ti(OiPr)4, L-(+)-DIPT, CH2Cl2, −18 ◦C, 6 h, 47%, 98% ee; ix. TBSOTf,
2,6-lutidine, CH2Cl2, rt, 1.5 h; x. Et2AlCN, toluene, rt, overnight, 79% over the two steps; xi. DIBAL,
CH2Cl2, −40 ◦C to 0 ◦C, 1 h, 73%. (B). i. DIBAL, −78 ◦C; ii. TBDPSO(CH2)4PPh3I, NaHMDS,
THF, −90 ◦C to rt, 14 h; iii. TBAF, 91% from 144; iv. TBSCl, CH2Cl2, 0 ◦C, 3.5 h, 84%; v. tBuOOH,
L-(+)-DIPT, Ti(OiPr)4, CH2Cl2, −18 ◦C, 6 h, 44% and 98% ee; vi. TBSOTf, 2,6-lutidine, CH2Cl2, rt, 3 h;
vii. Et2AlCN, toluene, 0 ◦C, 2 h, 92% over the two steps; viii. DIBAL, CH2Cl2, −70 ◦C, 1 h, 82%.
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3.2.6. Resolvin D6

In 2012, the first total synthesis of RvD6 was reported by Rodríguez and Spur [94].
Sonogashira coupling was the key reaction to assemble the core structure of RvD6, and
the key precursors are compounds 156, furnishing the triple bond and iododerivatives 157
and 158 (Scheme 21). The first Sonogashira reaction coupled 156 with the iodide 157 under
Pd(0)/CuI catalysis to give the intermediate 159. Cleavage of the trimethylsilyl group by
treatment with sodium nitrate, followed by sodium cyanide work-up gave alkyne 160,
which was coupled with the iodoester 158 through the second Sonogashira reaction. After
TBS deprotection, Zn(Cu/Ag) reduction of 162 afforded 163 embodying the core structure
of RvD6, which was obtained after mild alkaline ester hydrolysis.

Scheme 21. Total synthesis of RvD6, as reported by Rodríguez and Spur [94]. Reagents and conditions:
i. Pd(PPh3)4, CuI, PrNH2, benzene, rt; ii. AgNO3, CH3OH, H2O, NaCN, 0 ◦C; iii. MeCOCl, CH3OH,
0 ◦C to rt; iv. Zn(Cu/Ag), CH3OH, H2O, 50 ◦C; v. 1 N LiOH, H2O, THF, 0 ◦C, then H+ (NaH2PO4

saturated) (yields were not provided).

As the key precursors are not commercially available, their preparation has been
accomplished. The key precursor 156 was synthesized starting from 1,4-dibromobut-2-ene
(164) in two steps (Scheme 22A). Treatment with trimethylsilylacetylene excess (165) in
DMF at room temperature gave 166 in 34% isolated yield, which was desilylated with
silver nitrate (2 equiv) and work-up with sodium cyanide, providing 156 by extraction
with hexane/ethyl acetate. The configuration of the chirality centre at RvD6 C17 was intro-
duced in precursor 157 via Sharpless asymmetric epoxidation (Scheme 22B). Its synthesis
started with the reaction of propargyl alcohol 167 with 1-bromopent-2-yne (168) to provide
octa-2,5-diyn-1-ol (169). Triple bond reduction with lithium aluminum hydride was regios-
elective affording the enynol 170 in 70% yield. Stereoselective Sharpless epoxidation gave
171, and Lindlar reduction of the triple bond installed the cis-double bond present in 172.
Replacement of the hydroxy group by iodide gave epoxide 173, which was transformed
into the alcohol 174 with the required configuration by elimination with NaHDMS and
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concomitant epoxide ring opening. Hydroxy group protection with TBS provided the key
precursor 157 in 67% yield.

Scheme 22. Synthesis of Sonogashira coupling partners, as reported by Rodríguez and Spur [94].
(A). i. CuI, Na2SO3, K2CO3, DMF, rt; ii. AgNO3, CH3OH, H2O, NaCN, 0 ◦C; (B). i. DBU, CuI,
HMPA, THF; ii. LiAlH4, ether, 0 ◦C to rt; iii. L-(+)-DMT, Ti(OiPr)4, TBHP, molecular sieves 4 Å,
CH2Cl2; iv. H2, Lindlar cat., Et3N, hexane; v. I2, Ph3P, imidazole, iPr2EtN, CH3CN, ether; vi. NaH-
MDS, DMF, −60 ◦C; vii. TBSCl, imidazole, DMF, 67%; (C). i. 10% InBr3, CH2Cl2, 0 ◦C to rt, 94%;
ii. Ru[(S,S)-TsDPEN](p-cymene), iPrOH, rt; iii. KF·2H2O, 18-crown-6, DMF, rt; iv. TBSCl, imidazole,
DMF, 0 ◦C to rt, 63% over the three steps; v. Bu3SnH, AIBN, 130 ◦C; vi. I2, ether, 0 ◦C, 93%.

The preparation of 158 was accomplished starting with reaction of methyl 4-chloro-
4-oxobutanoate (175) with bis(trimethylsilyl)acetylene catalysed by indium bromide, af-
fording the alkinyl derivative 177 in 94% yield (Scheme 22C). The key reaction to install the
configuration of the chirality centre at RvD6 C4 is the asymmetric transfer hydrogenation,
producing the chiral intermediate 178 with more than 95% enantiomeric excess. After
desilylation with potassium fluoride in the presence of catalytic crown ether and TBS
protection of the hydroxy group to give 180, free radical addition with excess tributyltin
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hydride in the presence of catalytic amount of azobisisobutyronitrile gave 181 in moderate
yield. Reaction with iodine afforded the key precursor 158 in 93% yield.

