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Abstract

Energy and its dissipation are fundamental to all living systems, including cells. In-

sufficient abundance of energy carriers -as caused by the additional burden of artificial

genetic circuits- shifts a cell’s priority to survival, also impairing the functionality of

the genetic circuit. Moreover, recent works have shown the importance of energy ex-

penditure in information transmission. Despite living organisms being non-equilibrium
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systems, non-equilibrium models capable of accounting for energy dissipation and non-

equilibrium response curves are not yet employed in genetic design automation (GDA)

software. To this end, we introduce Energy Aware Technology Mapping, the auto-

mated design of genetic logic circuits with respect to energy efficiency and functional-

ity. The basis for this is an energy aware non-equilibrium steady state (NESS) model

of gene expression, capturing characteristics like energy dissipation -which we link to

the entropy production rate- and transcriptional bursting, relevant to eukaryotes as

well as prokaryotes. Our evaluation shows that a genetic logic circuit’s functional per-

formance and energy efficiency are disjoint optimization goals. For our benchmark,

energy efficiency improves by 37.2% on average when comparing to functionally opti-

mized variants. We discover a linear increase in energy expenditure and overall protein

expression with the circuit size, where Energy Aware Technology Mapping allows for

designing genetic logic circuits with the energy efficiency of circuits that are one to two

gates smaller. Structural variants improve this further, while results show the Pareto

dominance among structures of a single Boolean function. By incorporating energy

demand into the design, Energy Aware Technology Mapping enables energy efficiency

by design. This extends current GDA tools and complements approaches coping with

burden in vivo.
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1 Introduction

Life is non-equilibrium (1 ), and so energy and its dissipation is essential for life and the

function of biological organisms and systems (2 , 3 ). While the absence of energy is in-

compatible with life (1 , 2 ), a decrease in its availability has detrimental effects on a cell’s

metabolism, and consequently, on its growth, fitness, and gene expression (4–10 ). Such a

decrease can be sourced in insufficient nutrition (4 ) of cells, but also in the burden imposed

by the insertion of engineered genetic circuits (8 , 10 ) and the expression of heterologous

proteins (5 ). Metabolic burden, also observed in S. cerevisiae and E. coli, refers to the

diversion of resources from the host to synthetic constructs, affecting the availability of en-

ergy, nutrients, ribosomes, and RNA polymerase, as well as reducing cellular fitness (5 , 6 ).

This allocation away from maintenance and growth compromises the host organism’s phys-

iological functions. As the functionality of synthetic constructs such as engineered genetic

circuits depends on sufficient dynamics of proteins and other molecules (11 ), reliable and

well-functioning host organisms are essential (7 , 10 ). Consequently, a trade-off between

function and energy efficiency emerges, affecting reaction levels even at the promoter scale

(12–14 ).

The described importance of energy did not hinder the wide application of equilibrium

gene expression models (15–18 ). Developed in the context of bacterial transcription, these

models assume that regulatory mechanisms, such as transcription factor binding to DNA, op-

erate at thermodynamic equilibrium (15–17 , 19 ). While this is reasonable from a modeling

perspective for prokaryotes, non-equilibrium processes and the inherent energy dissipation
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are essential for gene regulation (1 , 3 , 19–23 ). In particular, the sharpness and sensitivity

of the eukaryotic gene response surpasses the so-called Hopfield barriers (3 , 12 , 21 ), which

set an upper limit in the equilibrium case and were first described by J. Hopfield in the

context of kinetic proofreading (24 ). Besides this, transcriptional bursting is characteristic

of eukaryotic gene expression (12 , 25–28 ), but also occurs in prokaryotes (23 , 29 ). These

bursts are characterized by durations of transcriptional activity significantly longer than the

binding of single transcription factors, which lasts a few seconds (21 , 26 , 28 ). Mechanisms

for this may include multistep activation, where transcription factor abundance modulates

transcriptional activity, or cooperative exchange, where the burst period is determined by

transcription factors rapidly swapping positions due to cooperative binding (25 , 26 , 28 ).
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Figure 1: Energy Aware Technology Mapping. We here present the technology map-
ping pipeline as an example of the proposed Energy Aware Technology Mapping. With the
specification of the Boolean function to realize as input, the technology mapping first enu-
merates structural variants (30 ). For each circuit structure obtained, we perform in silico
an energy aware gate assignment. This takes into account the genetic logic circuit’s perfor-
mance with respect to both, energy efficiency and functionality. After successful completion
of the process, the user receives the automatically designed genetic logic circuit.

Despite these challenges, the targeted engineering of biological systems advances rapidly,

with standards and tools aiding in or automating their design being created (11 , 31–36 ),

while the awareness with respect to resources such as energy increases (8–10 , 37–39 ). One

branch of tools is Genetic Design Automation (GDA) software (11 , 36 , 40 , 41 ). These tools

solve the task of creating genetic logic circuits realizing Boolean functions with modules
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characterized in a gate library (11 , 40 , 41 ), the so called technology mapping. The term

originates from the synthesis of electronic circuits. Compared to electronics, technology

mapping in GDA needs to solve additional, more complex tasks for typically smaller circuits.

Particularly, it may not draw gates from the library multiple times, since it needs to consider

crosstalk among genetic components. GDA tools optimize the characteristics of genetic logic

circuits by evaluating them with the use of models on the basis of in silico experiments. The

primary objective is functionality, which expresses the circuits’ capabilities of implementing

the Boolean function in terms of a distance related to the minimum fold-change between the

two Boolean states (11 , 30 ). To be meaningful, the employed models have to capture the

characteristics inherent to the cells and constructs under consideration, such as the input-

output characteristics of gene expression cascades, non-equilibrium attributes like energy

dissipation, and transcriptional bursting.

Otero-Muras et al. (42 ) present a tool for automating the engineering of synthetic

metabolic pathways on the basis of Pareto optimal designs. These metabolic pathways are

defined by the user, with genetic logic circuits being a possible branch. iBioSim (36 , 43 )

is a tool for the automatized construction of genetic circuits, their simulation and model

representation. The absence of an automatized flow from Boolean specifications to a DNA

sequence highlights that this tool does not primarily target the automated design of genetic

logic circuits. Cello (11 , 40 , 41 ) implements a complete user interface for engineering ge-

netic logic circuits. The user can specify the desired Boolean function using a traditional

hardware design language. The given function is then transformed to a functional equivalent

circuit which only uses elements of the provided libraries for S. cerevisiae and E. coli. The

gate assignment is optimized to maximize the smallest fold change between circuit output

values corresponding to the distinct Boolean states ON and OFF, the Cello-score. ARCTIC

(18 , 30 ) extends the focus on the robustness of the resulting genetic logic circuits. By in-

troducing particle based simulation, the E-score, and structural variants, this tool accounts

for the stochastic nature of genetic gates and extends GDA’s design space by circuit topolo-
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gies. The 2023 version of this tool introduced context-awareness and accounts for effects

such as crosstalk between transcription factors and non-cognate promoters, or titration of

transcription factors to non-cognate binding sites.

While the awareness of energy, in particular, and resources, in general, increases (8–

10 , 37–39 ), it is not yet part of GDA. The same holds for non-equilibrium models of gene

expression, accounting for energy expenditure and sharpness beyond the Hopfield barriers

(12 ). To this end, we introduce Energy Aware Technology Mapping, the design of

genetic logic circuits with respect to functionality and energy efficiency. This is based on

a probabilistic non-equilibrium steady state (NESS) model of gene expression, accounting

for non-equilibrium characteristics like energy dissipation (2 , 3 ) and promoter architectures

varying in the number of binding sites, activation steps, and cognate transcription factors.

To characterize gene expression, we derive the functional and energetic response curve as a

function of transcription factor abundance. In particular, we relate the entropy production

rate of our model to its thermodynamic energy dissipation rate.

