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Vestiges of underplating 
and assembly in the central North 
China Craton based on S‑wave 
velocities
Haoyu Tian & Chuansong He*

The destruction of the North China Craton (NCC) is a controversial topic among researchers. In 
particular, the crustal structure associated with the craton’s destruction remains unclear, even 
though a large number of seismic studies have been carried out in this area. To investigate the crustal 
structure and its dynamic implications, we perform noise tomography in the central part of the NCC. In 
this study, continuous vertical-component waveforms spanning one year from 112 broadband seismic 
stations are used to obtain the group velocity dispersion curves of Rayleigh waves at different periods, 
and surface wave tomography is employed to extract the Rayleigh wave group velocity distributions 
at 9–40 s. Finally, the S-wave velocity structure at depths of 0–60 km is determined by the inversion 
of pure-path dispersion data. The results show obvious differences in the crustal structure among the 
Western Block (WB), the Trans-North China Orogen (TNCO) and the Eastern Block (EB). The lower 
crust of the northern part of the EB exhibits a high-velocity S-wave anomaly, which may be related to 
magmatic underplating in the lower crust induced by an upwelling mantle plume. The S-wave velocity 
of the WB is lower than that of the TNCO in the upper and middle crust and is lower than that of both 
the TNCO and the EB in the lower crust. The crust of the TNCO shows higher S-wave velocities than the 
WB and EB in the upper and middle crust, and its overall S-wave velocity structure is clearly different 
from those of the WB and EB, implying that the crustal structure of the TNCO may contain vestiges 
of the Paleoproterozoic collision between the WB and EB and their subsequent assembly. This study 
marks the first time these findings are identified for the NCC.

The North China Craton (NCC), one of the world’s oldest cratons1, consists of two Precambrian terranes, the 
Eastern Craton (or Block) and the Western Craton (or Block) (Fig. 1). During the Paleoproterozoic, these blocks 
coalesced along the Trans-North China Orogen (TNCO)2,3. Then, the NCC remained stable for several hundred 
million years from the Paleoproterozoic to the late Cambrian4. Since the Mesozoic, however, the region has expe-
rienced multiple periods of collision among terranes and the subduction of the Pacific plate; as a consequence, 
the craton structure has been largely destroyed5. Different models have been proposed to explain the mechanism 
by which the craton was destroyed, such as thermal erosion generated by mantle upwelling6–9 and lower crustal/
lithospheric delamination induced by the north–south amalgamation of terranes10–12.

To reveal evidence of the deep structures associated with this craton’s destruction, many seismic investiga-
tions have been carried out in this region, such as receiver function13–19, surface wave tomography20,21, P-wave 
tomography11,22,23, amplitude tomography24, 3-D P-wave anisotropic tomography25 and noise tomography26–34. 
The receiver function method has been used to define the depths of the Moho, lithosphere-asthenosphere bound-
ary and 410 and 660 km discontinuities beneath the NCC. For example, He et al.19 reported that the region with 
a high Vp/Vs ratio of the crust corresponds well to projections on the surface of the deepening region of both the 
410 km and 660 km discontinuities in the EB, which implies that mantle plume upwelling led to structural varia-
tions in the mantle transition zone and crust during the Mesozoic. P-wave tomography has been employed mainly 
to image the velocity structure of the upper mantle. Examples include Lei22 and He11, who similarly revealed 
evidence of Mesozoic mantle plume upwelling beneath the EB. Noise tomography and 3-D P-wave anisotropic 
tomography have been used to determine the velocity structure of the crust and uppermost mantle. For instance, 
Fu et al.33 and Tang et al.34 defined a low-velocity anomaly at depths of 0–20 km in the EB. However, due to the 
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limitations of study methods or objectives, the exact crustal structure in the NCC potentially associated with 
deep dynamic processes, craton destruction and block assembly has not been revealed.