Kobayashi and co-workers [95] have recently reported another approach for the total
synthesis of RvD6, by using intermediates 182, 183, and 184 (Scheme 23), envisioning a
strategy based on Sonogashira coupling of 183 and 184 to 182, followed by hydrogenation
with experimental conditions, affording the required double bonds (Scheme 24).

Scheme 23. Strategy for the synthesis of RvD6 and preparation of the intermediates 183 and 184,
as reported by Kobayashi and co-workers [95]. Reagents and conditions: (A). i.Me3Si-C≡C-Li
(1.7 equiv.), THF, −78 ◦C to 0 ◦C, 99%; ii. Ru[(S,S)-TsDPEN](p-cymene), iPrOH, rt, 1 h, 96% yield and
98% ee; iii. Red-Al, Et2O, rt, 4 h, 59%; iv. m-CPBA, NaHCO3, rt, 71%, syn/anti 3:2; v. 1. Me3Si-C≡C-Li
(8 equiv.), THF, HMPA, rt, 5 h; 2. K2CO3 (5 equiv.), MeOH, rt, 2 h, 42% (2 steps); vi. 1. TBSCl,
imidazole, 92%; 2. PPTS (cat.), CH2Cl2, MeOH, rt, 4 h, 55% [recovered bis (TBS ether), 33%]; vii. 1.
(COCl)2, DMSO, Et3N; 2. NaClO2, Me2C = CHMe; 3. CH2N2, 51% from 191. (B). i. tBuOOH,
Ti(OiPr)4, L-(+)-DIPT, 47% (147, 99% ee) and 42% (192, 99% ee); ii. Me3Si-C≡C-Li (6 equiv.), THF,
HMPA, rt, 6 h; iii. K2CO3 (1.2 equiv.), MeOH, rt, 3 h, 78% (over two steps); iv. TBSCl, imidazole,
89%; v. tBuOOH, Ti (OiPr)4, D-(−)-DIPT, CH2Cl2, −18 ◦C, 6 h, 89%; vi. 1. 4-(NO2) C6H4CO2H, PPh3,
DIAD; 2.2N NaOH aq., 85%; vii. 1. Me3Si-C≡C-Li (4 equiv.), THF, HMPA, rt, 4 h; 2. K2CO3, MeOH,
78% from 196.
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Scheme 24. Synthesis of RvD6, as reported by Kobayashi and co-workers [95]. Reagents and condi-
tions: i. NaI (2 equiv.), CuI (2 equiv.), CsCO3 (1.4 equiv.), DMF, rt, 22h for 197 and 7 h for 199, 82%;
ii. CBr4, PPh3, 73% for 198 over the two steps; iii. Zn(Cu/Ag) (1600 equiv.), MeOH/H2O, 40 ◦C, 37 h,
76%; iv. TBAF (8 equiv.), THF, rt, 1 h, 53%; v. LiOH·H2O (2 equiv.), MeOH/THF/H2O, rt, 1 h, 79%.

The preparation of 183 was accomplished starting from amide 185, synthesized from
butyrolactone [96]. After reaction with trimethylsilylacetylide for the introduction of the
triple bond and stereoselective reduction of the carbonyl group with the Noyori catalyst [97],
reduction with Red-Al provided the hex-1-en-3-ol derivative 188. Epoxidation was followed
by reaction with the lithium trimethylsilylacetylide and trimethylsilyl desilylation to afford
alcohol 190 containing the (E)-enyne moiety. Protection of the hydroxy group with TBSCl
and regioselective deprotection of the primary position gave 191. Intermediate 183 was
achieved by Swern oxidation of 191 to carboxylic acid and esterification. The overall yield
for the formation of this intermediate was 4.3% from amide 185.

The synthesis of intermediate 184 started from the racemic allylic alcohol 146
(Scheme 23B), obtained in 46% yield overall yield (seven steps) from 3-trimethylsilylprop-
2-yn-1-ol and already applied for the preparation of RvD5 (Scheme 20). Asymmetric
epoxidation gave epoxide 147 and the allylic alcohol 192, both used for the synthesis of 184.
The epoxide reacted with lithium trimethylsilylacetylide to afford alcohol 193, which was
desilylated and then protected with the group TBS. This synthetic pathway provided 184
with the overall yield of 15% from 3-trimethylsilylprop-2-yn-1-ol (142), involving eleven
steps. The alternative pathway started from allylic alcohol 192, which was converted to 194,
the enantioner of 147, by Sharpless asymmetric epoxidation. Inversion of the configuration
of the centre of chirality linked to the hydroxy group was achieved by Mitsunobu reaction,
affording 196 in high yield. Reaction with lithium acetylide at room temperature was com-
pleted in four hours, giving alcohol 195, the hydroxy group of which was then protected
with TBS by reaction with TBSCl in the presence of imidazole. The overall yield of this
route was 10%, covering twelve steps. Sonogashira coupling was a key reaction to access
RvD6 core structure. The coupling of chloropropynol 182 and the triple bond containing
partner 184 afforded 197, which was transformed in the bromoester 198 by treatment with
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tetrabromomethane and triphenylphosphane. A second Sonogashira coupling of 198 with
reaction partner 183 gave precursor 199 in 82% yield. The next key reaction is the reduction
of the triple bonds, achieved with Zn(Ag/Cu) in high excess (1600 equivalent) for the re-
duction of the non-conjugated triple bond, installing RvD6 core structure in compound 200.
Treatment with tert-butylammonium fluoride led to desilylation and to an intramolecular
cyclization with the formation of a butyrolactone, the hydrolysis of which with lithium
hydroxide hydrate afforded RvD6 (Scheme 24), in an overall yield of 19% from 182.