Energy Aware Technology Mapping uses this model for the in silico simulation of genetic

logic circuits. This allows us to explore the trade-off between functionality and energy

efficiency for genetic logic circuits, where we introduce energy efficiency as the reciprocal of

a circuit’s energy demand. To this end, we first consider the Boolean circuits presented in

(11 ) and continue with the evaluation of the impact of structural variants and the associated

Pareto fronts. The Pareto fronts give rise to the structure’s performance independently of

the optimization objective considered. By presenting means for multi-objective optimization,

we allow to trade-off the objectives function and energy efficiency in a joint optimization.

The results and methods we present here are implemented in the technology mapping

framework ARCTIC. ARCTIC is available at https://www.rs.tu-darmstadt.de/ARCTIC.
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2 Results and Discussion

2.1 An Energy Aware Gene Expression Model
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Figure 2: Energy aware gene expression model. AB: Schematic description of the
proposed model consisting of the promoter model (A) and the reactions describing the
RNA and protein dynamics (B). A: The promoter model is instantiated with two levels
of transcriptional activity and allows for binding up to three transcription factors. The
transcription factor concentration enters via the variable c, with the transcriptional active
states (zi with i = 5, 6, 7, 8) featuring transcription rate a2 µ1 and the inactive states (zi with
i = 1, 2, 3, 4) the basal rate a1 µ1 (a2 > a1). B: Besides transcription, the dynamics include
translation (µ2) and the respective degradation reactions (δ1 and δ2). C-E: Exemplary
response characteristic of the model as a function of the transcription factor abundance
c. We here showcase inhibitory behavior of the transcription factor, while the model can
also capture activatory behavior. D visualizes the steady state probabilities of each state,
with the probability mass shifting from state z5 to z2 and z3 before concentrating in z4 as
c increases. The corresponding protein distribution is shown in E by its mean and three
quantile intervals. C presents the expected energy dissipation rate of the overall model.
Comparing C and E, one notices the proportionality between energy dissipation rate and
protein abundance.

Gene expression is an inherently non-equilibrium process (1 , 44 ), depending on the

presence of energy carriers and building blocks like ATP and charged tRNA. While gene

expression is subject to regulation at various levels (3 , 45 , 46 ), we focus on transcriptional

regulation through the binding of activating or inhibiting transcription factors. In this sec-

7

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.06.27.601038doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.27.601038
http://creativecommons.org/licenses/by-nd/4.0/


tion, we present the response characteristics of a single protein-coding gene whose promoter

has one or more binding sites for cognate transcription factors. To this end, we describe the

dynamics of the promoter and of the abundances of its associated mRNA and protein via

a stochastic chemical reaction network (CRN). In contrast to combinatorial (equilibrium)

promoter models, the use of a kinetic model enables the description of energy-dissipating

(non-equilibrium) promoters. In particular, we obtain the mean energy dissipation rate and

the NESS mean and variance of protein abundance as a function of the transcription factor

concentration. These non-equilibrium response curves are used to characterize the genes

realizing the gates for the technology mapping and possess attributes like increased sharp-

ness in comparison to their equilibrium counterparts (12 ). We will first elucidate the kinetic

model and then introduce the thermodynamic concepts necessary to relate the kinetic model

to its energy dissipation rate.

Model Description as a Chemical Reaction Network

A CRN is composed of the chemical species X1, . . . ,XN , and elementary reactionsR1, . . . ,RM

with stoichiometric balanced equations

Rm :
N∑
i=1

u
(m)
i Xi

k̃+m
⇌
k̃−m

N∑
i=1

w
(m)
i Xn, (1)

where the backward reaction microscopically reverses the forward reaction. Assuming the

stochastic law of mass action (47 ), we assign state-dependent reaction rates (propensity

functions) λ+
m(x) = k̃+

m

∏N
i=1 x

u
(m)
i

i , λ−
m(x) = k̃−

m

∏N
i=1 x

w
(m)
i

i to each reaction Rm, where

k̃+
m > 0 and k̃−

m ≥ 0 are the rate constants. A reaction is called microscopically reversible if

k̃−
m > 0. The concept of microscopic reversibility is important for the later thermodynamic

treatment. For brevity, we simply write reversible instead of microscopically reversible in

the following.

We partition the vector X of random variables into the promoter state Z and the RNA
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and protein abundances R and P . The promoter can switch reversibly between a finite

number of states zi and in each state RNA synthesis events occur according to the state’s

transcriptional activity ai ≥ 0. We represent the promoter states by different species, so

that at any time Z(t) is a unit vector with a one at position i in each case. RNA synthesis,

protein synthesis, and degradation are modelled as single reactions, neglecting their multistep

construction (2 ). Although each of the elementary steps of these synthesis and degradation

reactions is reversible, we assume that the rate constants of the mechanistically reversed

composite reactions are negligibly small, enforcing microscopic irreversibility. In Figures 2A,

B we represent an exemplary instantiation of the gene expression model, where the promoter

(A) has three transcription factor binding sites and two distinct levels of transcriptional

activity. Given the concentration vector of the transcription factors c, the transition rates

of the promoter (as in Figure 2A) relate to Equation (1) as k̃ρ
m = fij(c)kij for νm = ej − ei,

where ρ = + for j > i and ρ = − for j < i. The functions fij describe the dependence of

the transition rate from state zi to zj on the transcription factor concentrations.

The CRN representation of a promoter model is more versatile in general, as it may

describe not only the number of bound transcription factors but also different DNA confor-

mations in a potentially multi-step transcriptional activation (12 ). Such conformations can

be, for example, open and closed loop complexes or different chromatin states (12 , 20 , 48 ).

Since transcriptional activity is independent of the binding states of the transcription fac-

tors, this model can represent transcriptional bursts in both the multistep activation model

and the exchange model (12 , 25–29 ). By turning the reaction rate constants themselves

into random variables, one can extend this model to include extrinsic noise due to external

context factors in the sense of (49–51 ). It should be noted that reversible ATP-dependent

reactions ATP ⇌ ADP +Pi always produce ATP in the reverse direction. Consequently, if

any promoter state change is predominantly ATP-consuming in one direction, but not ATP-

producing in the reverse direction, then there are at least two distinct reactions involved.
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Kinetic Response Curve of a Single Gene

The evolution of the distribution of the state of the gene expression system p(X(t) = x) is

described by the chemical master equation given in SI Section S1.3. Using the Chapman-

Kolmogorov backward equation, we derive the mean and variance of the non-equilibrium

steady state RNA and protein distributions in SI section S2, and derive the promoter’s

steady state distribution π(c) = limt→∞ p(Z(t) = ei) by applying the methods in section

4.2 to the promoter’s propensity matrix Λ = Λ(c) with Λij(c) = fij(c)kij. Together with

the transcription activity parameter ai associated with each promoter state zi, the average

promoter activity is

α(c) =
n∑

i=1

ai πi(c). (2)

The protein’s mean and variance and the RNA’s mean are given by

E[P | c] = µ2

δ2
E[R | c] E[R | c] = µ1

δ1
α(c) (3)

Var[P | c] = µ

δ
α(c)

(
1− µ

δ
α(c)

)
+

µ2

δ2 + δ1

µ

δ
α(c)

+
µ2

δ + δ22
a
(
δ−1
1 +M−1

2

)
M−1

1 (a⊙ π(c))

(4)

where µ = µ1 µ2, δ = δ1 δ2, a = [a1 . . . an], ⊙ is the Hadamard product, and M i =

(δi In − ΛT ) with In the n times n identity matrix. The quantities in Equations (3) and

(4) are the characteristic response curves of a gene depending on the transcription factor

concentrations c. Later on, we use them for the NESS simulation of the gene circuit realizing

the genetic logic circuit within the technology mapping. To allow for energy awareness in

the technology mapping, we proceed by establishing a link between the kinetic model and its

energy dissipation rate to derive an energetic response curve as a function of transcription

10

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.06.27.601038doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.27.601038
http://creativecommons.org/licenses/by-nd/4.0/


factor abundance c.

