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Background: High tumor mutation burden (TMB-H) could result in an increased number of neoepitopes from somatic
mutations expressed by a patient’s own tumor cell which can be recognized and targeted by neighboring tumor-
infiltrating lymphocytes (TILs). Deeper understanding of spatial heterogeneity and organization of tumor cells and
their neighboring immune infiltrates within tumors could provide new insights into tumor progression and treatment
response.
Methods:Herewefirst developed computational approaches usingwhole slide images (WSIs) to predict bladder cancer
patients’ TMB status and TILs across tumor regions, and then investigate spatial heterogeneity and organization of re-
gions harboring TMB-H tumor cells and TILs within tumors, as well as their prognostic utility. Results: In experiments
using WSIs from The Cancer Genome Atlas (TCGA) bladder cancer (BLCA), our findings show that computational pa-
thology can reliably predict patient-level TMB status and delineate spatial TMB heterogeneity and co-organization
with TILs. TMB-H patients with low spatial heterogeneity enriched with high TILs show improved overall survival.
Conclusions: Computational approaches using WSIs have the potential to provide rapid and cost-effective TMB testing
and TILs detection. Survival analysis illuminates potential clinical utility of spatial heterogeneity and co-organization
of TMB and TILs as a prognostic biomarker in BLCA which warrants further validation in future studies.
Introduction

Tumor mutation burden (TMB) is a quantitative genomic biomarker
that measures the number of mutations within a tumor. High TMB (TMB-
H) level has been shown to be associated with better prognosis and clinical
responses to immune-checkpoint inhibitors in various cancer types such as
melanoma, lung cancer, and bladder cancer.1–5 Higher TMB levels are cor-
related with higher levels of neoantigens expressed by a cancer cell, which
could help the neighboring tumor-infiltrating lymphocytes (TILs) to recog-
nize and kill them.6 Various studies including clinical trials reported that
patients with TMB-H and/or high density of TILs within tumors had favor-
able prognosis and response to immunotherapy in many cancer
types.1–5,7–11 Recent studies showed that spatial heterogeneity and
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composition of immune cells in the tumor microenvironment could im-
prove our understanding of how immune environment influences patients’
prognosis and response to treatments, including immunotherapy.12–16

These findings might suggest that detecting regions harboring TMB-H
tumor cells and TILs within the tumor microenvironment and analyzing
their spatial architecture could provide new insights into the relationship
between spatial TMB and TIL co-arrangement and patient’s outcome.

Tissue-based bulk DNA sequencing (e.g., whole exome sequencing
(WES), targeted sequencing, etc.) and mRNA sequencing are widely used
to assess patient-level TMB status and quantify TILs in tumors, respectively.
However, due to the limited tissue availability, high costs, and time-
consuming procedures, the clinical utility of tissue-based DNA and mRNA
sequencing are limited. In addition, since these bulk DNA and mRNA
mor-Infiltrating Lymphocyte; WSI, Whole Slide Image; BLCA, Urothelial Bladder Carcinoma.
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sequencing approacheswere not designed to take into account spatial intra-
tumor TMB and immune heterogeneity, providing potentially biased
samples may lead to inconsistent testing results.17 Although the blood-
based TMB measurement (i.e., liquid biopsies) has recently become
available, this approach poses similar challenges to tissue-based TMB
measurements.18 The development of single-cell DNA and mRNAseq has
revealed a spectrum of tumor cell and immune cell heterogeneity in the pa-
tient’s tumor, but these approaches do not provide insight into the spatial
organization of tumor and immune cell architecture.11,19–21 Most recently,
spatial transcriptome technologies have enabled mapping of the spatial
architecture, composition. and interactions of various cell types within
the tumor, but simultaneously elucidating both DNA (e.g., TMB status)
and RNA-level characteristics of cells is still challenging.22–24

The use of widely available histopathological images poses a promising
alternative. Routine histopathological examination is the gold-standard for
diagnosis, grading, and quantification of TILs for various cancer types in the
clinical setting. With recent development in deep learning, computational
pathology studies have been explored to predict genetic characteristics
(e.g.,mutation status, gene expression, etc.) present within tumor regions
in lung,25 colon and stomach,26 and pan-cancer.27,28 Many other recent
works focused on automatic segmentation and classification in pathology
slides, such as automatic tumor segmentation in lung adenocarcinoma
whole slide images (WSIs),29 automatic prediction of lymph node metasta-
sis status,30 and survival prognosis based on tumoral microenvironment
analysis in colorectal cancer WSIs.31 Particularly, there are also computa-
tional pathology studies on bladder cancer. For instance, convolutional
neural networks (CNN) have been explored to identify different tissues
such as urothelium, muscle, and stroma in urothelial carcinoma WSIs,32