To finely resolve the crustal structure of this craton, we carry out noise tomography in the central part of the 
NCC. The results display considerable differences in the S-wave velocity structure among the WB, TNCO and 
EB. In particular, the distinctive S-wave velocity structure of the TNCO may be a vestige of the Paleoproterozoic 
assembly of cratonic blocks. We also reveal a high-velocity anomaly in the lower crust beneath the northern part 
of the EB that might be associated with magmatic underplating.

Results
Rayleigh wave velocity.  Because the group velocities at different periods have different sensitivities to the 
S-wave velocity in different depth ranges35, it is necessary to take the partial derivatives of the group velocities at 
different periods and obtain the sensitivity kernels of the fundamental Rayleigh wave. Our results confirm that 
the group velocities at several periods are well resolved at depths ranging from 6 to 42 km (Fig. 2).

The group velocity at a certain period is most sensitive to the S-wave velocity at 1/3 of the wavelength37,38, 
and thus, the structural differences at different depths lead to variations in the group velocity. Here, we discuss 
the representative group velocities at six periods (Fig. 3). The Rayleigh wave group velocity distribution at T = 9 s 
mainly reflects the velocity structure of the upper crust, whereas those at T = 15 s and 20 s predominantly reflect 
the velocity structure of the middle crust. Likewise, the Rayleigh wave group velocities at medium and long 
periods (30–38 s) mainly reflect the velocity structure from the lower crust to the top of the mantle (Fig. 3).

Figure 1.   Left panel: location of the study region; red line: boundary of the NCC. Right panel: distribution 
of seismic stations; the black triangles indicate the seismic stations, whereas the blue lines indicate the S-wave 
velocity profiles. The study area is located in the central part of the NCC, including the suture zone between the 
EB and WB. The white lines are the boundaries of geological units (the figure was generated by Chuansong He 
using Generic Mapping Tools (https://​www.​gener​ic-​mappi​ng-​tools.​org/)).

Figure 2.   Sensitivity kernels of fundamental Rayleigh group velocities at 9 s, 15 s 20 s, 30 s, 34 s and 38 s. 
AK135 model36 is adopted for calculation, and the crustal thickness is set at 36 km [the figure was generated by 
Chuansong He using Generic Mapping Tools (https://​www.​gener​ic-​mappi​ng-​tools.​org/)].

https://www.generic-mapping-tools.org/
https://www.generic-mapping-tools.org/
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Our findings reveal that the group velocities at 9 s-30 s in the TNCO are higher than those of the terranes 
(EB and WB) on either side. The group velocities at 34 s-38 s in the WB are obviously lower than those in the 
EB (Fig. 3). In addition, the EB displays a low-velocity anomaly at a period of 9 s, which may be affected by the 
sedimentary layer near the surface (Fig. 3); the H–k stacking of receiver functions indicates that the sedimentary 
thickness in this area is between 2 and 6 km39. The EB is also characterized by relatively low velocities from 15 to 
30 s, which might not be completely affected by the sedimentary layer (Fig. 3); indeed, this low-velocity structure 
may be related to a low-velocity anomaly in the middle crust. In contrast, at 34–38 s (representing the region 
from the lower crust to the top of the mantle), the northern part of the EB exhibits a relatively high-velocity 
anomaly, whereas it’s southern part shows a relatively low-velocity structure (Fig. 3).

Figure 3.   Rayleigh wave group velocities at six different periods. Blue circle: Datong volcano group. The black 
lines are the boundaries of geological units. Rectangle region: Cenozoic basalt region [the figure was generated 
by Chuansong He using Generic Mapping Tools (https://​www.​gener​ic-​mappi​ng-​tools.​org/)].

https://www.generic-mapping-tools.org/
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We also detect a cylindrical high-velocity anomaly at 9–38 s (Fig. 3, HV) near Datong volcanic group40 and 
located within Cenozoic basalt region41 in the TNCO. Generally, basalts are generated by the upwelling of mafic 
magmatic material along cylindrical columns from the bottom of the lower crust42. This consolidated mafic 
magma might be responsible for the observed high-velocity structure43. Accordingly, we consider the high-
velocity anomaly (Fig. 3, HV) to be related to magmatic upwelling from the bottom of the lower crust and the 
formation of the Datong volcanic group in the Cenozoic.