Heat Bath

Heat Bath

System
(Core CRN)

Chemostats

C
lo

se
d 

C
R

N
O

pen C
R

N

Figure 3: Schematic description of an open CRN. Contrasting open and closed chemical
reaction networks, one observes well the difference sourced in the addition of chemostat
species Yi. The abundance of the chemostat species is kept constant, in our case by the
cellular environment, and leading to a chemical potential driving the core CRN. In this
work, the chemostat species refer to cellular energy carriers like ATP and the products of
corresponding hydrolysis reactions.

Stochastic Thermodynamics of Open CRNs

In stochastic thermodynamics, each state x of the system is associated with its Gibbs free

energy g(x). Upon reaction Rm in forward direction, the Gibbs free energy change is

∆g(m)(x) = g(x + νX
m) − g(x), where νX

m = [w
(m)
i − u

(m)
i ]i is the stoichiometric change

vector. Further, the system is assumed to be in contact with a heat bath of temperature

T . A system consisting of a CRN and a heat bath is called a closed CRN, which -following

the zeroth law of thermodynamics- relaxes to equilibrium (52 ) . In equilibrium, the mean

energy dissipation rate is zero (47 ). A system that exhibits a zero net change in Gibbs

free energy along any closed cycle in its state space can be considered a closed system. For

instance, this is the case in the promoter in Figure 2A, if none of the transitions require

additional energy carriers. Otherwise these energy carrying species need to be accounted for

in the stoichiometric equations. Furthermore, for the dynamics of RNA and protein, it is

necessary to take into account the building blocks whose recycling after degradation requires
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the expenditure of energy.

We thus assume that the reactions Rm actually include species Y1, . . . ,YL, which are

controlled by the cell to always have constant concentrations. Usually, these are energy

carriers like ATP and its hydrolysis products like ADP and Pi. By coupling our CRN to

these species, we obtain an open CRN described by the stoichiometric balanced equations

Rm :
N∑
i=1

u
(m)
i Xi +

L∑
j=1

υ
(m)
j Yj ⇌

N∑
i=1

w
(m)
i Xn +

L∑
j=1

ω
(m)
l Yj (5)

where, the species Y1, . . . ,YL act as chemostats. Figure 3 illustrates the composition of

closed and open CRNs. The Gibbs free energy change of the chemostat species associated

with reaction Rm is ∆µ(m) =
∑L

j=1 µ
Y
j (ω

(m)
l − υ

(m)
j ), where µY

j is the chemical potential of

species Yj. Identifying W
(±m)
chem = ∓∆µ(m) as the chemical work done on the core system

by the chemostat upon reaction Rm in the forward and backward direction, respectively,

we introduce the energy dissipated into the environment per reaction as the difference of

chemical work and Gibbs free energy change

∆Q(±m)(x) = W
(±m)
chem −∆g(±m)(x). (6)

The mean energy dissipation rate Q̇ is then given by

Q̇(t) =
∑
x

M∑
m=1

(∆Q(m)(x)λ+
m(x) + ∆Q(−m)(x)λ−

m(x))p(X(t) = x), (7)

as we show in SI Section S3.2. For open CRNs the propensity functions of any reversible

reaction Rm (i.e. k+
m > 0 implies k−

m > 0) are related to the energy changes by the thermo-

dynamic consistency relation (52 )

ln

(
λ+
m(x)

λ−
m(x)

)
= −β

(
∆g(m)(x) + ∆µ(m)

)
= β∆Q(m)(x), (8)
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which associates the rates of the reactions with the corresponding energy dissipation and

β = (kBT )
−1 parameterizing the heat bath. If all reactions of an open CRN {R1, . . . ,RM}

are reversible, then we may use Equation (8) to identify the energy dissipation rate with the

entropy flow into the environment

d

dt
Henv(t) = βQ̇(t) =

∑
x

M∑
m=1

ln

(
λ+
m(x)

λ−
m(x+ νm)

)
Jm(x, t), (9)

where J+
m(x, t) = p(X(t) = x)λ+

m(x) and J−
m(x, t) = p(X(t) = x + νX

m)λ
−
m(x + νX

m)

represent the forward and backward probability fluxes of reactionRm with net flux Jm(x, t) =

J+
m(x, t)− J−

m(x, t).

Relation Between Energy Dissipation and Entropy Production Rate of the NESS

The entropy production rate (47 , 53 , 54 ) is the sum of the entropy change rate of the

system and the entropy flow into the environment, i.e., ep(t) = d
dt
H[X(t)] + d

dt
Henv(t),

where H[X(t)] = −
∑

x p(X(t) = x) ln(p(X(t) = x)). At steady state (or in the limit

t → ∞) we have d
dt
H[X(t)] = 0 and hence the mean energy dissipation rate (in units of

kB T ) of the NESS is given by the entropy production rate, i.e.,

Q̇ = kBT ep. (10)

Due to the central relevance of this relationship, we recommend SI Section S3 and in particu-

lar Section S3.3 to the reader, where we derive and discuss the relationship between entropy

production rate and energy dissipation rate in depth.

Energetic Response Curve of a Single Gene

Following the above, we express the energetic response curve to the transcription factor

concentrations c in terms of the overall mean energy dissipation rate of the NESS ϵg(c).
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This rate is given as the sum

ϵg(c) = ϵp(c) + ϵtx(c) + ϵtl(c) (11)

of the contributions of the promoter ϵp(c), the RNA dynamics ϵtx(c), and the protein dy-

namics ϵtl(c).

In particular, we use the relationship between energy dissipation and entropy production

to quantify the energy dissipation rate of the promoter as ϵp(c) = kBT ep, since it is assumed

to satisfy the microscopic reversibility requirement. Note that since the entropy production

rate is calculated without the knowledge of chemical potentials µY
j or the Gibbs free energy

changes ∆g(m), the expression is valid for a variety of different promoter structures, provided

the promoter topology is accurate. To derive the NESS entropy production rate of the finite

state promoter, we make use of Schnakenberg’s method (53 ), which we outline in SI Section

S4. Using this method we obtain

ep = Jo1 β µ̃o1 + Jo2 β µ̃o2 + Jo3 β µ̃o3 (12)

as derived in SI Section S4.1 and consequently the promoter’s energy dissipation rate is

ϵp(c) = ep/β. Here, Joi denotes the probability flux along the cycle oi as presented in Figure

2A and µ̃oi is the change in chemical potential associated with a single run through cycle oi.

The products of each flux (Joi) and force (µ̃oi) pair resemble the well known expression for

electrical power, i.e., the product of a voltage (force) and the induced electric current (flux).

Since our transcription and translation model lacks microscopic reversibility, the ther-

modynamic consistency relation (Equation (8)) is not well defined. However, under the

assumptions given in SI Section S3.4, we only need to know the chemical work per reaction

in addition to the rate constants to compute the energy dissipation of those reactions via

Equation (7). Here we derive these quantities from an intuitive heuristic perspective, while

the corresponding considerations involving Equation (7) are presented in SI Section S3.4.
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Considering the energy required per RNA molecule first, we subsume all length dependent

energy requirements for RNA synthesis and degradation in er and the length independent

ones in ēr. Taking the RNA length lr in nucleotides into account, the energy per RNA

molecule is er lr+ ēr. For the protein synthesis and degradation, we define the energies ep and

ēp analogously and set lp as the protein length in amino acids. To obtain the actual energy

dissipation, we have to account for the synthesis and degradation rates. In particular, these

rates are given by δ1 E[R | c] and δ2 E[P | c] for RNA and protein, respectively. Multiplying

the rate of molecule synthesis and degradation with the associated energy yields

ϵtx(c) = (er lr + ēr) δ1 E[R | c] ϵtl(c) = (ep lp + ēp) δ2 E[P | c] (13)

as the expected energy dissipation rates of the RNA and protein dynamics.