and predict mutations of the FGFR3 gene from histology slides of bladder
cancer.33 WSIs are being widely for TILs detection and quantification by
computational analysis as well. Saltz et al. (2018) applied CNN to identify
TILs in hematoxylin and eosin (H&E) stainedWSIs and showed that spatial
composition of TILs within tumors correlated with patient’s prognosis
across cancers.34 Corredor et al. (2018) developed a set of computer-
extracted variables reflecting TILs spatial distribution and co-organization
with cancer cell nuclei in tissue microarrays obtained from H&E stained
slides. They employed the quadratic discriminant analysis as classifier
and predicted likelihood of recurrence in early-stage non-small cell lung
cancer.7 Acs et al. (2019) developed algorithms to detect TILs and tested
their spatial composition with cancer cells within tumors for prognosis in
melanoma.35 Most recently, Abduljabbar et al. (2020) performed a study
that integrated multi-region exome and RNA-sequencing (RNA-seq) data
with histology image to investigate spatial tumor and immune microenvi-
ronment in lung adenocarcinoma (LUAD). The results showed that LUAD
subgroup with immune cold and low neoantigen burden (i.e., low TMB)
was significantly correlated with poorer disease-free survival.36 This
study demonstrated that computational pathology could provide a deeper
understanding of how spatial composition of tumor and immune cells
within tumor microenvironment impact tumor evolution and progression.

Given these studies showing that computational approaches and deep
learning algorithms utilizing morphological features present in WSIs
could reliably predict characteristics of tumor and immune cells and their
spatial organizations, we hypothesize that a carefully designed WSI-based
computational method could accurately predict TMB status and TILswithin
tumors and could be used to dissect spatial heterogeneity of TMB and its co-
organization with TILs across tumor regions. Specifically, we hypothesize
that the comprehensive understanding of spatial co-occurrence of TILs
with neighboring TMB-H or TMB-low (TMB-L) regions from pathology
slides could provide a prognostic utility to identify patient subgroups with
distinct survival outcome.

Although it is clinically relevant to predict TMB status and TILs across
different cancer types, this study focuses on automatic predictions of TMB
status and TILs across tumor regions in bladder cancer (BLCA), mainly
due to their clinical significance in BLCA patients’ prognosis as well as inte-
gral clinical information along with WSIs provided in TCGA. In this work,
we first develop and evaluate computational pipelines to predict BLCA
2

patients’ TMB status and TILs distribution in H&E stained WSIs. We then
use the tile-level (i.e., dividing a WSI into small tiles for analysis) TMB sta-
tus to delineate spatial heterogeneity of TMB within WSIs. We perform a
joint spatial analysis of regions harboring predicted TMB status and TILs
within the tumor and use the spatial heterogeneity information to identify
patient subgroups (e.g., TMB-H tumor with low spatial TMB heterogeneity
enrichedwith high density of TILs). To the best of our knowledge, this is the
first work to interrogate spatial heterogeneity and organization of TMB
with TILs within tumors to evaluate its prognostic utility to stratify patients
using WSIs.

Methods

We developed a computational pipeline using WSIs to predict patient-
level TMB status and delineate spatial heterogeneity of TMB present in tu-
mors. We also trained a deep learning model to detect TILs and quantify
its densities within tumor regions. The aim of our approach is to incorpo-
rate spatial TMB heterogeneity with patient-level TMB status and TIL den-
sities to identify patient subgroups that could lead to better patient
stratification. The computational analysis workflow is shown in Fig. 1(a),
which includes two main modules: automatic TMB prediction and TILs
detection. Table s1 lists the acronyms used in this paper.

Automatic TMB prediction

Our designed patient-level TMB prediction includes the following four
steps. More implementation details and parameter settings could be
referred in the supplementary methods.

(1) Tumor detection: In order to focus on tumor regions for analysis, we
trained a lightweight CNN (see the architecture in Fig. s1) model with only
about 0.28M trainable parameters to detect tumor regions in the WSI. The
utilization of the CNN model is mainly motivated by its reported superior
performance in histological image classifications such as references.25,34

Given the WSI, it is first divided into non-overlapping tiles (512×512
pixels at 20×magnification). The CNN-based tumor detector then predicts
each tile to be the probability of belonging to cancer regions. The prediction
map corresponding to the WSI is generated by stitching predicted probabil-
ities for all image tiles. An empirical threshold (e.g., 0.5) is applied on the
prediction map to obtain tumor regions. Our quantitative evaluations
showed that the designed CNN-based tumor detector could provide over
90% dice coefficient in bladder cancer detection and a superior perfor-
mance than several comparative models (see Fig. s6, s7 and Table s2).
Fig. 1(b) illustrates an example of cancer detection on a WSI.