S‑wave velocity structure.  Based on the 1-D S-wave velocity structure at each grid node obtained in this 
study, we construct a 3-D S-wave velocity model in the depth range from 6 to 42 km (Fig. 4). The results show 
that the S-wave velocity of the TNCO is higher than those of the EB and WB at depths from 6 to 20 km (Fig. 4). 

Figure 4.   S-wave velocity distributions at depths of 6 km, 10 km, 20 km, 30 km, 38 km and 42 km. Blue circle: 
Datong volcanic group. The black lines are the boundaries of geological units. Rectangle region: Cenozoic basalt 
region [the figure was generated by Chuansong He using Generic Mapping Tools (https://​www.​gener​ic-​mappi​
ng-​tools.​org/)].

https://www.generic-mapping-tools.org/
https://www.generic-mapping-tools.org/
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Furthermore, the S-wave velocity in the WB is lower than that in the EB at depths of 38 and 42 km (Fig. 4). In 
contrast, beneath the EB, a low-velocity anomaly is observed at a depth of 6 km, and a relatively low-velocity 
anomaly is noted at depths of 10–20 km (Fig. 4). At depths of 38–42 km, a high-velocity anomaly is detected in 
the northern part of the EB, whereas a low-velocity structure is revealed in the southern part of the EB (Fig. 4). 
In addition, the Surface wave velocity model also reveals a cylindrical high-velocity anomaly at depths from 6 to 
42 km near the Datong volcanic group within the TNCO (Fig. 4, HV). The above results are basically consistent 
with the group velocity distribution (Fig. 3).

We also establish two S-wave velocity profiles across the study region (Fig. 5; the profile locations are indicated 
in Fig. 1). The profiles illustrate that the S-wave velocity is between 3.8 and 4.2 km/s at depths of 40–45 km in 
the WB, whereas the S-wave velocity is between 3.8 and 4.2 km/s at depths of 35–42 km in the EB, which might 
be related to the Moho depth. These results are partly consistent with the results of the H–k stacking of receiver 
functions (Fig. S1)19. Due to the limitation of surface waves in resolving the Moho, the crustal thickness inferred 
from the surface wave tomography is greater than that inferred from the H–k stacking of the receiver functions. 
However, the S-wave structure basically exhibits a trend of gradual crustal thickening from east to west. 

Discussion
He et al.19 determined the distributions of the crustal thickness and Vp/Vs ratio in the NCC by performing H–k 
stacking of receiver functions. Their results reflected a high Vp/Vp ratio (bulk crustal Vp/Vs ratio > 1.76, Fig. S1, 
red ellipse in the right panel) in the northern NCC, indicating that the Vp/Vs ratio in the lower crust might be 
greater than 1.78 or 1.8019. In general, magmatic underplating can lead to high Vp/Vs ratios43,44 and high-velocity 
anomalies in the lower crust43. This study reveals that the EB contains a high-velocity anomaly at depths of 38 km 
and 42 km, either at the bottom of the lower crust or at the top of the mantle (Fig. S1, left panel; the crustal 
thickness in the EB is between 32 and 38 km). This supports the occurrence of deep magmatic underplating in 
this area. Due to the uneven distribution of seismic stations in the EB (Fig. S1, black triangles), this region with 
a high Vp/Vs ratio in the EB is not completely resolved. Nevertheless, the areas with a considerably high Vp/Vs 
ratio correspond to the high-velocity anomaly in the lower crust (Fig. S1, Fig. 4).