2.2 Energy Aware Technology Mapping

With the energy aware NESS model of gene expression at hand, we now present the steps

for incorporating it into the technology mapping process. This gives rise to Energy Aware

Technology Mapping.

From Genetic Logic Circuits to Genes and Back

The efficient technology mapping of genetic logic circuits gets enabled by large scale in silico

experiments. Depending on the focus, in silico evaluations can target different levels of

abstraction as exemplified in Figure 4A. These abstractions not only differ with respect

to the modules they are composed of, but also in the signals considered. While Boolean

functions take Boolean signals into account, the genetic logic circuits we consider here use the

promoter activity in RPU, with protein abundance serving as signal carrier in the underlying

gene circuits. With the model we present in this work, we target the gene expression level,

where genes express proteins acting as transcription factors and repressing the expression
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Figure 4: From genes to logic circuits. A: Visualization of the abstraction levels en-
countered in genetic design automation (GDA). The gene circuit at the bottom realizes the
behavior within the cell and is the circuit our model is applied to. It relies on protein con-
centrations as signal carriers. Defined on top, the genetic logic circuit provides a convenient
interpretation in terms of gates, familiar to engineering disciplines and the basis for GDA.
The Boolean logic circuit shadows all implementational details and presents the function to
realize. B: Overview on the energy demands of a genetic NOR gate following the implemen-
tation of (40 ). The gate consists of the genes a, b, and c, with the preceding and succeeding
gates greyed out. ϵtx denotes the energy dissipation rate of the RNA dynamics, ϵtl of the
protein dynamics, and ϵp is the energy dissipation rate of the promoter.

level of the genes associated to their cognate promoter. As such, this approach can reassemble

the actual implementation of a genetic logic circuit within cells as presented in (40 ).

To make use of our NESS gene expression model within the genetic logic circuit centered

technology mapping, we first obtain the corresponding gene circuit. In the next step, the

Boolean input values are translated to the respective promoter activities, from which we then

derive the corresponding inducer concentrations. The gene circuit is evaluated by applying

our model in topological order to the genes. By deriving the promoter activity associated

to the abundance of the reporter protein, we finally obtain the output representation at the

genetic logic circuit level.

The Functional Performance of a Genetic Logic Circuit

In order to complete the loop, we could apply a thresholding to the promoter activity values

and obtain the associated Boolean value. Within the technology mapping, the performance

of this thresholding approach is subsumed in the score S, effectively measuring the distance

16

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.06.27.601038doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.27.601038
http://creativecommons.org/licenses/by-nd/4.0/


between activity levels representing ON and OFF states. Formally, we define the genetic

logic circuit as the tuple (γ, q), where γ is the circuit’s structure and q the corresponding

assignment of genetic gates. We derive the score S = S(γ, q) by evaluating the genetic logic

circuit in silico for all Boolean input conditions I (with | I |= 2nI for nI inputs). The

obtained circuit output values in terms of promoter activities are subsumed in Y = Y (γ, q)

in case they shall represent an OFF state and Y = Y (γ, q) otherwise. Identifying the

elementary scoring function with s, the score S(γ, q) is given by

S(γ, q) = min
y∈Y ,y∈Y

s(y, y)

where y, y can be scalar values as in the case of the cello-score (11 ) or empirical distributions

as for the E-score (30 ). Within Section 4.4, we extend on the definition of the E-score and

it’s application to empirical distributions.

The Energy Dissipation of a Genetic Logic Circuit

Besides the functional characterization, our gene expression model allows for insights into

the energetics of the genetic logic circuit. For this, we define L(γ, q) as the set of genetic

logic gates included in the circuit (γ, q). Furthermore, we identify the genes expressing the

transcription factor associated to gate l ∈ L(γ, q) with the index set GC(l) and the genes

with cognate promoters with the index set GP (l). Again, the energy dissipation rate is the

aggregation of the single parts contributions, resulting in

ϵl(i) =
∑

g′∈GP (l)

ϵ(g
′)

p (c
(i)
g′ ) +

∑
g∈GC(l)

(
ϵ
(g)
tx (c

(i)
g ) + ϵ

(g)
tl (c

(i)
g )

)
(14)

where i ∈ I identifies the Boolean input condition and c
(i)
g ∈ Rn

≥0 denotes the cognate tran-

scription factors’ concentrations of gene g for the respective input condition. Within Figure

4B, we present this as an example of a genetic NOR gate following the implementation of

(40 ). Taking all gates L(γ, q) of the genetic logic circuit into account, the energy dissipation
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rate of the whole circuit for the ith input assignment is

Ei(γ, q) =
∑

l∈L(γ,q)

ϵl(i). (15)

We define the average and maximum expected energy dissipation rates E(γ, q) and Emax(γ, q)

of the genetic logic circuit (γ, q) as

E(γ, q) =
1

| I |
∑
i∈I

Ei(γ, q) Emax(γ, q) = max
i∈I

Ei(γ, q). (16)

Depending on the type of application and the constraints enforced, both, E and Emax, are

valid objective functions for the energetic optimization. In the case of stochastic evaluation,

these aggregation functions extend naturally.

Technology Mapping of Genetic Logic Circuits

The previous two sections have introduced different metrics for the evaluation of genetic logic

circuits. It is the task of the technology mapping to design a topology from the available

gate types that realizes the desired Boolean function. To this end, our tool systematically

enumerates all possible variants of gate selection and topologies. For each of these possible

solutions, a gate assignment has to be carried out, which is then heuristically optimized. To

incorporate both metrics into the scoring of the resulting circuits, either a multi-objective

or a constrained optimization can be done.

2.3 The Genetic Logic Circuit’s Trade-Off between Energy and

Function

With the energy aware gene expression model included into the technology mapping frame-

work ARCTIC (18 , 30 ), we can explore the design space of genetic logic circuits with respect

to both, functionality and energy efficiency. For this purpose, we consider the genetic logic
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gates introduced with Chen et al. (40 ). In particular, we calibrate the parameters of our

model to capture the response characteristics encoded in the cytometry data provided by

(40 ) as described in Methods 4.3. We then use the obtained parametrizations to derive

a genetic gate library for S. cerevisiae, consisting of 12 genetic logic gates utilizing nine

independent transcription factors.

We start our evaluation by investigating the energy dissipation rates encountered in

mapping logic circuits and their relation to the circuit’s functionality. Based on the insights

gained, a systematic evaluation of the circuit structure’s effect on the energy of genetic logic

circuits follows up. In this context, we also consider the Pareto fronts and the application

of multi-objective optimization. To emphasize comparability among genetic logic circuits as

well as function and energy, we introduce the energy efficiency, or briefly efficiency, E as the

inverse of the energy measure (i.e. E(γ, q) = (E(γ, q)−1 or Emax(γ, q) = Emax(γ, q)
−1) and

apply normalization to the best scores encountered in the considered benchmark set.

Function and Energy Optima are Disjoint

To assess the energy landscape of genetic logic circuits, we evaluate the technology mapping

results of 33 logic circuits, each realizing a different Boolean function. The choice of circuits

follows (11 ) and encompasses circuits ranging from two to seven gates. For the purpose

of this evaluation, we optimize each circuit for the two objectives function and energy and

constrain the other in the respective case. While the minimum functional score to achieve

is identical for all circuits, the upper limit on the energy dissipation rate during functional

optimization is chosen in dependence to the gate count (see Methods 4.4).

