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Abstract: The common spatial pattern (CSP) is a very effective feature extraction method in motor
imagery based brain computer interface (BCI), but its performance depends on the selection of
the optimal frequency band. Although a lot of research works have been proposed to improve
CSP, most of these works have the problems of large computation costs and long feature extraction
time. To this end, three new feature extraction methods based on CSP and a new feature selection
method based on non-convex log regularization are proposed in this paper. Firstly, EEG signals are
spatially filtered by CSP, and then three new feature extraction methods are proposed. We called
them CSP-wavelet, CSP-WPD and CSP-FB, respectively. For CSP-Wavelet and CSP-WPD, the discrete
wavelet transform (DWT) or wavelet packet decomposition (WPD) is used to decompose the spatially
filtered signals, and then the energy and standard deviation of the wavelet coefficients are extracted
as features. For CSP-FB, the spatially filtered signals are filtered into multiple bands by a filter
bank (FB), and then the logarithm of variances of each band are extracted as features. Secondly,
a sparse optimization method regularized with a non-convex log function is proposed for the
feature selection, which we called LOG, and an optimization algorithm for LOG is given. Finally,
ensemble learning is used for secondary feature selection and classification model construction.
Combing feature extraction and feature selection methods, a total of three new EEG decoding methods
are obtained, namely CSP-Wavelet+LOG, CSP-WPD+LOG, and CSP-FB+LOG. Four public motor
imagery datasets are used to verify the performance of the proposed methods. Compared to existing
methods, the proposed methods achieved the highest average classification accuracy of 88.86, 83.40,
81.53, and 80.83 in datasets 1–4, respectively. The feature extraction time of CSP-FB is the shortest.
The experimental results show that the proposed methods can effectively improve the classification
accuracy and reduce the feature extraction time. With comprehensive consideration of classification
accuracy and feature extraction time, CSP-FB+LOG has the best performance and can be used for the
real-time BCI system.

Keywords: brain-computer interface (BCI); electroencephalogram (EEG); motor imagery; common
spatial pattern (CSP); feature extraction; feature selection
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1. Introduction

The brain computer interface (BCI) converts the brain signals into external device control
commands, which establishes a new channel for humans to directly interact with the external
environment [1]. This technique is particularly useful for patients with motor disability and upper body
paralysis [2]. Of course, BCI can also be used for healthy people, such as games or robot control [3].
Among various brain signals, the scalp electroencephalogram (EEG) is easy to obtain. With low cost and
high time resolution, EEG is widely used in BCI [4]. Motor imagery is a spontaneously generated EEG
signal, which does not require external stimulation. It is particularly suitable for patient rehabilitation
training and motor control. However, the EEG signal is very weak, with a low signal-to-noise ratio
and space blurred [5]. It is very difficult to extract stable and discriminative features. Therefore,
feature extraction has always been a hotspot in the study of motor imagery based BCI. In addition,
feature selection can reduce feature dimension and noise interference, the selected features are more
stable and discriminative. Therefore, research on feature selection is also very important.