In general, an upwelling mantle plume plays a key role in the occurrence of underplating in the lower crust45. 
He11 reported a mushroom-like low-velocity structure (potentially a Mesozoic vestige of an upwelling mantle 
plume beneath the EB) by using P-wave teleseismic tomography (Fig. S2); this region corresponds to the area in 
the EB where the lower crust may be underplated. This finding implies that an upwelling mantle plume affected 
the crustal and lithospheric structure of the NCC or contributed to the destruction of the NCC.

He et al.19 also revealed a region with a high Vp/Vs ratio in the WB (Fig. S1, blue ellipse in the right panel). 
Our results identified in this study indicate relatively low S-wave velocities at depths of 38 km and 42 km in 
the lower crust of the WB (Fig. 4), which rules out the occurrence of magmatic underplating in the lower crust 
therein. Recent crustal structure studies indicate that the average crustal S-wave velocity of the Precambrian 
crust is ~ 3.6 km/s, which is higher than that of the crust after the Paleozoic46,47. Seismic studies indicate that 
the Vp/Vs ratio increases with the age of the crust; for example, Precambrian shields and ancient cratons tend 
to exhibit high Vp/Vs ratios43; moreover, the average crustal S-wave velocity in the WB identified in this study 
is only ~ 3.6 km/s. Therefore, the high Vp/Vs ratios in the WB might indicate that the block retains remnants of 
ancient crust, implying some preservation of the cratonic structure in the WB.

TNCO is an N-S-oriented linear belt that formed as a consequence of the collision between EB and WB, 
culminating in the final assembly of the NCC ca. 2.1–1.8 Ga48. Along the linear TNCO, high-pressure assem-
blages can be traced for more than 700 km49, reflecting continental collision and extrusion environments50. The 
compressional structure can lead to bulk high-velocity anomaly in the crust51. Both the group velocities and the 
S-wave velocities in the crust indicate that the TNCO is a relatively high-velocity terrane, which might reflect its 
extrusion/compressional environments induced by the collision/assembly between the EB and WB. The velocity 
structure also indicate that the TNCO is an independent geological unit that connects the EB and WB (Figs. 3, 
4). These imply that the TNCO may contain vestiges of the Paleoproterozoic collision between the EB and WB 
and their subsequent assembly.

Figure 5.   S-wave velocity profiles [the figure was generated by Chuansong He using Generic Mapping Tools 
(https://​www.​gener​ic-​mappi​ng-​tools.​org/)].

https://www.generic-mapping-tools.org/
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Recently, the high S-wave velocity have also been defined by surface wave tomography in stable collisional 
orogens52,53 such as the Taiwan collisional orogen and the southern Zagros collisional orogen of Iran. On the 
contrary, crustal low-velocity zones have been reported in active orogens such as the Andes and the Himalayas54.

Conclusions
This study reveals that the group velocities and S-wave velocities of the EB and WB of the NCC and those of the 
TNCO are quite different. In the WB, the relatively low S-wave velocity and high Vp/Vs ratio in the lower crust 
may represent ancient lower crust, which implies that its cratonic structure has not been destroyed. In contrast, 
in the northern part of the EB, the high S-wave velocity and high Vp/Vs ratio in the lower crust may reflect 
magmatic underplating along the base of the Moho induced by an upwelling mantle plume, which implies that 
an ascending mantle plume may have contributed to the destruction of the NCC. Furthermore, we suggest that 
the S-wave velocity structure of the TNCO contains vestiges of the collision between the WB and EB in the 
Paleoproterozoic and their subsequent assembly.

Data and method
Data and data  processing.  Based on a direct cross-correlation of the continuous background noise 
between two seismic stations, we can perform high-resolution seismic imaging in the crust and upper mantle55–61.