4. Protectins from DHA

DHA is also the precursor for the biosynthesis of protectins, also called neuroprotectins
when they are produced in neural systems [98]. The “neuro” prefix before protectin
D1 (NPD1) results from the biosynthesis location and the potent neuroprotective effects
identified [98]—namely, protective actions in the retina and brain and in the induction
of pain [99–101]. The anti-inflammatory and pro-resolving protectins have EC50 values
in the low nanomolar to picomolar range [77], also exerting anti-apoptotic activity [102].
Protectins beneficial effects against obesity and diabetes have been investigated. Gonzales-
Periz et al. [103] reported that biosynthetic formation of SPMs was deregulated in obese
mice and in inflamed white adipose tissues, and reduced insulin resistance was observed in
white adipose tissues, with DP1 and RvD1 being the dominant DHA-derived SPMs, based
on LC/MS-MS. Additionally, Clària et al. [104] showed that an unbalanced level of SPMs
are directly connected to insufficient tissue resolution in both in vitro and in vivo models
of diabetes and obesity. As the chronic unresolved inflammation in adipose tissues may
result in insulin resistance, diabetes, and fatty liver disease, endogenous SPMs such as the
PDs, displaying potent pro-resolving and anti-inflammatory bioactions in vivo, become
important biotemplates towards drug development targeting obesity and diabetes [77].

4.1. Biosynthesis of Protectin D1

The biosynthesis of NPD1/PD1 is initiated with the formation of 17S-HpDHA by
15-LO, leading to the 16(17)-epoxydocosatriene intermediate, which is converted by a
hydrolase to the final product PD1/NPD1 with the correct double bond geometry [26]
(Scheme 25).

Scheme 25. NPD1/PD1 biosynthesis.

4.2. Total Synthesis of Protectin D1

The total synthesis of stereochemically pure NPD1/PD1 has been accomplished by
several approaches, as disclosed by Ogawa and Kobayashi in 2011 [105], by Serhan and
co-workers in 2012 [106], by Rodríguez and Spur in 2014 [107], and more recently by Sala
and co-workers in 2019 [105].

4.2.1. Ogawa and Kobayashi Approach

In 2011, a stereoselective total synthesis was reported by Ogawa and Kobayashi [105],
the strategy of which was based on the Suzuki coupling to construct PD1 core structure, by
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reacting C22-C13 vinylborane 202 with the vinyl iodide 203 (Scheme 26). The preparation
of 202 started by alkylation of 204 with ethyl bromide to give racemic 205, further subjected
to the asymmetric Sharpless epoxidation, which gave enantiomerically pure alcohol 206
with the required (S)-configuration and the epoxide 207 in 48% and 46% yield, respectively.
Reaction of 206 with bromine and tetrabutylammonium fluoride gave the bromoalcohol
208, which was protected with TBS to afford 209 in good yield (Scheme 26). Sonogashira
coupling with trimethylsilyl acetylene proceeded in very high yield, giving 210, the regio-
and stereoselective hydrogenation of which provided compound 211, which was desilylated
with potassium carbonate prior to reaction with bis(siamyl)borane to give 202.

Scheme 26. Synthesis of precursor 202, as reported by Ogawa and Kobayashi [105]. Reagents and
conditions: i. CH2=CHOEt PPTS; ii. BuLi then EtBr, DMPU; iii. 3 N HCl, 71% over the three steps;
iv. tBuOOH D-DIPT, Ti(OPr)4, –20 ◦C, 12 h, 48% for 206, 99% ee and 46% for 207, 99% ee; v. Br2;
vi. TBAF, vii. TBSCl, 65% over the three steps; viii. PrNH2, CuI, Pd (PPh3)4, 89%; ix. H2, Pd/BaSO4,
EtOAc, 94%; x. K2CO3, MeOH, 90%; xi. Sia2BH (1.5 equiv.), 0 ◦C, 1 h, THF.

The synthesis of 203 started with the chain elongation of 96, giving 213 in 81% yield
(Scheme 27A). Hydrogenation of the triple bond to the cis double bond succeeded with the
Lindlar catalyst in ethyl acetate, in the presence of quinoline to avoid over reduction. Treat-
ment of 213 with iodine and triphenylphosphane generated the iodo derivative 214, which
was transformed in the phosphonium salt 215 by further addition of triphenylphosphane.
A stereoselective Wittig reaction of the phosphorane, obtained by addition of NaHMDS to
the phosphonium salt 215, with the aldehyde afforded the iodotriene 216, partially desily-
lated at the primary position by the addition of PPTS. Oxidation of the primary alcohol
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to carboxylic acid and esterification with diazomethane gave the ester 218, desilylated to
afford 203, synthesized from 96 in 37.8% overall yield.

Scheme 27. Synthesis of precursor 203 (A) and of PD1 (B), as reported by Ogawa and Kobayashi [105].
Reagents and conditions: (A). i. LiNH2, NH3/THF; ii. Br (CH2)3OTBS, 81%; iii.H2,Lindlar cat.,
quinoline; iv. I2, PPh3, imidazole; v. PPh3, MeCN, 71% over the last three steps; vi. NaHMDS, 94%;
vii. PPTS, CH2Cl2/EtOH (1:1), quant.; viii. SO3•Py; ix. NaClO2; x. CH2N2, 73%; xi. TBAF, 90%.
(B). i. Pd (PPh3)4 (20 mol%) 2 N NaOH (10 equiv.) THF, rt, 1 h; ii. TBAF; iii. 2 N L iOH THF, H2O, 42%.

PD1 synthesis was then achieved by Suzuki coupling of 202 and 203 (Scheme 27B),
followed by desilylation with TBAF and ester hydrolysis with aq. lithium hydroxide in
42% yield.