Starting with a small circuit first, Figure 5A presents the function and energy optimized

genetic logic circuits for 0x2F (3 gates). Despite the same structure, the different gate

assignments feature significant differences in function and energy. In particular, the energy

optimized version decreases the functionality by 70.7% to improve energy efficiency by 44.4%

in comparison to the version optimized for function. This is a decrease in fold-change by
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Figure 5: Function and energy as disjoint optimization targets. A: Circuit 0x2F
(3 gates) is optimized for function (top) and energy efficiency (bottom). The bar plots
on the right present the performance of the genetic logic circuits depicted on the left for
both evaluation criterions. Clearly, the optima are disjoint. B: Visualization of the mean
energy dissipation rate per gate (lower is better) for 0x2F over all Boolean input conditions,
optimized for functionality (top) and energy efficiency (bottom) and normalized to the largest
value. The energy dissipation of the NOR and OR gate differ significantly between the two
implementations, impacting the overall energy efficiency significantly (see Figure A). C:
Boolean activity as an heuristic for the energy of a genetic logic circuit. Here compared to
the energy of circuits with the objective energy efficiency. D: The optimization results of
circuits 0xDF (4 gates), 0x20 (5 gates), and 0x81 (7 gates), normalized to the maximum
functional score and energy efficiency observed in the benchmark. The left of a bar pair
refers to the results of the functional and the right to the energetic optimization. Again,
optimizing for either of the two objectives decreases the genetic logic circuits performance in
relation to the other. E: Analysis of the cost of energy efficiency increase on the benchmark.
While the optimization for energy improves energy efficiency up to 58.9%, the functionality
score is often decreased significantly. F: Relationship between expected energy dissipation
rate of the circuit and it’s gate count. The bold line is the mean and the shaded areas
present the minimum and maximum intervals, with the colors indicating the optimization
objective. This figure reveals a near linear relationship between energy dissipation rate
and gate count. However, the optimization objective determines the offset. Comparing the
objectives, optimization for energy efficiency allows to implement genetic logic circuits of six
gates with the energetic requirements of functionally optimized four gate circuits.
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a factor of 3.4 and a decrease in energy resource consumption by 30.8%. In addition, the

disjoint optimality of function and energy indicates a trade-off between the two optimization

goals considered. Increasing the number of gates does not change this impression, as we

observe by considering the results for circuits 0xDF (4 gates), 0x20 (5 gates), and 0x81

(7 gates) in Figure 5D. However, the absolute level of energy dissipation changes in both,

the functionally and efficiency optimized circuits. While we estimate an energy dissipation

rate of 29, 401 kB T s−1 for circuit 0x2F, this increases to 38, 251 kB T s−1 for circuit 0xDF,

40, 901 kB T s−1 for circuit 0x20, and 64, 865 kB T s−1 for 0x81 in the energy optimized case.

With an average contribution of 98.8%, our model predicts protein synthesis and degradation

to account for the largest portion of energy expenditure.

Figure 5B provides information on the differences of energy dissipation for the respective

optimization goals. Presenting the energy per gate averaged over all input assignments,

we observe that the two NOT gates differ only slightly between the functionally (top) and

energetically (bottom) optimized variants. With 61.8%, the OR gate conduces the majority

of energy saving. However, this is a direct result from the change in gate assignment of

the respective preceding gates, as in comparison to the functionally optimized version their

maximum expression levels are roughly halved. In consequence, the circuit’s score, which

assesses the fold-change, drops proportionally. For functions 0xDF, 0x20, and 0x81, we

observe the same behavior, with most energy savings resulting from gates closer to the

output and only minor improvements and sometimes even worsening from gates close to

the input of the circuit. Thereby, the largest energy saves are achieved by reducing the

expression levels of Boolean ON states significantly.

Shifting the perspective to the set of all circuits, the optimization for energy increases

energy efficiency up to 58.9% and on average by 37.2%. This is possible as the efficiency of

most of the circuits can be improved well (see Figure 5E). However, this comes at a cost, as

there is often only a small gap between the functionality constraint and the actual function-

ality score, as observable in the average remaining score of 28.5%. Figure 5E highlights this
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by visualizing the relationship between function and energy efficiency for the two cases of

optimization. Reconsidering the relation between circuit size and energy, Figure 5F indicates

the linear relationship between these quantities for the circuits taken into account for both

optimization objectives. Comparing the results for efficiency and functionally optimized cir-

cuits among different circuit sizes, we see that a fixed energy budget allows for larger circuits

when optimized for energy efficiency. On the other side, circuits designed by Energy Aware

Technology Mapping feature an energetic advantage of at least one gate.

These results indicate an inherent trade-off between the two objectives energy efficiency

and functionality for genetic logic circuits. Considering the in vivo realization of circuits, the

expression level based signalling requires sufficient fold change to differentiate between dis-

tinct logic levels. In the presence of basal expression, fold change is achieved by sufficiently

high levels of protein abundance, with the energy expenditure increasing proportionally. As

part of the optimization for energy efficiency, the expression levels are reduced to a minimum

viable level. However, the lower limit on the score ensures that despite the drop in functional

performance, the circuit’s function is preserved. The observation of highest energy savings

at the circuit outputs can result from level separation as a requirement for the function of

gate cascades (11 , 18 ) and minor optimization potential at the circuit inputs. Yet (18 )

points out that these last gates are the most important for the functional performance of

a circuit. Again, this points to the exclusivity of the objectives considered. An aspect not

explicitly considered yet but relevant for the overall energy expenditure is the gate technol-

ogy used. The gate library used (40 ) provides transcription factor based gates, requiring

the expression of heterologous proteins. Since our model and other studies (5 , 9 , 55–57 )

consider heterologous protein expression rate proportional to energy expenditure and pro-

tein dynamics dominate the energy consumed by gene expression, RNA-based gates could

significantly reduce the overall energy consumed.

Driven by these insights and the relation between circuit size and energy dissipation, we

present an even more precise estimate of a genetic logic circuit’s energy dissipation rate. This
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estimate is given by the Boolean activity of a structure, which reduces the estimation to

counting the states which require protein expression. More formally, we consider the truth

tables of the gates constituting the circuit structure. For each NOT and NOR gate, the

number of Boolean ON states of the respective input gates feature is counted. To the

circuit’s inputs and outputs, special treatment applies. The inputs are counted as if they

were always ON, as their in vivo implementation makes use of constitutive promoters. For

the outputs (simple or implicit OR), the number of ON states is counted as this refers to the

protein level ideally representing this state. The overall Boolean activity is then obtained by

summing up all the individual contributions for all possible Boolean input conditions. Figure

5C presents the relationship between the Boolean activity and the energy dissipation rate of

genetic logic circuits optimized with respect to energy efficiency. With a Pearson correlation

coefficient of 0.989 (0.940 when optimized for functionality), this easy-to-use heuristic is

highly predictive.

Promoter’s Energy Expenditure peaks in Transition Region

The circuit level trade-off is dominated by the protein expression level. In order to gain

insight into the gate respectively promoter level, we focus here on the promoter energy, the

entropy production rate. For two exemplary genetic gates, Figure 6 presents the entropy

production rate and average promoter activity as a function of transcription factor abun-

dance. All gates (see Figure S7) feature a peaked entropy production rate, concentrating

energy dissipation mostly to the transition region of the gate’s response curve and being

more peaked the sharper the transition is. In addition, the entropy production rate is often

highest (dashed line) close to the steepest descend (marker) of promoter activity (see Figure

6A), with Figure 6B presenting a counterexample to this.