(2) Representative tile selection: To improve computational efficiency
in analyzing large predicted tumor regions, we selected a subset of repre-
sentative tumor regions for analysis. We first divided predicted tumor re-
gions into a set of non-overlapping tiles (128×128 pixels) at 2.5×
magnification. We then characterized each tumor tile by a 42-
dimensional feature vector (i.e., 40 multi-scale local binary pattern
features37 and 2D location of the tumor tile). After that, affinity propagation
(AP) clustering38 was applied to identify tumor regions containing tiles
with similar morphological patterns. In this study, local binary patterns
were used to characterize low resolution image features mainly due to its
efficiency in computation, while the AP clustering was adopted mainly be-
cause it does not predefine the number of clusters. The AP clustering simul-
taneously identified a number of r local tumor regions and their
representative tilesRj, where 1≤ j≤ r. Fig. 1(c)(d) illustrates AP clustering
of tumor tiles on aWSI, where tumor tiles belonging to different clusters are
indicated by different color of blocks in the image. Note that there are 56
(r = 56 for this example) representative tiles selected among 490 tumor
tiles for the patient slide shown in Fig. 1(c).

(3) Feature extraction: We used transfer learning on pre-trained deep
learning models to generate features for selected representative tumor
tiles. First, to suppress the influence of color variations, a color
deconvolution based method39 is utilized to normalize tumor tiles into a
standard color appearance. Second, due to the superior performance on



Fig. 1. An overview of our method to predict TMB status and TILs fromWSIs. (a) An illustration of TMB and TILs prediction, and correlation with patients’ overall survival.
(b) Tumor detection result (overlapped green contours). (c) Example of AP clustering on tumor tiles, where tumor tiles belonging to different clusters are indicated by
different color of blocks in the image. Several representative tumor tiles indicated by arrows are zoomed-in for better viewing. (d) 56 representative tumor tiles selected
by AP clustering for the slide shown in (c).
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ImageNet classification, transfer learning on the pre-trained Xception40

model was used to extract features from selected tumor tiles. Given an
input tumor tile Rj at 20×magnification (1024×1024 pixels), the transfer
learning model outputs a high-level feature representation Vj which is a
2048 dimensional vector (see Fig. s4). Finally, the feature vector V repre-
senting the WSI was obtained by integrating features of representative
tumor tiles together, i.e., V ¼ Pr

j¼1 ρ jV j, where ρj = λj/∑j=1
r λj and λj rep-

resents the number of tumor tiles belonging to the jth cluster. The feature
vector V is the weighted mean of features extracted from representative
tiles, where each representative tile stands for the major characteristics of
tumor tiles within the cluster. The features from representative tiles are in-
tegrated together to form patient-level representations as there only exist
patient-level labels for the TMB status.

(4) TMB classification: We trained the Support Vector Machine
(SVM) classifier based on features generated from the transfer learning
model to predict patient-level TMB status. The SVM classifier has been
widely-used in histological classifications due to its efficiency and effi-
cacy, and we use it by following our previous study.41 First, principal
component analysis (PCA) was used to reduce the feature dimension to
prevent over-fitting. In this study, we selected the top 100 principal com-
ponents which provided a superior performance in our testing. Second,
feature standardization was performed on each feature component,
3

which ensured its values have zero mean and unit variance. Finally,
SVM with radial basis function (RBF) and linear kernels were trained
to predict patient-level TMB status.

TILs detection

In order to detect TILs, we trained and tested 144 different deep learn-
ing models by using three convolutional neural network architectures
with different percentile of trainable layers, and using different parameter
configurations in terms of optimizer, batch size, and learning rate (see
Table s3). We make use of a public dataset34 for building TILs detector,
which included 43,440 annotated image tiles. Among 144 trained TILs de-
tectors, the best TILs detector whichwas trained byfine-tuning all trainable
layers of Resnet18 and using Adam optimizer with the learning rate of
0.0001 and batch size of 4 provided over the 80% accuracy in distinguish-
ing TIL and Non-TIL tiles during an independent testing (see Fig. s5(a)),
whichwas selected to perform TILs detection. To identify TIL regions in pa-
thology slides, theWSIwasfirst divided into a set of non-overlapping image
tiles (i.e., 112 μm×112 μm per image tile). The image tiles were then pre-
dicted as TIL tiles or non-TIL tiles by using the selected TILs detector. The
WSI-level TILs detection (see the example shown in Fig. s5(b)) was then
generated by stitching tile-level predictions, where tiles with prediction
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probabilities above 0.5 were considered as TIL regions. Based on tumor and
TILs detection, we finally computed the ratio between the number of TIL
pixels and the total number of tumor pixels in pathology slides, which
was used as a feature variable to quantify TIL densities within tumor
regions.