4.2.2. Serhan Approach

Serhan and co-workers [106] reported, in 2012, a highly stereocontrolled synthesis of
NPD1/PD1 based on a Sonogashira coupling of reaction partners 221 (Scheme 28) and 222
(Scheme 29). The 10(R) and 17(S) configurations were established through ring opening
of enantiomerically pure epoxides 224 for the configuration 17(S) (Scheme 29) and 230 for
the configuration 10(R) (Scheme 30). (Z)-alkenes were obtained by hydrogenation of the
alkynes with the Lindlar catalyst in ethyl acetate at room temperature, in the presence
of quinoline, obtaining 227 in very high yield (95%) (Scheme 29) and 235 in 68% yield
(Scheme 30). In addition, the triene (11E,13E,15Z) was introduced at the very end of the
synthetic pathway, by triple bond reduction after the Sonogashira reaction of 221 with 222
to avoid Z/E isomerization. The synthesis of 221 was accomplished by Swern oxidation
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of the primary alcohol of 227 to afford aldehyde 228, submitted then to the Corey–Fuchs
reaction [105] (Scheme 29), giving 221 obtained in 32.4% overall yield, covering the required
protection and deprotection steps involved in this synthetic route.

Scheme 28. Sonogashira reaction partners for the total synthesis of PD1 and preparation of 221,
as reported by Serhan and co-workers [106]. Reagents and conditions: i. nBuLi, BF·OEt2, −78 ◦C,
THF, 84%; ii. TBDPS–Cl, imidazole, DMAP, rt, CH2Cl2, 89%; iii. CSA, rt, CH2Cl2/MeOH, 78%;
iv. H2/Lindlar cat., quinoline, rt, EtOAc, 95%; v. DMSO, (COCl)2 Et3N, −78 ◦C, CH2Cl2, 98%;
vi. PPh3, CBr4, 0 ◦C, CH2Cl2,72%; vii. nBuLi, Et2O, 83%.
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Scheme 29. Preparation of 222 and total synthesis of NPD1/PD1, as reported by Serhan and co-
workers [106]. Reagents and conditions: i. nBuLi, BF3·Et2O, −78 ◦C, THF, 77%; ii. TBDPS–Cl,
imid., DMAP, rt, CH2Cl2, 97%; iii. CSA, rt, CH2Cl2/MeOH, 81%; iv.NBS, PPh3, 0 ◦C, CH2Cl2,
80%; v. TBSOTf, lutidine, 0 ◦C, CH2Cl2, 89%; vi. CuI, NaI, K2CO3, rt, DMF, 75%; vii. CSA, rt,
CH2Cl2/MeOH, 88%; viii. H2/Lindlar cat., quinoline, rt, EtOAc, 68%; ix. DMSO, (COCl)2, Et3N,
−78 ◦C, CH2Cl2, 98%; x. Ph3P=CHCHO, PhMe, reflux, 2 h, 90%; xi. CHI3, CrCl2, 0 ◦C, THF, 67%;
xii. Pd(PPh3)4 (cat.), CuI, rt, PhH, 96%; xiii. TBAF, THF, rt, 2 h, 65%; xiv. Zn(Cu/Ag), MeOH/H2O,
40 ◦C, 60%; xv. NaOH, MeOH/H2O, rt, 95%.
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Scheme 30. Synthesis of protectin D1/NPD1, as reported by Balas and co-workers [108]. Reagents
and conditions: i. BH3.SMe2, B(OMe)3,98%; ii. tBu2Si(OTf)2, py, CH2Cl2/DMF (6:4), −30 ◦C, 2 h;
iii. 1. (COCl)2, DMSO; 2. Et3N, CH2Cl2, −78◦C to rt, 1 h, 90% over the two steps; iv. 1. (MeO)2P(=O)-
C(=N2)-P(=O)-CH3, K2CO3, MeOH, 0◦C to rt, 3 h; 2. TBAF, THF, 0◦C to rt, 2 h; 4. 1. TESCl, Et3N,
CH2Cl2, −25 ◦C, 15 h; 5. TBDPSCl, TES deprotection, 44% over the 5 steps; v. 1. Ph3P=CHCHO,
CH3CN, 30 ◦C; Me3SiCHN2, LDA, −78 ◦C to 0 ◦C, THF, 2.5 h; 3. a. ZrCl2(Cp)2, DIBAL, b. THF, I2;
52% over the three steps; vi. Pd (PPh3)4, CuI, THF, 91%; vii. 1. (COCl)2, DMSO; 2. Et3N, CH2Cl2,
−78 ◦C to rt, 1 h, 95%; viii. NaHMDS, THF, −78 ◦C, 3 h; ix. 1. TBAF, 0 ◦C to rt, 1 h; 2. TBSCl,
imidazole, CH2Cl2, 0 ◦C to rt, 1 h; 3. PPTS, EtOH, 0◦C to rt, 5.5 h; x. 1. (COCl)2, DMSO 2. Et3N,
CH2Cl2, −78 ◦C to rt, 1 h, 33% over the last five steps; xi Base, THF; xii. Zn(Cu-Ag), 26%; xiii. LiOH
(1M), MeOH, 97%.

The synthesis of 222 (Scheme 30) succeeded by Swern oxidation of 235 to aldehyde 236,
followed by Wittig reaction to install the α,β-unsaturated aldehyde, which was subjected to
Takai olefination to afford 222, synthesized in 11.4% overall yield. The total synthesis ended
with the Sonogashira reaction coupling 221 and 222 in 96% yield, desilylation, Zn(Ag/Cu)
reduction of the triple bond, and ester hydrolysis (Scheme 30).
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4.2.3. Approach by Balas and Sala