Commonly used feature extraction methods include the autoregressive model [6],
wavelet features [7], band power [8], and common spatial pattern (CSP) [9]. CSP can effectively
extract the features of event-related synchronization (ERS) and event-related desynchronization (ERD)
in the motor imagery signals, so it has been widely used in BCI [10]. However, the performance
of CSP depends to a large extent on the selection of the filtering frequency band, and the optimal
frequency band is typically subject-specific, which is difficult to select manually [11]. There is a lot
of research work on the frequency band selection, which is mainly divided into four categories.
The first type of method, CSP combined with time-frequency analysis methods. Based on orthogonal
empirical mode decomposition (OEMD), FIR filter, and the CSP algorithm, Li et al. [12] proposed
a novel feature extraction method. Lin et al. [13] used wavelet-CSP algorithm to recognize driving
action. Robinson et al. [14] used the wavelet-CSP algorithm to classify fast and slow hand movements.
Feng et al. [15] proposed a feature extraction algorithm based on CSP and wavelet packet for motor
imagery EEG signals, and Yang et al. [16] proposed subject-based feature extraction using the fisher
WPD-CSP method. The second type of method, the spatial spectrum filter is optimized simultaneously.
For example, the common spatio-spectral pattern algorithm (CSSP) is proposed by Lemm et al. [17],
the common sparse spectral spatial pattern algorithm (CSSSP) is proposed by Dornhege et al. [18],
and a new discriminant filter bank common spatial patterns (DFBCSP) is proposed by Hiroshi et al. [19].
The third type of method, the original EEG signals are filtered into multiple frequency bands, then the
CSP features are extracted in each band, and finally the features of the optimal frequency band
are selected for classification. There are many research works in this area, such as SBCSP [20],
FBCSP [11], DFBCSP [21], SWDCSP [22], SFBCSP [23], and SBLFB [24]. The fourth type of method,
the intelligent optimization method, is used to select the optimal frequency band. The multiple fixed
frequency bands used in the third method are determined by human subjective experience, so the
obtained frequency band may not be optimal, while the intelligent optimization algorithm can select a
frequency band of any length. Wei et al. [25] used binary particle swarm optimization for frequency
band selection in motor imagery-based brain-computer interfaces. Kumar et al. [26] proposed three
methods to optimize the temporal filter parameters, including particle swarm optimization (PSO),
genetic algorithm (GA), and artificial bee colony (ABC). Rivero et al. [27] used genetic algorithms and
k-nearest neighbor for automatic frequency band selection. The first method uses the time-frequency
analysis to obtain frequency information. It needs to decompose the EEG signals of each channel,
which requires a large amount of calculation and is time-consuming, especially for the wavelet packet
decomposition. The second method is difficult to solve and easy to get a local solution. The EEG
signals are filtered into multiple sub-bands in the third method, which is very computationally
intensive. The disadvantage of the fourth method is that it requires a long time for model training.
Recently, the application of deep learning in motor imaging classification has become more and
more widespread [28]. Tang et al. [29] used conditional empirical mode decomposition (CEMD) and
one-dimensional multi-scale convolutional neural network (1DMSCNN) to recognize motor imagery
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EEG signals. Cheng et al. [30] classified EEG emotions by deep forest. However, features extracted by
deep learning are abstract and difficult to understand [31]. In addition, compared with traditional
machine learning methods, deep learning has no obvious advantages [32].

The existing feature selection methods are mainly divided into three categories: filter, wrapper,
and embedded [33]. The filter method uses independent evaluation criteria, and the feature selection
process of which has nothing to do with subsequent classifiers. Koprinska et al. [34] proposed five
feature selection methods for the brain computer interface, including information gain ranking,
correlation-based feature selection, relief, consistency-based feature selection, and 1R ranking.
Experimental results show that the top three feature selectors in terms of classification accuracy
were correlation-based feature selection, information gain and 1R ranking. Mutual information
and its one-versus rest multi-class extension were used to select optimal spatial-temporal features
in [35]. Li et al. [36] combined the Fisher score and classifier-dependent structure to implement
the feature selection. Based on the descending sort on all Fisher score values, the wrapper model
with support vector machine (SVM) and graph regularized extreme learning machine (GELM) were
applied, and a 10-fold cross validation scheme was used to select the generalized features based on
the training set. Mehmood et al. [37] selected the optimal EEG features using a balanced one-way
ANOVA after calculating the Hjorth parameters for different frequency ranges. Features selected by
this statistical method outperformed univariate and multivariate features. The optimal features were
further processed for emotion classification using SVM, k-nearest neighbor (k-NN), linear discriminant
analysis (LDA), naive Bayes, random forest, deep learning, and four ensembles methods (bagging,
boosting, stacking, and voting). The maximum of average distance between events and non-events
was used to select optimal EEG features in [38]. The filter method has certain advantages, such as low
computational cost, but it does not consider the correlation between features and is independent of
the classifier, so the classification accuracy is not high. The wrapper method uses the performance
of classifier as the evaluation criterion of feature selection. An efficient feature selection method was
proposed in [39]. The least angle regression (LARS) was used for properly ranking each feature, and then
an efficient leave-one-out (LOO) estimation based on the PRESS statistic was used to choose the most
relevant features. In [40], the genetic algorithm was used to select the EEG signal features. The fitness
function used in the genetic algorithm was EEG signal classification error calculated using LDA
classifier. Rakshit et al. [41] employed ABC cluster algorithm to reduce the features for motor imagery
EEG data. Baig et al. [42] proposed a new hybrid method to select features. A differential evolution
(DE) optimization algorithm was used to search the feature space to generate the optimal feature subset,
and with performance evaluated by the SVM classifier. Liu et al. [43] proposed a method of combining
the firefly algorithm and learning automata (LA) to optimize feature selection for motor imagery
EEG. The learning automata was used as a tool of parameter optimization to avoid getting the local
optimum. The wrapper method needs to train and test the classifier when evaluating each candidate
feature subset, which is computationally expensive and tends to overfitting. The embedded method
integrates feature selection with the training process of the classifier, and simultaneously performs
feature selection and classification. Therefore, the embedded feature selection method has been widely
used in recent years. Miao et al. [44] used LASSO to select the important space-frequency-time feature
components of motor imagery. The minimum-redundancy and maximum-relevance (mRMR) and
LASSO were used for feature selection in [45]. In both feature selection methods, the first three
features were selected. Then, the common features between mRMR and LASSO regularization are
selected to train the classification model. Zhang et al. [46] proposed a novel algorithm, namely the
temporally constrained sparse group spatial pattern (TSGSP), which was modeled by combining
the sparse group LASSO and fused LASSO penalties. The features with different filter bands and
time window combinations were optimized and selected. Wang et al. [47] used the sparse group
LASSO to simultaneously perform feature selection and channel selection on the motor imagery signal.
Jiao et al. [48] proposed a sparse group LASSO representation model for transfer learning, the group
LASSO selected subjects, and LASSO selected sample data. The above sparse optimization methods
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are convex optimization models. Although they have achieved good results, many applications have
shown that non-convex sparse optimization methods can obtain better performance [49]. For example,
LASSO has a bias problem, which would result in significantly biased estimates, and cannot achieve
reliable recovery with the least observations [50].