Results

In this section, we will first illustrate the patient cohort used in this
study. We then provide quantitative evaluations on automatic patient-
level TMB predictions. After that, spatial heterogeneity of TMB status is ex-
plored and correlated with BLCA patients’ OS outcomes. Finally, spatial
analysis of TMB heterogeneity and TILs within tumors are explored for
OS prognosis in BLCA.

Patient cohort

The dataset with digitally scanned WSIs was collected from the TCGA
project through the Genomic Data Commons Portal (https://portal.gdc.
cancer.gov/). The TCGA BLCA cohort consists of 386 patients (and corre-
sponding clinical information) with 457 diagnostic H&E stained WSIs.
The first diagnostic slide image (i.e., with DX1 suffix) was selected if
there are multiple diagnostic slide images available for a patient. Based
on the percentile of total number single nucleotide variants,1 386 TCGA
BLCA patients were categorized into 3 groups: 128 low, 128 intermediate,
and 130high TMBpatients. To obtain clear ground truth, patientswith a so-
called distinct outcome, either low or high TMB patients were used for
patient-level TMB prediction evaluation. One high and four low TMB pa-
tients were excluded due to severe pen marks on slides, thus 124 low and
129 high TMB patients were used to train and test a model to predict
patient-level TMB status. Based on TMB prediction and TILs detection,
thewhole cohort of patientswith survival informationwas used for progno-
sis analysis on patients’ overall survivals.

Evaluation on patient-level TMB prediction

We first investigated whether the use of either tumor detection, repre-
sentative tile selection, or color normalization as well as different transfer
learningmodels could impact the performance of patient-level TMB predic-
tion. Using TCGABLCA dataset, we ran patient-level TMB prediction exper-
iments by excluding tumor detection (abbreviated as P-E-TD),
representative tile selection (abbreviated as P-E-RTS), or color normaliza-
tion (abbreviated as P-E-CN). We also tested transfer learning on two
well-known models, Inception-v3 (abbreviated as P-InceptionV3)42 and
Resnet50 (abbreviated as P-Resnet50),43 in addition to Xceptionmodel (ab-
breviated as P-Xception), to evaluate whether different transfer learning
models could impact patient-level TMBprediction performance.We trained
SVM classifiers with linear or RBF kernels to predict patient-level TMB sta-
tus. The leave-one-out cross validation was employed during testing differ-
ent configurations. ROC curves of patient-level TMB prediction using
different settings in our pipeline are shown in Figs. 2(a) and (b) using
SVM with linear kernel (Linear SVM) and SVM with RBF kernel (RBF
SVM), respectively (see more details in Table s4). The linear and RBF
SVMs with P-Xception and P-E-RTS models achieved overall best AUROC
values compared to other methods. While both approaches showed good
prediction performance, the P-Xception model used the 11,164 selected
representative tiles out of 125,358 tiles, which required significantly less
computational time (see computational comparison example in Table s5)
compared to the P-E-RTSmodel. This indicates that the use of AP clustering
to select a set of representative tiles from a WSI increases computational
efficiency without a significant loss of prediction performance. Therefore,
we used the AP clustering module in our pipeline for further experiments.
The patient-level TMB prediction performance using Xception model
(P-Xception) is more accurate than those of Inception-v3 (P-InceptionV3)
and Resnet50 (P-Resnet50), thus we used Xception model as the transfer
learning algorithm for the rest of experiments.
4

To compare the performance of patient-level TMB predictionwith other
state-of-the-art methods, we trained our designed CNNmodel (see Fig. s1),
VGG16-TL241 and Resnet18,26 and Multiple Instance Learning based deep
learning algorithm44 as baseline models. To train these deep learning
models, tumor tiles of each WSI were assigned the same label (e.g., TMB
high or low) as the corresponding patient-level TMB status. The final
patient-level TMB prediction was obtained by averaging prediction proba-
bilities of all tumor tiles. In addition, we also extracted local binary pattern
(LBP) texture features from representative tumor tiles andmade predictions
using an SVM classifier with RBF kernel as the baseline. The RBF SVMwas
selected as it provided a slightly better performance than the linear SVM in
our ablation study (see P-Xception in Figs. 2(a)(b)). Three-fold cross valida-
tion was applied to evaluate baseline deep leaningmodels, due to computa-
tional complexity, and the leave-one-out cross validation was used to
evaluate the rest methods. Table 1 shows patient-level TMB prediction re-
sults in terms of accuracy (ACC), specificity (SPE), sensitivity (SEN) and
AUROC values for our proposed method and baseline models. Fig. 2
(c) shows patient-level TMB prediction performance in TCGA BLCA. Over-
all, the proposed pipeline provides better performance over baseline
methods, which achieves from 2% to 5% improvements with respect to
AUROC values. Taken together, these results indicate the efficacy of the
proposed method to predict patient-level TMB status using WSIs.