In 2019, Balas and Sala groups [108] investigated the metabolic process of NPD1 and
reported a new total synthesis of NPD1 and that of its two major metabolites, tetranor-
NDP1 and dinor-NDP1 (Scheme 30), giving the first evidence of β-oxidation in SPMs.
Noteworthily, tetranor-NDP1 kept the bioactivity of NPD1 by inhibiting neutrophil chemo-
taxis in vitro and neutrophil tissue infiltration in vivo, while dinor-NDP1 was not active.
The key reaction for building the NDP1 structure core is the Sonogashira coupling of 245
and 246 for the preparation of the key intermediate 247 (Scheme 30). The installation of the
two chirality centres with the required configuration was achieved by using (2S)-butane-
1,2,4-triol (241) as starting material for the preparation of (245) and its enantiomer 242
for the synthesis of 246, both accessed in five reaction steps. Although the (R)-triol enan-
tiomer is commercially available, the synthetic route became cheaper when it was prepared
starting from malic acid with the (R) configuration. Silyl protection of the 2,4-diol and
Swern oxidation of the remaining primary alcohol gave compounds 243 and 244 in high
yield. The synthesis of pent-4-yn-ol 245 was achieved with by reaction of the aldehyde 243
with dimethyl(1-diazo-2-oxopropyl)phosphonate, the Bestmann–Ohira reagent to prepare
alkynes from aldehydes [109], followed by a sequence of protection and deprotection steps
which furnished 245 in 44% yield from 243. The iododiene 246 was achieved by a three
reaction pathway starting with a Wittig reaction to furnish an α,β-unsaturated aldehyde
which underwent a Colvin rearrangement with trimethylsilyldiazomethane and lithium
diisopropylamide, affording a terminal alkyne, the quantitative hydrozirconation of which,
followed by iodination [108,110], furnished 246 in 52% yield from 244. Swern oxidation
of Sonogashira reaction product 247 furnished aldehyde 248, the Wittig reaction of which
with the phosphorane generated by triphenyl(propyl)phosphonium bromide and sodium
hexamethyldisilazane (NaHDMS) afforded 249, embodying the terminal (Z)-alkene as
required. Desilylation with TBAF, protection with TBSCl, and deprotection of the primary
alcohol with PPTS gave 250, which underwent Swern oxidation to aldehyde 251. A Wittig
reaction was used to introduce Protectin D1 fragment C1-C8, followed by TBDPS deprotec-
tion with TBAF, triple bond reduction with Zn(Ag-Cu) in 26% yield over the three steps.
Ester hydrolysis succeeded with aqueous LiOH to give NDP1 in 97% yield. This synthetic
pathway covered 27 steps, furnishing NPD1 in 2.84% yield.

5. Maresins from DHA

Maresins have been discovered more recently, being the third-largest family of SPMs
which are biosynthesized from DHA. Biosynthesis of maresins starts in M2 macrophages
and is initiated by an epoxygenation reaction (see Section 5.1). Maresin 1 (MaR1) and
maresin 2 (MaR2) are active anti-inflammatory mediators with a powerful protective ef-
fect in inflammation, oxidative stress, and immune diseases as protective mediators of
macrophage function [85]. Maresins protect the human body, limiting neutrophil infiltra-
tion, enhancing macrophage phagocytosis, reducing the production of pro-inflammatory
factors, stimulating tissue regeneration, and controlling pain. MaRs derived from DHA
show action in metabolic diseases, nervous system diseases, and kidney and inflamma-
tory bowel diseases, as well as in tissue regeneration and pain control [77,86]. MaR-1
appears to be a molecule with potential for the treatment of motor neuron diseases such as
amyotrophic lateral sclerosis (ALS) or spinal muscular atrophy (SMA), which are fatal neu-
rodegenerative diseases that cause loss of motor function and progressive degeneration [55].
In addition, MaR1 attenuates the generation of reactive oxygen species in response to high
glucose levels [87], reduces kidney injury and serum creatinine levels in a sepsis-associated
kidney injury model [81], and preserves kidney function and inhibits NF-κB activity in a
renal ischaemia–reperfusion injury model [88].

5.1. Biosynthesis of Maresin 1 and Maresin 2

The biosynthesis of maresins occurs primarily in M2 macrophages. The first reac-
tion involves the formation of a hydroperoxyDHA on the fourteenth carbon atom by
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12-lipoxygenase, a key enzyme in the synthesis of maresins, generating 14S-HpDHA. This
molecule suffers epoxidation through 12-LOX being converted to 13S,14S-epoxy-maresin.
MaR-1 and Mar-2 are produced by enzymatic hydrolysis with epoxide hydrolase and with sol-
uble epoxide hydrolase (sHE), respectively, as depicted in Scheme 31. [25,40,77,85,86,89,90].

Scheme 31. Maresin 1 and maresin 2 biosynthesis [104,111].

5.2. Total Synthesis of Maresin 1 and Maresin 2

The first total synthesis of maresin 1 was presented in 2011 by Inoue et al. [112], al-
though it was not assigned to maresin 1 because the stereochemistry of the C7 chirality
centre was unknown, and the total synthesis of maresin 1 with the established structure
given in Scheme 32 was reported in 2012 by Rodríguez and Spur [113]. Their synthetic
strategy was based on a Sonogashira reaction coupling compounds 253 and 254. Scheme 32
illustrates the retrosynthesis of Mar1, showing that the triple bond resulting from Sono-
gashira coupling is reduced to a cis double bond with Zn(Ag/Cu), while the configuration
of the C14 chirality centre is introduced by Jacobsen kinetic resolution of epoxide racemic
mixture 255. The C12-C22 fragment was prepared from 2-deoxy-D-erythro-pentopyranose
256, used as the source of chirality for C17.