Considering the saturated regions for low and high input transcription factor levels,

the promoters’ energy dissipation rates decrease significantly. In the context of genetic logic

circuits, these regions represent the Boolean states one wants the gates to attain, giving rise to
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Figure 6: Peaked entropy production rate in transition region. The average pro-
moter activity and the corresponding entropy production rates of two exemplary promoter
models as a function of transcription factor abundance c. We highlight the transition re-
gion, which connects the two saturated regions of promoter activity. In most cases, entropy
(ϵp(c) = ep(c) β

−1) is highest (dashed line) within this transition region. Besides, this en-
tropy production peak is often close to the steepest descend (marker) of promoter activity
(see A) but not in all cases (see B).

only minor contributions of the promoters to the overall energy dissipation of well functioning

genetic logic circuits. Despite this, 21 of 33 efficiency optimized circuits feature a lower

promoter energy dissipation rate in comparison to their functionally optimized pendants.

Circuit’s Structure shapes Energy Dissipation

The previous results indicate a strong connection between a circuit’s size and its energy

dissipation rate. However, not all circuits of a distinct size perform equally well, which

brings the genetic logic circuit’s structure into focus. The structural variants approach

implemented in ARCTIC (18 , 30 ) allows for optimizing the structure in addition to the gate

assignment. In doing so, (30 ) demonstrates the benefits of including the circuit’s structure

in the optimization process for functionality. Guided by these insights, we use the structural

variants approach to evaluate the structure’s impact on circuit performance with respect to

both, functionality and energy efficiency.

For the evaluation of the structural variants, we consider exemplary the three Boolean
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Figure 7: The logic circuit structure’s impact on energy efficiency. A: We here
present the functionality and energy efficiency of the structural variants of function 0xEC
optimized with respect to energy efficiency. The structures feature different characteristics
in both, the energy efficiency and functionality, with an average improvement of energy
efficiency by 30.7% when considering the best structure. Normalization refers in both cases
to the best value encountered. B: The Boolean activity per gate for structures 7 and 15
of function 0xEC, which exhibit the worst and best energy efficiency. In comparison to
structure 7, structure 15 features 10 active states less. This manifests in a significantly
higher energy efficiency of structure 15 (see A). C: Overview on the distribution of energy
optimized variants for the three functions 0xEC (3 gates), 0x02 (4 gates), and 0xE7 (5 gates),
where the gate counts refer to the smallest structure obtained. Within the figures, the colors
code for the number of excess gates, showing that smaller structures are beneficial for energy
efficiency. However, for larger circuits the consideration of excess gates proves beneficial for
functionality. The values are normalized with respect to the best values obtained for each
function, while the clustering results from the discrete nature of gate assignment. D: Also for
the structural variants, the correlation between Boolean activity and the energy dissipation
is significant albeit varies among the different functions (0.927 for 0xEC, 0.96 for 0x02, and
0.934 for 0xE7).
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functions 0xEC (3 gates), 0x02 (4 gates), and 0xE7 (5 gates), and allow for a single excess

gate compared to the minimal structure. We apply the same constrained optimization as

in the previous section, but optimize only for energy efficiency. Figure 7A provides a first

intuition of the effect of structural variants by presenting the results of function 0xEC. The

16 different structures differ significantly in their functional but also energetic characteristics.

The worst structure has a 54.3% higher energy dissipation rate than the best, and on average,

the structural variants improve energy efficiency by 30.7%. Among the presented variants

also the functionality varies, with an observed maximum improvement of 52.4%. Even more

interesting is, that some structures (i.e. 11, 13, and 15) are significantly better than others

in terms of both, energy efficiency and functionality.

Figure 7B provides a detailed insight into the Boolean activity of the least (7) and most

(15) energy efficient structures. For each gate, its accumulated Boolean activity over all

Boolean circuit input assignments is depicted. The difference of 10 active states between

the two circuits manifests itself in a significantly differing energy efficiency. Examining the

structures in detail, two causes for this difference can be found. First, structure 15 features

one gate less compared to structure 7. Second, the way in which the Boolean function is

computed leads to a lower average activity of the gates in structure 15 (6.2 for structure 7 vs.

5.25 for structure 15). This is partly caused by the usage of NOT gates over NOR gates in

structure 15. In the given gate architecture, NOR gates feature an independently expressed

transcription factor for each input, leading to a potential doubling of energy expenditure in

one of four output states.

To emphasize our understanding of the relationship between energy efficiency, function-

ality and structure, Figure 7C includes for each of the considered functions a visualization

showcasing the distribution of values. Structures with less gates are more energy efficient

than their larger counterparts. However, except for 0xEC, the larger circuits feature the

better functional performance despite the smaller ones being rather close. Considering the

energy efficiency improvements possible, these decrease with increasing circuit size as the
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average improvement of 0x02 is 21.4% and of 0xE7 16.1%. Besides, some structures lead to

superior designs with respect to both objectives.

Reconsidering the Boolean activity, we here investigate whether this heuristic is expressive

for structures with the same Boolean function. Presented in Figure 7D, Boolean activity

and energy expenditure again correlate significantly, with a correlation coefficient of 0.982.

However, when considering single functions, the correlation reduces to 0.927 in the worst

case.

The predictive power of Boolean activity and the dependence on the Boolean function

indicate a circuit structure’s relevance to energy efficiency. We here confirms this by pointing

out the improvements possible by considering structural variants in the context of energy

efficiency. As the structures differ in the number of states requiring protein expression, they

allow for increasing energy efficiency and can be beneficial for functionality.

Pareto Optimality among Structures

Until now, we only considered the extremes of being either energetically or functional optimal.

In a design approach, one would trade-off these objectives to achieve the best performance

in relation to the energy spend. To this end, we analyze the Pareto front of all the structures

for the Boolean function 0xF7. In particular, we perform a parameter sweep over the energy

constraint for each of the 10 structures. This gives rise to the functional best genetic circuit

adhering the energy constraint. The constraint is chosen to equally distribute into 20 samples

over the interval of energy levels identified by an initial random sampling.

The Pareto fronts obtained showcase the exclusiveness of energetically and functional

optimality by giving rise to an anti proportional characteristic. Considering exemplary the

Pareto front of structure 4 (Figure 8A), which we present in Figure 8C, we observe that

an increase in efficiency leads to a decrease of functionality and vice versa. In addition, we

observe characteristic clustering at different levels of functional performance, likely being

caused by different genetic gates at the later positions of the circuit (18 ). Despite this,
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Figure 8: The Pareto front of the boolean function 0xF7. A-C: Three exemplary
structures of the Boolean function 0xF7. In particular, Structure 4 in A, Structure 8 in B
and Structure 9 in C. D-F: The Pareto fronts of the structures presented in A-C, where D
presents the one of Structure 4, E the one of Structure 8, and F corresponds to Structure 9,
respectively. Normalized to the same interval, the Pareto fronts (Figures D-F) exhibit dif-
ferent characteristics with the discontinuities and non-monotonicity resulting from discrete
gate assignment and stochastic optimization. D combines high functional performance with
moderate energy requirements while E allows the highest energy efficiency still preserving
a moderate functional performance. The Pareto front of Structure 9 exhibits a near linear
relationship between function and energy efficiency, with an inferior overall performance. G:
We here illustrate the Pareto fronts of all the structures of 0xF7 jointly to emphasize compa-
rability and the differences among them. Highlighting the Pareto fronts presented in Figures
D-F by bold lines, their relationship to one another gets obvious. In addition, one observes
that structure 9’s Pareto front is inferior to others. Figure H illustrates this quantitatively,
by stating the portion of Pareto front covered by another Pareto front. Thereby, the rows
indicate the Structure which’s Pareto front covers the respective Pareto front denoted in the
column. This comparison emphasizes the dominating behavior of structures 4, 8 and 10 over
the others with respect to both optimization goals.
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the Pareto front presents a near convex behavior and allows for a smooth trade-off between

function and energy. Our evaluations of exemplary structures for the Boolean function 0x26

featuring six genetic gates each also presents the anti-proportionality but does not exhibit

the observed smoothness.