Spatial heterogeneity of TMB status correlated with overall survival outcome in
BLCA

We investigated whether patient-level TMB prediction could be useful
to identify patient subgroups with distinct survival outcome on the whole
TCGA BLCA cohort. The TMB status of WES-based TMB high or low
group was predicted by using our trained SVM with RBF kernel during
the cross validation as described in above section. The TMB status for
WES-based TMB intermediate group was independently predicted as TMB
high or low by using our trained SVM with RBF kernel on WES-based
TMB high and low groups. We grouped the whole TCGA BLCA cohort
into two subgroups: predicted TMB-High vs TMB-Low, and then generated
a Kaplan Meier (KM) plot of these two subgroups using overall survival
(see Fig. s8(a)). While the predicted patient-level TMB-High subgroup
shows a trend towards better overall survival (OS), OS difference was not
significant between two subgroups using log-rank test (P=0.072). We
then evaluated if the spatial heterogeneity of TMB (SH-TMB) within the
patient’s tumor could help in stratifying patient into distinct survival out-
come subgroups. We applied the proposed TMB prediction approach on
the APC-selected representative tumor tiles. Then, the corresponding
tumor regions were assigned the same TMB status as their corresponding
representative tiles. To determine the SH-TMB status, we calculated the
Shannon entropy45 of predicted TMB levels of tumor regions within the
WSI, i.e., S ¼ �∑

k
Pk log 2 Pkð Þ where Pk is the ratio between the number

of the kth unique TMB prediction probability and the total number of
tumor tiles within the WSI. A high entropy value indicates high SH-TMB
(e.g., mixture of predicted TMB-H and low regions), while low entropy
value indicates low SH-TMB within a tumor (e.g., either TMB-H or low
status across most of tumor regions within WSIs). High or low entropy sta-
tus was determined by using the median entropy value from all patients of
TCGA BLCA cohort as the threshold (see Fig. s9(a), Table s9). Fig. 3 shows a
visualization of SH-TMB heatmaps based on tile-level TMB prediction,
where red and blue colors indicate predicted TMB-H and low status proba-
bility, respectively. Fig. 3(a) shows a SH-TMB heatmap of TMB-H patient
based on Whole Exome Sequencing (WES) data. Our WSI-based method
correctly predicted the patient-level TMB status. The entropy value based
on tile-level TMB prediction indicated low SH-TMB. Specifically, the
heatmap showed that most tumor regions within the WSI presented
TMB-H status, while few tumor regions presented TMB low status. Simi-
larly, Fig. 3(b) showed that our WSI-based method correctly predicted the
patient as TMB low with low SH-TMB. Fig. 3(c) and (d) showed that
while WSI-based patient level TMB status of these two patients agreed

http://portal.gdc.cancer.gov/
http://portal.gdc.cancer.gov/


Fig. 2. Evaluations on TMB prediction. Ablation study of our method on TCGA BLCA TMB prediction: (a) using SVM with Linear kernel, (b) using SVM with RBF kernel.
(c) Baseline comparisons of TCGA BLCA patient-level TMB predictions. Note that in (c) Proposed-LIN and Proposed-RBF represent the proposed technique using Linear
SVM and RBF SVM, respectively.
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withWES-based TMB status, there are different mixtures of TMB-H and low
status within tumor regions. Higher entropy values based on tile-level TMB
status indicate higher degree of SH-TMB within WSIs.
Table 1
Comparison of patient-level TMB prediction using different methods. In the table,
Proposed-LIN uses SVM classifier with linear kernel, while Proposed-RBF uses
SVM classifier with RBF kernel.