In this study, the continuous vertical component waveforms recorded by 112 seismic stations from Janu-
ary 2018 to December 2018 are collected from the Data Management Center of the China National Seismic 
Network. Based on the method of Bensen et al.59, we resampled the continuous waveforms to 5 Hz and cut the 
data from 0 to 24 h. Other steps involve synchronizing the clock, removing the instrument response, bandpass 
filtering (4–50 s period), normalization in the time domain, and spectral whitening. Finally, the daily waveform 
at each seismic station is correlated with those at all other seismic stations, and the daily results at each seismic 
station are stacked to produce the final cross-correlation results.

The surface wave signals coming from opposite directions along the path linking two seismic stations can 
be inferred from the resulting cross-correlations. Due to the inhomogeneous distribution of ambient noise 
sources, the cross-correlations might be asymmetrical. To enhance the signal-to-noise ratio of the surface waves 
and simplify the data analysis, each cross-correlation is separated into negative and positive lag components, 
and then the two components are added to form the so-called symmetric component. The following analysis is 
performed exclusively on the symmetric signals.

Based on multiple filtering techniques62,63, we manually pick the group velocity dispersion curve with Com-
puter Programs in Seismology (CPS) software64. Assuming there are n stations, we can extract empirical Green’s 
functions on n(n-1)/2 paths. To ensure reliable results, we implement quality control on the dispersion curve.

An empirical Green’s function is acceptable if the interstation distance is at least 3 times the wavelength at a 
given period, and acceptable autopicked group velocities were chosen according to the wavelength and signal-
to-noise ratio58,59. Finally, we select a total of 1774 dispersion curves for the station pairs from the 6216 Rayleigh 
wave waveform data (see Fig. S3). A plot of the ray paths used for surface wave imaging at different periods shows 
that the number of rays at different periods is relatively uniform (Fig. S4).

Rayleigh wave velocity and S‑wave velocity inversion.  In the process of surface wave tomography, a 
generalized 2-D linear inversion procedure is used to construct the distribution of the group velocity65,66, which 
is a generalization to 2-D inferred from the classic 1-D method of Backus and Gilbert67. In the inversion process, 
a 0.5° × 0.5° lateral grid is designed, and a damping parameter of α = 0.2 is selected according to different damp-
ing parameter (α = 0.1, 0.2 and 0.3) tests, which controls the tradeoff between the fit to the data and the smooth-
ness of the resulting group velocity maps and yields relatively smooth maps with small fitting errors.

From the Rayleigh wave group velocity obtained by the above inversion approach, the dispersion curves of 
the group velocity at each grid node are extracted. The 1-D S-wave velocity structure at each grid node is then 
inverted68, as shown in Fig. S5, and the velocities between the nodes are interpolated linearly. In this way, we 
construct a 3-D model of the S-wave velocity structure.

A constant S-wave velocity of 4.38 km/s from the surface to a depth of 90 km is designed for the initial model, 
which is divided into 2 km layers. This initial model avoids the artificial addition of low-velocity zones. In the 
inversion process, a fixed Vp/Vs ratio of 1.732 is adopted, and the density is obtained from the P-wave velocity69.

Resolution analysis.  Generally, a checkerboard resolution test (CRT) is conducted to analyse the resolu-
tion and estimate the error of the results. In this study, another reliable technique is used to evaluate the resolu-
tion; that is, we estimate the spatially averaged kernel at each grid node in different directions or average area70, 
which can be approximated by an ellipse centred at a point in the 2-D tomography. Based the smallest and largest 
axes of the ellipse, we can calculate smallest and largest value of the ellipse as well as averaging area of the ellipse.

The resolution radius distribution shows that the minimum resolution radius can reach 50 km, whereas for 
most of the study area, the resolution radius can reach 200 km (Fig. S6). In this region, the spatially averaged 
resolution radius is between 0 and 200 km, and the resolution radius is completely within the smoothing radius 
allowed by the model parameters. According to the resolution detection results, we consider that the inversion 
results in our study region are reliable.

Data availability
The data of the cross-correlation function involved in the noise tomography can be accessed via https://​doi.​org/​
10.​5281/​zenodo.​49717​34.
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