The preparation of the C1-C11 fragment 253 was achieved in 10 steps in 4.5% overall
yield, starting with the coupling of allyl bromide 257 with pent-4-yn-1-ol 258 catalysed
by CuI, followed by Jones oxidation and esterification (Scheme 33). The epoxidation of
the terminal double bond with m-chloroperoxybenzoic acid gave racemic epoxy ester 261.
Jacobsen hydrolytic kinetic resolution of 261 with H2O and 5% (S, S)-salen-Co catalyst
afforded 262 with more than 95% ee. Diol protection with triethylsilyl chloride and triple
bond reduction with Zn(Ag/Cu) furnished 264, which was regioselectively deprotected at
the primary position to be subjected to Swern oxidation to aldehyde 265. Wittig reaction
furnished the α,β-unsaturated aldehyde 266, converted to 253 by Takai olefination [92].
The Sonogashira reaction partner 254 was prepared in only four steps starting from 256,
which was protected with isopropylidene and subjected to Wittig reaction, furnishing 268
in good yield (Scheme 34). Iodination and LDA induced deprotonation–elimination gave
the target compound 254 in 17.6% overall yield. The total synthesis of maresin 1 succeeded
by Sonogashira coupling of 253 and 254 in good yield (Scheme 35). TES deprotection with
PPTS, Lindlar reduction of the triple bond and ester hydrolysis gave maresin 1 in high
yield, which co-eluted with a sample of natural maresin 1.
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Scheme 32. Retrosynthesis of maresin 1, as reported by Rodríguez and Spur [113].

Scheme 33. Synthesis of precursor 253, as reported by Rodríguez and Spur [113]. Reagents and
conditions: i. Na2SO3, cat.CuI, K2CO3, H2O, 92%; ii. Jones reagent, acetone, 69%; iii.10%Me3SiCl,
CH3OH, 2,2-dimethoxypropane, rt, 90%; iv. mCPBA, NaHCO3, CH2Cl2, 0 ◦C, 75%; v. (S,S)-(salen)Co
(III)(OAc)catalyst, H2O, ether, 0 ◦C to rt, 45%; vi. TESCl, imidazole, Et3N, DMF, 0 ◦C to rt, 95%;
vii. H2, Lindlar cat., hexane, 99%; viii. (COCl)2, DMSO, CH2Cl2, then Et3N, 83%; ix. Ph3P=CH–CHO,
benzene, 70 ◦C, 43%; x. CrCl2, CHI3, THF, 0 ◦C, 69%.
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Scheme 34. Synthesis of precursor 254, as reported by Rodríguez and Spur [113]. Reagents and
conditions: i.2-methoxypropene, PPTS, EtOAc, 0 ◦C to rt, 50%; ii. (Z)-CH3CH2CH=CH(CH2)2PPh3I−,
BuLi, THF,−78 ◦C to 0 ◦C, 81%; iii. I2, Ph3P, imidazole, toluene, 60 ◦C,82%; iv. LDA, THF,−78 ◦C, 53%.

Scheme 35. Synthesis of maresin 1, as reported by Rodríguez and Spur [113]. Reagents and conditions:
i. Pd(PPh3)4, CuI, piperidine, benzene, rt, 81%; ii. PPTS, CH3OH, 0 ◦C,96%; iii. Zn(Cu/Ag), CH3OH,
H2O, 40–45 ◦C, 66%; iv. 1N LiOH, CH3OH, H2O, 0 ◦C, then satd. NaH2PO4, 77%.

The first total synthesis of maresin 2 was carried out by Rodríguez and Spur in
2015 [64]. As shown in Scheme 36, Wittig olefination is the key reaction, assembling
molecule fragments for building its core structure. The chirality centres were introduced
using a chiral pool strategy starting from 2-deoxy-D-erythro-pentopyranose (256). The
preparation of the key intermediates 273, 274, and 275 is illustrated in Schemes 37 and 38.
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Scheme 36. Retrosynthetic approach of maresin 2, as reported by Rodríguez and Spur [64].

Scheme 37. Synthesis of precursors 273 (A) and 275 (B), as reported by Rodríguez and Spur [64] and
by Balas and co-workers [110]. Reagents and conditions: (A). i. KHMDS, THF,0 ◦C to rt, TMSCl,
0 ◦C, 276, −78◦C to rt, then 1 N HCl, 0 ◦C to rt, 45%; ii. Ph3P, imidazole, I2, 99%; iii. Ph3P; MeCN;
(B). i. 2-methoxypropene, PPTS, EtOAc, 0 ◦C to rt, 68%; ii. nBuLi, THF, −78 ◦C, 80%; iii. Dess–Martin
oxidation, CH2Cl2, rt.

The phosphonium iodide 273 was prepared from aldehyde 277 via cis-selective Wittig
reaction with hydroxypropylphosphonium bromide, furnishing 278, the iodination and
treatment of which with triphenylphosphane afforded 273 in very high yield (Scheme 37A).
The synthesis of C12-C22 precursor 275 (Scheme 37B) was accomplished from 256 through
cis-diol protection with the group isopropylidene, followed by reaction with the (3Z)-3-
(hexen-1-ylidene)triphenylphosphorane generated in situ by basic treatment of the phos-
phonium iodide, providing the (Z,Z)-diene 280 in high yield. Dess–Martin oxidation [114]
of the primary alcohol afforded the target aldehyde 275. The Wittig reaction with phospho-
rane 274 provided aldehyde 281, which by Wittig cis-olefination afforded 282, the precursor
transformed in maresin 2 (Scheme 38) by acid hydrolysis of the propylidene group followed
by basic ester hydrolysis.
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Scheme 38. Synthesis of maresin 2, as reported by Rodríguez and Spur [64]. Reagents and conditions:
i. CH2Cl2, rt, 37%; ii. cat. I2, benzene, rt, 88%; iii. KHMDS, THF, –78 ◦C to 0 ◦C, 37%; iv. PTSA,
CH3OH, 0 ◦C, 72%; v. 1 N LiOH, CH3OH, H2O, 0 ◦C, then sat. NaH2PO4, 87%.