Continuing with the Pareto fronts of structures 8 and 9 as visualized in Figures 8E and F,

we observe that the general relationship persists while the exact form changes. In particular,

the front in E appears inferior to the one in D, and this is surely the case for the areas

with high functional performance, as structure 4 allows for higher energy efficiency there.

However, when it comes close to the limits of energy efficiency, structure 8 (8E) is more

robust in terms of the functional score achieved. Structure 9 (8F) features an almost linear

transition region, but is obviously inferior to both of the previous with respect and to any

optimization objective and the joint optimization as well.

Inspired by the inferior performance of structure 9 along the whole Pareto front, we

compare the Pareto fronts of all structural variants of Boolean function 0xF7 in Figure 8G.

The Pareto fronts are even more diverse than the ones already considered (highlighted by bold

lines). Structures 4 and 8 cover almost all of the relevant optimization space, regardless of the

trade-off considered. In contrast, seven out of ten structures do not allow the optimization

to reach the best solution. Figure 8H visualizes this quantitatively by representing for each

structure the portion of the Pareto points of any other structure covered. At first sight, one

notices the four rows featuring a large number of dark squares. In particular, these are the

rows of structures 4, 7, 8, and 10, which cover the Pareto fronts of the superior structures

either completely or almost completely and thus exhibit a sort of Pareto dominance.

Despite considering energy efficiency and function jointly, the current optimizations only

optimize either of the objectives while constraining the other. Multi-objective optimization

provides a means to overcome this, as it allows for the joint optimization of both objectives

(58 ). Dealing with the two objectives function and energy, represented by the scores S

and E, one approach to realize multi-objective optimization is scalarization. In the case of
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scalarization, the objective functions are aggregated into a single objective, to which one can

apply conventional optimization methods as the simulated annealing presented in (30 ).

Due to the well behaving shape of the Pareto fronts examined, we here suggest a linear

scalarization, which is also known as the weighting method (58 , 59 ). For it’s efficient

application ahead of identifying the whole Pareto front, the scores need to be normalized

(58 ). To this end, we introduce Sr and Er as reference maxima of the respective scores,

which one obtains by an initial evaluation. In dependence to the weight parameter ϕ ∈ [0, 1],

we express the scalarized performance of the genetic logic circuit (γ, q) by V (γ, q), which we

define as

V (γ, q) = ϕ
S(γ, q)

Sr

+ (1− ϕ)
E(γ, q)

Er

.

By the choice of the parameter ϕ, one implements the trade-off between the two objectives

energy efficiency and function.

3 Conclusion and Outlook

In this work, we present an energy aware gene expression model characterizing the non-

equilibrium steady state in terms of the first and second order moments and the associated

energy requirements, which we relate to the model’s entropy production rate. This model can

account for promoter architectures varying in the number of binding sites, activation steps,

and cognate transcription factors.In contrast to the widely employed equilibrium models,

the presented model captures non-equilibrium characteristics like increased sensitivity and

sharpness, which are especially relevant in the context of eukaryotes. This includes the

dissipation of energy, which is essential to life.In combination with the probabilistic NESS

description and the presented relation between energy and entropy production rate, this

allows for further evaluation of the trade-off between function and energy, beyond the scope

of genetic logic circuits.
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With this model at hand, we establish Energy Aware Technology Mapping, the

design of genetic logic circuits with respect to function and energy efficiency. The in silico

evaluation based on 33 Boolean circuits improves energy efficiency by 37.2% on average, but

reduces the functionality to 28.5% compared to the functionally optimized variants. These

improvements result from decreases in expression levels representing Boolean ON states,

simultaneously decreasing the circuit’s functional performance. With respect to structural

variants, we show that different structures of a single Boolean function vary in their ener-

getic characteristic and can be beneficial for energy efficiency (up to 22.7% on average) and

functionality. This also extends to the case of multi-objective optimization, as shown in the

Pareto evaluation.

Based upon the insights gained in this study, one can further improve the design of genetic

logic circuits with respect to energy by the creation of energy aware genetic gate libraries.

This can include protein based gates focusing on robust functioning despite lower expres-

sion levels, the use of shorter transcription factors as signalling molecules, gates omitting

translation by employing RNA based signals or any combination thereof.

To validate the theoretical framework of our proposed Energy Aware Technology Mapping

for genetic logic circuits, we outline potential experimental evaluations. The simplest method

to evaluate energy efficiency involves observing cell growth and viability by measuring optical

density at 600 nm (OD600) and cell count (60 ). An alternative is the direct measurement

of metabolites related to the energetic state of the cell in vivo, for which ATP sensors could

be employed (61 , 62 ). A more complex, yet insightful, method is RNA sequencing (RNA-

seq). Sequencing the transcriptome of cells harboring synthetic circuits would not only

reveal the transcripts associated with the circuits but also allows to check for upregulation

and downregulation of genes linked to overall cell fitness (63 ). As this approach addresses

the increased metabolic burden that larger circuits impose, incorporating energy dissipation

while maintaining circuit functionality could enable the development of larger circuits that

operate effectively in vivo.

31

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.06.27.601038doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.27.601038
http://creativecommons.org/licenses/by-nd/4.0/


In conclusion, our results provide strong evidence for the exclusivity of the objectives

functionality and energy efficiency in the context of genetic logic circuits. This matches

previous results on the relation between energy expenditure and precision and sharpness.

Additionally, the consideration of structural variants proves relevant also in the case of energy

efficiency. Since it is beneficial to consider structural variants regardless of the optimization

goal, disregarding them is likely to lead to sub-optimal solutions in terms of both, energy

efficiency and functionality. Given the proportionality between energy consumption and

the rate of heterologous protein expression, optimization of energy can effectively reduce

the expression of heterologous proteins, thereby allowing for energy efficiency by design.

This is particularly relevant in the context of metabolic burden, as it allows cellular fitness

to be maintained by reducing the amount of resources diverted from the host by synthetic

constructs. In that sense, the well being of the host organism ensures the desired functionality

of the genetic logic circuit.The energetic advantage of one to two gates provided by Energy

Aware Technology Mapping can be crucial for implementing the circuit in vivo in a resource

constrained host organism.

4 Methods

The here presented methods present the techniques most relevant to our work. Within the

referenced supplementary information, this is complemented.

4.1 Gene Circuit Simulation

The input to the gene circuit are the concentrations of the inducer molecules. While in vivo

the inducer binds to constitutively expressed repressive transcription factors, we realize the

dependency on the inducer levels by a lookup table based approach, matching a degenerate

promoter model with the desired promoter activity to the provided inducer concentration.

For the simulation of the gene circuit, we apply our energy aware gene expression model
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one after another to the genes within the circuit. Thereby, one has to preserve topological

order, meaning that a gene can only be considered when all genes expressing the cognate

transcription factor have already been evaluated. To obtain the concentration of the protein

encoded by a gene, we apply a log-normal closure to the moments provided by Equations (3)

and (4) and draw a sample. In case multiple genes express the same protein, the protein’s

final concentration is the superposition of the single genes’ contributions. By performing

this approach many times in parallel, one obtains an empirical distribution predicting the

population dynamics of cells implementing the particular genetic logic circuit. While this

is a sampling based approach, one can instead propagate the mean or the median as the

protein abundance to yield a point estimate. For a more formal treatment of probabilistic

genetic logic circuit simulation, we refer the interested reader to (30 ).

4.2 Steady State Distribution of CTMCs and Kirchhoff’s Theo-

rem

The unique steady state distribution of an ergodic CTMC with n states can be derived by

using its propensity matrix Λ, defined in row sum zero form. The first step is to identify the

null-space, respectively solving for the left eigenvector v = [v1 . . . vn] corresponding to

the eigenvalue 0 of Λ.

vΛ = 0

The steady state distribution π is then defined as

πi =
vi
v

v =
n∑

i=1

vi.