Cohorts Methods ACC (%) SPE (%) SEN (%) AUROC (95% CI)

LBP+SVM 60.47 64.52 56.59 0.623 (0.550-0.689)
Designed CNN 61.66 62.10 61.24 0.651 (0.581-0.741)
VGG16-TL241 65.22 66.94 63.57 0.707 (0.639-0.766)

TCGA-BLCA MIL44 58.89 58.87 58.91 0.647 (0.577-0.710)
Resnet1826 66.80 65.32 68.22 0.701 (0.638-0.765)

Proposed-LIN 69.57 68.55 70.54 0.748 (0.683-0.802)
Proposed-RBF 73.12 75.81 70.54 0.752 (0.694-0.810)

5

To investigate the prognostic utility of SH-TMB status, we selected pa-
tient subgroups by utilizing both patient-level TMB prediction and SH-
TMB status. In experiments using TCGA BLCA cohort, we predicted
patient-level TMB status for 368 patients using our proposed WSI-based
method. For each patient, we assigned low or high SH-TMB status based
on entropy values derived from tile-level TMB prediction. We assigned pa-
tientswith predicted patient-level TMB-high and low SH-TMB into one sub-
group and the rest of patients to the “Others” subgroup. Then, we generated
an OS KM plot segregating by these subgroups (Fig. 4(a)), which indicates
that the two subgroups have statistically significantly different OS by
using log-rank test (P = 0.016). By univariate analysis using Chi-square
test, the TMB subtypes correlated significantly with differences in tumor
stage (P = 0.024), but not age (Age>60 vs others, P = 0.872), sex (P =
0.086), lymphovascular invasion (P = 0.064) and inflammatory infiltrate
response (P = 0.428) (see Table s6). The patients in patient-level TMB-H
with low spatial heterogeneity subgroup had more advanced tumor stage.



Fig. 3. Tile-level TMB prediction visualization. (a) Tissue-based TMB-H patient (TCGA-XF- AAN2) was predicted as patient-level TMB-H based on our WSI-based method. A
heatmap of tile-level TMB prediction across tiles (i.e., tumor regions) and entropy measurement showed that most of tumor regions have TMB-H status (i.e., low SH-TMB).
(b) Tissue-based TMB low patient (TCGA-XF-A9SH) was predicted as patient-level TMB low and low SH-TMB based on our WSI-based method. (c) Tissue-based TMB-H pa-
tient (TCGA-DK-A3IT) was predicted as patient-level TMB-H, while tile-level TMB prediction indicated the high SH-TMB. (d) Tissue-based TMB low patient (TCGA-FD-A3B7)
was predicted as patient-level TMB low with high SH-TMB.
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The TMB subtypes did not significantly correlate with known molecular
subtypes determined by Reverse Phase Protein Array (RPPA) (P = 0.761)
and mRNA subtypes (P = 0.942) from TCGA BLCA study. Multivariable
Cox proportional-hazard analyses of cancer stage and TMB subtypes in rela-
tion to the risk of death showed that TMB subtypes remained statistically
significantly correlated with survival (see Table s7). A KM analysis based
on both patient-level TMB and SH-TMB status showed that TMB subtypes
with high SH-TMB status have worse OS, regardless of patient-level TMB
status (see Fig. s8(b)). We further investigated whether incorporating
WSI-based patient-level TMB and spatial heterogeneity with tissue-based
TMB testing could improve patient stratification. While WES-based TMB-
H patients tend to have better prognosis, we hypothesize that integrating
WSI-based patient-level TMB status as well as spatial heterogeneity with
WES-based TMB status could further improve patient stratification. To
test our hypothesis, we selected 126 WES-based TMB-high patients and di-
vided them into two subgroups: 1) WSI-based patient-level TMB-high and
low SH-TMB patient subgroup (HHL) and 2) the rest of WES-based TMB-
high patient subgroup (w/o HHL), respectively. Fig. 4(b) showed that
WES-based TMB-H &WSI-based patient-level TMB-H and low SH-TMB pa-
tient subgroup has better OS compared to the other subgroup (log rank test
P = 0.018). Taken together, these results indicate that incorporating
WSI-based patient-level TMB status with SH-TMB information could lead
to better patient subgroup identification with distinct OS outcome.

Spatial analysis of TMB heterogeneity and TILs within tumors further improved
patient risk stratification in BLCA

Finally, we investigated that whether the use of spatial co-
organization of predicted TMB-H and TILs within the tumor could
6