5.3. Maresin-Like Lipid Mediators

Discovered in 2014, maresin-L1 (14S,22-dihydroxydocosa-4Z,7Z,10Z,12E,16Z,19Z-
hexaenoic acid (14S,22-diHDHA) and its enantiomer maresin-L2 (14R,22-diHDHA) [115]
(Scheme 39) are produced by macrophages from DHA [116]. Similar to maresins, their
biosynthesis involves 12- or 15-lipoxygenase-catalyzed (14S)-hydroxylation, while for
maresin-L2 the (14R)-hydroxylation is catalysed by cytochrome P450. Maresins-like medi-
ators have a biosynthetic pathway involving a hydroxylation by P450 enzyme(s) at C22
of the polyunsaturated linear chain containing six double bonds and twenty-two carbons.
Maresin-Ls act as autocrine/paracrine factors for the reparative functions of leukocytes
and PLT in wounds and ameliorate macrophage inflammatory activation, suppressing the
chronic inflammation in diabetic wounds caused by activation of macrophages [116]. Thus,
these lipid mediators may contribute to the roles of macrophages in wound healing and
might be able to be used to restore the impaired reparative function of macrophages for the
healing of diabetic wounds [116].

In 2019, the first stereoselective synthesis of maresin-like lipid mediators (MLs) was
disclosed [116]. The key steps are the Wittig reaction of aldehyde 285 with the phosphorane
derived from 284 and the kinetic resolution of 286 by asymmetric epoxidation, presented
in Scheme 39. The preparation of phosphonium salt 284 was achieved by alkylation of
tert-butyl acetate to afford 288, which was coupled with vinyl alcohol to give hydrox-
ydiyneester 290 (Scheme 40). Partial hydrogenation of the triple bond with P-2 nickel
afforded hydroxy diene ester 291, which was iodinated and treated with triphenylphos-
phane, furnishing phosphonium iodide 284. The epoxides (3S)-297 and (3R)-297 are the
precursors for the synthesis of maresin-L1 and maresin-L2. They were synthesized from
racemic aldehyde 291 by a five- and a six-step sequence, respectively (Scheme 41). The first
step is the stereoselective Wittig reaction with the phosphorane derived from phosphonium
salt 292 by treatment with the base NaN(SiMe3)2. Desilylation afforded diol 294, which
was then regioselectively silylated at the primary position, furnishing rac-286. Sharpless
asymmetric epoxidation with L-(+)-DIPT/Ti(O-i-Pr)4 afforded epoxy alcohol (3S)-295 with
more than 99% ee and (3R)-296 with 91% ee. Silylation of (3S)-295 gave the precursor
epoxide (3S)-297 for the synthesis of maresin-L1, while (3R)-296 was converted to epoxide
(3R)-298 using the D-(–)-DIPT/Ti(O-iPr)4, followed by silylation to furnish (3R)-297, the
precursor for the preparation of maresin-L2.
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Scheme 39. Structure of maresin-L1 and maresin-L2 and retrosynthesis of maresin-L1, as reported by
Hong et al. [116].

Scheme 40. Synthesis of phosphonium salt 284, as reported by Hong et al. [116]. Reagents and
conditions: i. LDA (1.3 equiv.); ii. HMPA (1 equiv.), THF, 0 ◦C, 1 h; iii. CuI (1.2 equiv.), NaI (1.2 equiv.),
Cs2CO3 (1.2 equiv.), DMF, rt, overnight; iv. H2, P-2 Ni (1.2 equiv.), (H2NCH2)2 (2 equiv.), MeOH,
0 ◦C, 4 h, 80%; v. I2 (1.4 equiv.), PPh3 (2.5 equiv.), imidazole (2.5 equiv.), CH2Cl2, rt, 1 h; vi. PPh3

(1 equiv.), MeCN, ∆, overnight, 88%.

The synthesis of maresins was accomplished in five steps from the corresponding
epoxides. For example, maresin-L1 was synthesized from (3S)-297, which reacted with
diethylaluminum cyanide to afford nitrile 299, which was reduced to aldehyde 285 by
DIBAL. Wittig reaction with 284, desilylation with TBAF, and ester hydrolysis gave maresin-
L1 in 35.3% overall yield from (3S)-297, Scheme 42.
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Scheme 41. Synthesis of (3S)- and (3R)-296, as reported by Hong et al. [116]. Reagents and conditions:
i. 292 (1.1 equiv.), NaN(TMS)2 (1.0 equiv.), THF, −78 ◦C, rt, 15 min; ii. N-Bu4NF (6 equiv.), THF, rt,
3 h; iii. TBSCl (2 equiv), imidazole (3 equiv), CH2Cl2, rt, 30min; iv. t-BuOOH (1.5 equiv), Ti(O-i-Pr)4

(1.0 equiv.), L-(+)-DIPT(1.2 equiv.), CH2Cl2,−18 ◦C, 5 h; v. TBSOTf (1.5 equiv.), 2,6-lutidine (3 equiv.),
CH2Cl2, 10 min, 97%; vi. tBuOOH (1.5 equiv.), Ti(O-i-Pr)4 (1.0 equiv.), L-(+)-DIPT (1.2 equiv.),
CH2Cl2,−18 ◦C, 3 h; vii. TBSOTf, 2,6-lutidine, CH2Cl2, 10 min, 97%.

Scheme 42. Synthesis of maresin-L1 and maresin-L2, as reported by Hong et al. [116]. Reagents and
conditions: i. Et2AICN (7 equiv.), THF, rt, 15 min, 95%; ii. DIBAL (2 equiv.), THF, −78◦C, rt, 10 min,
75%; iii. 284 (2.8 equiv), NaN (TMS)2 (2.7 equiv.), THF, −90 ◦C to 0 ◦C,10 min; iv. TBAF (8 equiv.),
301 (84%), THF, rt, 30 min; v. LiOH (30 equiv.), MeOH/H2O (1:1), rt, 22 h, 59%.
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6. The New Coronavirus (SARS-CoV-2) and DHA-Derived SPMs

The viral life cycle includes the various stages involved in viral replication that occur
inside cells. Thus, it can include three stages: (1) entry, (2) genome replication, and (3) exit.
Studies of SPMs as regulators of the inflammatory response caused by viral infections have
been carried out, but the effect of SPM on the viral life cycle needs more research.