Schnakenberg (53 ) and later (64 ) describe an alternative approach, called Kirchhoff’s

theorem -as initially described by Kirchhoff- based on the enumeration of spanning trees.
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The subsequent contains a rather informal description, wherefore we refer the interested

reader to (53 ) and (64 ).

Before we start with the actual method, we recall the definition of a spanning tree first.

A spanning tree of an undirected graph is a tree and a subgraph, containing all the vertices

of the graph. The undirected graph being a prerequisite, we derive it by identifying the

vertices of the graph with the states in the state space of our CTMC. Next, the forward

and backward reactions between two states are aggregated into a single undirected edge,

connecting the vertices associated to the states.

We continue with enumerating all possible spanning trees of the graph. In total, there

are nt trees and we refer to the jth with Tj. Next, we introduce the function Πi(Tj), which

maps the spanning tree Tj to the subgraph of the CTMC’s state space that includes the

reactions being part of the spanning tree and directed to state zi. In particular, this is done

by setting zi as the root node and successively traversing the edges in the spanning tree Tj.

Actually, each edge corresponds to two reactions, where the one pointing in the direction of

the root node is preserved and the other is dropped. The result is a directed tree, consisting

of the reactions that lead from any initial state to the root state zi. With the previous, we

assign the value

vi =
nt∑
j=1

∏
Λ∈Πi(Tj)

Λ

to each state zi, where the product runs over the propensities of the reactions in Πi(Tj). As

before the steady state distribution is given by

πi =
vi
v

v =
n∑

i=1

vi.

While in theory this method is not limited by the size of the CTMC’s state space, the

practical applicability depends on the complexity of the obtained graph’s topology (53 ).

However, this approach provides an appealing way to derive the steady state distribution

34

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.06.27.601038doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.27.601038
http://creativecommons.org/licenses/by-nd/4.0/


symbolically. As such, our implementation makes use of the steady state distribution derived

from Kirchhoff’s theorem for the promoter architectures considered, while it also provides

the simpler eigenvector approach for other architectures.

4.3 Parameter Estimation

The estimation of a parameter set matching the characteristics of the part to capture is

essential for the model’s expressiveness within a technology mapping application. As our

model gives rise to mean and variance of the response characteristic, data sources giving rise

to both are ideal. One possible source is cytometry data for different inducer concentrations.

As the histograms provide rich information on the distribution, the mean and variance can

be derived by evaluating

µ =
M∑
i=1

bi ωi σ2 =
M∑
i=1

(bi − µ)2 ωi

where (b1, . . . , bM) are the bin centers and (ω1, . . . , ωM) are the frequencies in a histogram

with M bins.

As model instantiation, we use a promoter architecture featuring three binding sites for a

single cognate transcription factor and having only two activation steps with respect to tran-

scriptional activity as depicted in Figure 2AB. Since we collapse states with equal number

of transcription factors bound into a single state, we obtain a CTMC of eight states and 20

reactions transitioning between these states. In addition, we constrain all the states corre-

sponding to the same transcriptional activation level to have the same promoter activity ai.

By fixing the reaction rate constants for RNA and protein dynamics are fixed in dependence

to the organism (see SI Section S7), our model instantiation features 22 parameters, 20 for

the reaction rate constants of the promoter’s CTMC and two for the two promoter activ-

ity levels. From an intuitive perspective, the rate constants between two states of differing

promoter activity levels balance the output dynamic maximally achievable. The reactions
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depending on the transcription factor abundance and their reverse reactions then deter-

mine the location of the transition. In foregoing evaluations, this instantiation features a

well balance between the complexity of the model and the capabilities of modeling response

characteristics of interest, especially the sharpness encountered. However, the variance in

the data is not completely explained by this, likely caused by extrinsic noise (49–51 ) not

accounted for in this model.

For parameter estimation, we apply gradient based optimization and minimize the log-

arithmic difference between the model’s prediction and the reference data from (40 ). We

constrain the reaction rate constants to the range [10−5, 105], penalize non monotonic re-

sponse characteristics, and by weighting the error prioritize model quality in the saturated

regions. In this context, it is important to note that the parameter estimation considers

mean and variance. The mean dynamics itself are insufficient to uniquely determine a set of

reaction rate constants as outlined at the end of SI Section S2.2. For a detailed description

of the parameter estimation process please refer to SI Section S5.2.

4.4 ARCTIC

ARCTIC is the technology mapping framework for genetic logic circuits used in this work.

It takes a combinational Boolean specification as input and constructs all possible structural

variants for this specification based on a given library of gates. It then uses different scoring

methods to optimize the assignment of library gates to the elements of the topologies. In this

way it can search for the best performing genetic circuit for a given Boolean specification.

ARCTIC offers different circuit models and scores that focus on robust genetic circuits.

It implements different optimization methods to leverage these models and to explore the

design space. In this work, the Simulated Annealing heuristic has been used. It applies a

neighborhood structure leveraging functional proximity of gates and is flexible in terms of

the used design objective.

We employed deterministic and sampling based simulations. The evaluation on the bench-
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mark set as well as the structural variants made use of the deterministic approach taking the

average into account. The constraint optimization used a Cello (11 ) or E-score (30 ) of 200

as lower bound on the functionality, which corresponds to a 200 fold-change of the median

values. This bound is sufficient for circuit functionality and, in combination with a sampling

based approach and the E-score, still allows for robust circuit designs. During optimization

for circuit function, the upper bound on the energy expenditure was set in dependence to

the circuits size, allowing for 20.000 kB T s−1 per gate. In the Pareto evaluation, we employ

the sampling based approach with the E-score and consider 1000 samples for each output

distribution.

E-score

The E-score (30 ) is a generalization of Cello’s circuit score (11 ) to the case where circuit out-

puts are random variables. This takes stochastic effects in populations of cellular hosts into

account. Intuitively, the more ”distance” lies between distributions that represent ON states

and those that represent OFF states, the higher a circuit is scored. The E-score is calculated

as the exponential of a modified 1-Wasserstein distance between empirical distributions of

the logarithms of the concentrations or copy-numbers of the output chemical species. Con-

sider first two sets of N samples y ≡ {y(1), y(2), . . . , y(N)} and y ≡ {y(1), y(2), . . . , y(N)}

that represent two empirical circuit output distributions. The set y consists of those sam-

ples corresponding to an anticipated circuit output of logical zero (OFF) and y consists of

those samples corresponding to an anticipated circuit output of logical one (ON). We then

calculate the modified 1-Wasserstein distance D(y, y) on the samples’ logarithms by

D(y, y) =
1

N

⌊N
2
⌋∑

n=1

log(y(n))− log(m) +
N∑

n=N−⌊N
2
⌋+1

log(m)− log(y(n))

 ,

where m and m are the medians of y and y respectively. Consider now having several sample

sets Y ≡ Y (γ, q) = {y
1
, y

2
, . . . , y

K
} representing logical OFF states and Y ≡ Y (γ, q) =
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{y1, y2, . . . , yK} logical ON states, where each individual sample set corresponds to one of

|I| = K+K different Boolean input conditions of a circuit with structure γ and assignment

q. The circuit’s E-score is then obtained by

S (γ, q) = min
y∈Y , y∈Y

s(y, y) = min
y∈Y , y∈Y

exp
(
D(y, y)

)
. (17)

It is shown in (30 ) that S (γ, q) simplifies to Cello’s circuit score for γ and q if N = 1

and the single samples correspond to Cello’s approximations for the median. Note, that the

exponentiation in Equation (17) can be applied after taking the minimum to obtain the score

S.

5 Code Availability

The model is implemented as part of the technology mapping framework ARCTIC, which is

available at https://www.rs.tu-darmstadt.de/ARCTIC.

6 Associated Content

6.1 Supplementary Information

Derivations of moment equations, the chemical reaction network of the model presented,

background on chemical reaction networks, further methods and extended figures and tables.
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