improve prognostication. We hypothesize that a patient with most
tumor regions belonging to TMB-H status (e.g., patient-level TMB-H
with low spatial heterogeneity) and co-localized with high densities of
TILs might have better prognosis. For instance, TMB-H patients with
low spatial heterogeneity and high density of TILs (i.e., high number of
both TMB-H and TILs regions within the tumor) could show better prog-
nosis compared to patients either having low density of TILs with TMB-
H or TMB low regardless of TILs status. We measured TIL densities within
tumor regions for all patients of TCGA BLCA cohort and used the median
TIL density score to divide patients into TIL high or low patient sub-
groups (e.g., >8.12% as TIL high patient subgroup) (see Fig. s9(b)).
Then we selected a subset of patients from a TIL high subgroup with the
following criteria: predicted TIL High & predicted TMB High & predicted
Low SH-TMB (HHL). Similarly, to investigate whether high or low level of
TILs densities could be linked to patients’ prognosis, we also selected
patients from a TIL low subgroup with the following criteria: predicted
TIL Low& predicted TMBHigh& predicted Low SH-TMB (LHL). Patients
belonging to the HHL subgroup tend to have most tumor regions carrying
TMB-H status (i.e., a patient-level TMB-H with low SH-TMB) and higher
level of TILs co-present within the patient’s tumor (ANOVA testing
p<0.001) (see Fig. s10(a)). Fig. 5 shows visualization of TMB-H and
TILs carrying regions within the tumors in the HHL, LHL and other sub-
groups. Fig. 4(c) shows a KM plot of three subgroups (e.g., the HHL
subgroup vs the LHL subgroup vs other patients) and a log rank test
indicates that three subgroups have statistically significant different OS
(P=0.0027). The HHL subgroup showed overall best OS compared to
two other subgroups. Multivariable Cox proportional-hazard analyses of
cancer stage, lymphovascular invasion, mRNA-based molecular subtype,
and joint TIL-TMB based patient subgroups in relation to the risk of



Fig. 4.WSI-based patient subtypes. (a) A Kaplan-Meier (KM) plot of overall survival according to WSI-based patient-level TMB-H & low spatial TMB heterogeneity (High-
Low) vs other subtypes. (b) A KM plot of overall survival for 126 WES-based TMB-H patients according to WSI-based patient-level TMB-H & low spatial TMB
heterogeneity (HHL) vs other WES-based TMB-H subtypes. (c) A KM plot of overall survival according to WSI-based TILs High & patient-level TMB-H & low spatial TMB
heterogeneity (HHL) vs WSI-based TILs Low & patient-level TMB-H & low spatial TMB heterogeneity (LHL) vs other subtypes. (d) A KM plot of overall survival for 126
WES-based TMB-H patients according to WSI-based TILs high & TMB-H & low spatial TMB heterogeneity (HHHL) vs WSI-based TILs Low & patient-level TMB-H & low
spatial TMB heterogeneity (LHHL) vs other subtypes.
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death showed that joint TIL-TMB based patient subgroups remained
statistically significantly correlated with OS (see Table s8). Interestingly,
although patients in the LHL subgroup carry patient-level TMB-H with
low spatial TMB-H heterogeneity, the LHL subgroup showed poorer OS
compared to the HHL subgroup (HR: 3.30, 95% CI: 1.34-8.12, P<0.01).
Lastly, we selectedWES-based TMB-H patients and divided into three sub-
groups: predicted TIL High & WES-based TMB High & WSI-based pre-
dicted TMB High & predicted Low SH-TMB (HHHL) vs predicted TIL Low
& WES-based TMB High & WSI-based predicted TMB High & predicted
Low SH-TMB (LHHL) vs other WES-based TMB-H patients. Three subgroups
fromWES-based TMB-H patients have statistically different TMB-H and TILs
overlapped ratio, while the HHHL subgroup has the highest TMB-H and TILs
overlapped ratio among the subgroups (ANOVA testing p=0.005) (see
Fig. s10(b)). Fig. 4(d) shows a KM plot of three subgroups and indicates
that patients in the HHHL subgroup present better OS than other WES-
based TMB-H patient subgroups (log rank test p=0.034). These results
show that incorporating TILs density with patient-level and SH-TMB within
the tumor based onWSIs could provide a novel prognostic biomarker to iden-
tify high or low risk patient subgroups.
7

Discussion

Intratumor heterogeneity is one of key mechanisms driving disease
progression, response and resistance to therapies.14,46 Multi-regional
tissue-based sequencing from a tumor has shown spatial heterogeneity
of mutational signature, mutational burden, T-cell receptor repertoire,
etc.18,47–49 and its implication for treatment strategy.50 While the multi-
regional tissue-based sequencing approach could provide landscape of spa-
tial heterogeneity, it is practically challenging to generate such data, due to
high costs, limited tissue availability, etc.. In this study, we present a com-
putational pathologymethod to predict patient-level TMB status and inves-
tigate spatial heterogeneity of TMB within tumors. We showed that our
designed method could achieve overall best performance to predict
patient-level TMB status compared to other state of the art methods. We
also showed that measuring and incorporating spatial heterogeneity of
TMB status with patient-level TMB status based on WSIs or combined
with WES-based TMB status could identify patient subgroups with distinct
OS outcomes. Specifically, we found that incorporating SH-TMB informa-
tion with predicted patient-level TMB status could improve patient risk