Coronavirus disease (COVID-19) is caused by the new virus SARS-CoV-2 (severe acute
respiratory syndrome coronavirus), which emerged in 2019 in Wuhan (Hubei province in
China) and was declared by WHO as a global epidemic. Among risk factors for SARS-CoV-2
infection, obesity contributes with more than 60% of incidence and seems to be related to a
deficiency of SPMs [117].

The main symptoms of virus infection are headache, fever, fatigue, cough, and chest
tightness, among others [118]. However, this virus can be more aggressive, provoking se-
vere symptoms that include systemic inflammatory response, organ failure, and death [101].
So far, there is no treatment for COVID-19. However, the scientific community has been
struggling to offer immune protection against this disease. This effort resulted in more
than 300 vaccine projects, with some of them already approved, such as a Pfizer–BioNTech
vaccine, produced in US, and an AstraZeneca vaccine, developed by the University of
Oxford and produced in UK, Sweden, and Italy [119], among others.

COVID-19 severe cases are much more common in elderly people with other morbidi-
ties, such as diabetes, cardiovascular diseases, hypertension, and respiratory diseases [117].
SARS-CoV-2 is an RNA virus that infects the lungs and consequently cells of the immune
system that try to react to the inflammation. Among the human body immune system
responses to COVID-19, excessive stimulation of the inflammatory response can occur,
which is called “cytokine storm”, indicating a state of hyperinflammation and resulting in
dysregulation of lipid transport. The DHA metabolites resolvins, protectins, and maresins
behave as “turn off switch” in inflammatory processes and play an important role in viral
infections [117]. The resolvins of D series, particularly D1, D2, D3, D4, and D5 and the
intermediate 17HDHA may have a functional role as lipid mediators in the “cytokine storm”
of SARS-CoV-2 infection, diminishing pro-inflammatory levels [120,121]. Moreover, RvD2
and MaR1 are described as block inflammasome components, leading to the reduction in
IL-1β release, a potent pro-inflammatory cytokine [39].

It is known that DHA inactivates enveloped viruses and can inhibit proliferation
of some microbial organisms [120,122]; as described by Torrinhas et al. [121], DHA sup-
plementation can improve blood oxygenation in patients with acute respiratory distress
syndrome, with a consequent reduction in ventilation requirement and length of stay in
the ICU [105]. Additionally, patients receiving parenteral nutrition therapy fortified with
lipid emulsion enriched in DHA were reported to have decreased infection and sepsis risk
and a reduction in ICU stay of about 2 days [121]. Despite requiring further research, the
consumption of DHA in the diet seems to help improve treatment and recovery of severe
COVID-19, as DHA-SPMs are antiinflammation pro-resolving agents [123,124].

Another potential site for the entrance of SARS-CoV-2 in the human body is through
the cornea, where the SARS-CoV-2 receptors are expressed, including ACE2 and host
proteases for the S protein. Thus, recent studies [61] pointed out that DHA-SPMs such
as RvD6 isomers and elovanoid N32 reduced the expression of angiotensin converting
enzyme 2 (ACE2). On the other hand, NDP1 did not reduce it. RvD6 isomers and elovanoid
N32 also counteract the binding of the receptor-binding domain of SARS-CoV-2 spike (S)
protein to the injured cornea [125].

Further research is needed on the role of RvDs, PDs, and MaRs in SARsCOV-2 and
the effect of DHA-SPM on the viral life cycle. Moreover, the interaction between the host
immune system and infectious viral attack is also a very promising research area. Thus,
the bioactivity of these lipid mediators will contribute to open therapeutic avenues to
counteract virus attachment and entrance to the human body.
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7. Conclusions

This review summarizes current knowledge on DHA metabolites as anti-inflammatory
lipid mediators with pro-resolving activity. DHA can be obtained essentially from marine
sources and is available at sites of acute inflammation, where it is converted in diverse
bioactive metabolites—namely, the SPM D-series resolvins, protectins, and maresins that
act at subnanomolar doses. SPMs are produced in human body fluids and organs and
are involved in the resolution of inflammation, wound healing, and neuroprotection,
acting in neutrophils, macrophages, endothelial and epithelial cells, and lymphocytes.
DHA-SPMs have several health benefits; in particular, D-resolvins were reported as neu-
roprotective agents, also acting against cell injury-induced oxidative stress as well as
protectins. Maresins show action in nervous system diseases, and they have a powerful pro-
tective effect in inflammation, oxidative stress, immune diseases, and tissue regeneration.
More recently, with the rise of COVID-19, DHA-SPMS—mainly protectins and D-series
resolvins—demonstrated relevant action, decreasing cytokine storm and consequently
pro-inflammatory levels. In addition, the recently discovered interaction of RvD6 with the
binding domain of SARS-CoV-2 spike protein is very promising and encourages further
investigation in this area. Although DHA-SPMs structure and biosynthesis is already
known, the access to these molecules is scarce from natural resources and by biosynthetic
pathways. Their potent bioactivities encourage further investigation aiming at their valori-
sation for therapeutic purposes, but this research requires access to large amounts of the
studied product. These issues motivated the scientific community to develop their total
organic synthesis, illustrated in this review for DHA-SPMs. These anti-inflammatory lipid
mediators are very complex molecules with defined stereochemistry. Indeed, the highly
stereoselective and convergent approaches developed demonstrate the importance of or-
ganic chemistry in accessing these molecules towards development of new therapeutics
against neurodegenerative diseases, coronary heart disease, cancer, diabetes, and viral
infections, opening new avenues for COVID-19 therapy research.
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