Fig. 5.Visualization of spatial heterogeneity and organization of TMB-Hand TILswithin tumors. Blue color represents identified tissue regions inWSIs. Light blue (e.g., Cyan)
color represents predicted TMB-H region. Red color represents predicted TILs. (a)–(c) Patients with high TILs & patient level TMB-H with low spatial TMB-H heterogeneity
(HHL subtype). Most of tumor regions have been predicted as TMB-H status with high density of TILs. (d)–(f) Patients with low TILs& patient level TMB-H with low spatial
TMB-H heterogeneity (LHL subtype). Most of tumor regions have been predicted as TMB-H status but with low density of TILs. (g)–(i) Patients with high TILs & TMB Low
(e.g., others subtype). High TILs present within tumors with predicted TMB low status.
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stratification compared to the use of predicted patient-level TMB status
alone (See Fig. s8(a) and (b)) in TCGA BLCA cohort. More specifically,
patient-level TMB-H with low SH-TMB status was correlated with better
OS. Visual inspection of selected tumor tiles from WSIs by our pathologist
indicates that predicted TMB-H tumor tiles in patient-level TMB-H WSIs
present higher densities of TILs, while they show higher grade tumors
(see Table s10). This is consistent with the univariate analysis of TMB sub-
types, where a higher portion of high-grade tumors belongs to patient-level
TMB-H and low SH-TMB group. Although we observe an enrichment of
high-grade tumors in this TMB-H subgroup, we reasoned that the higher
presence of TILs within the tumors from this subgroup might lead to better
prognosis. To further investigate whether higher level of TILs with SH-TMB
within tumors correlates with patients’ OS, we trained end-to-end deep
learning models to detect TILs and quantify TILs density within tumor re-
gions. The predicted TILs density scores were incorporated with SH-TMB
information to identify patient subgroups. The survival analysis of patient
subgroups with and without high TILs presence within TMB-H tumors
showed that patients carrying TMB-H status and high number of TILs
within tumor regions have statistically significant better OS. It is worth to
note that patient subgroup identification and survival analysis using only
TILs densities information (e.g., TILs high vs low) did not show statistically
significant OS difference using log rank test in TCGA BLCA (P=0.32 in Fig.
s8(c)), which indicates the importance of joint spatial TILs and TMB analy-
sis as a prognostic biomarker. Overall, our analysis demonstrated the prog-
nostic utility of spatial TMB and TILs information based on WSIs in BLCA
cohort. To the best of our knowledge, this is the first study to predict SH-
8

TMB and investigate prognostic utility of spatial organization of TMB and
TILs information for patient stratification in bladder cancer.

There are several limitations and challenges in our study. While we
showed an overall better performance to predict patient-level TMB status
compared with baseline methods, we have not performed further valida-
tion by using another independent dataset. This is mainly because it is prac-
tically not easy to collect patient cohorts with WSIs and corresponding
sequencing data together. Larger independent cohorts from multiple insti-
tutes will be needed to validate the performance of the proposed pipeline
and its generalizability. Our evaluations indicated that various deep
learning-based prediction models, including end-to-end deep learning
models, to predict patient-level TMB status did not show superior perfor-
mance. Larger and more well-annotated WSI datasets would be needed to
better train and improve the performance of deep learning-based prediction
models. Our WSI-based image analysis is performed based on a tile-level
not a single cell level (without distinguishing certain types of immune
cells), and did not take into account specific types of spatial arrangement
patterns between regions harboring TMB-H and TILs (e.g., TILs densities
within local TMB-H clustered regions). For instance, the single cell level
lymphocyte/immune cell detection (e.g., CD4+/CD8+/FOXP3+) and
joint spatial analysis of TMB-H tumor cell and/or region and TILs and/or
more advanced statistical TMB and TILs spatial modeling36 could provide
higher resolution of TMB-H tumor and immune co-localization within
tumor and immune microenvironment (TIME).

In summary, this study demonstrates the feasibility of predicting
patient-level TMB status and delineating spatial heterogeneity and
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organization of TMB and TILs by using computational methods based on
histological WSIs. Our spatial TMB and TILs analysis show that patients
with more homogeneous TMB-H status across tumor regions and high den-
sity of TILs present better prognosis in bladder cancer. Joint spatial analysis
of TILs and TMB within TIME for patients’ tumor provides a unique insight
into how immune environmentmight have an influence on prognosis of pa-
tients with TMB-H status. By combining tissue-based TMB-H status with
image-based TMB automatic prediction could further improve patient strat-
ification in bladder cancer. Taken together, our work provides a new foun-
dation of how spatial characterization of tumor (e.g., TMB-H status) and
immune environment within the tumor based onWSIs could be used to im-
prove risk stratification in bladder cancer.
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