Aiming to resolve the problem of large calculation and time-consumption of Wavelet-CSP [13,14],
WPD-CSP [15,16], and FBCSP [11] methods, we have proposed three new feature extraction
methods, namely CSP-Wavelet, CSP-WPD, and CSP-FB method. Firstly, the original EEG signals
are pre-processed, including time window selection and band-pass filtering. Then, CSP transform is
performed. For CSP-Wavelet, discrete wavelet transform (DWT) is used to decompose the spatially
filtered signals, and then the energy and standard deviation of the wavelet coefficients are extracted as
features. For CSP-WPD, the wavelet packet decomposition (WPD) is used to decompose the spatially
filtered signals. Similar to CSP-Wavelet, the energy and standard deviation of the wavelet coefficients
are extracted as features. For CSP-FB, the spatially filtered signals are filtered into multiple frequency
bands by a filter bank (FB), and then the logarithm of variances of each band are extracted as features.
In order to solve the bias problem of LASSO, a new feature selection method is proposed. A non-convex
function is used to sparsely constrain feature weights. Since the non-convex function is a log function,
we call this method LOG. In addition, in order to further optimize feature selection and enhance
the robustness of the classification model, an ensemble learning method is proposed for secondary
feature selection and the construction of multiple classification models. Fisher linear discriminant
analysis (FLDA) is used for classification. Combining feature extraction with feature selection methods,
we obtained three EEG signals decoding methods, namely CSP-Wavelet+LOG, CSP-WPD+LOG and
CSP-FB+LOG. Experimental results show that the classification performances of three newly proposed
methods are better than CSP, Wavelet-CSP, WPD-CSP, SFBCSP and SBLFB methods. In terms of
feature extraction time, the proposed methods are much less than Wavelet-CSP, WPD-CSP, SFBCSP,
and SBLFB methods.

The main contributions of this paper include three aspects. Firstly, we proposed three new
feature selection methods based on CSP. These three methods can effectively improve the classification
performance of CSP while reducing the feature extraction time. Secondly, we propose a new feature
selection method. This method is a non-convex sparse optimization method, which can effectively
solve the bias problem of LASSO and select more discriminative features. Thirdly, we use ensemble
learning for secondary feature selection and classification model construction, which makes the EEG
decoding method more robust and stable.

The content of this paper is organized as follows. Section 2 introduces experimental data,
traditional CSP feature extraction method, three new feature extraction methods, a new feature
selection method, and secondary feature selection and classification model construction using ensemble
learning. The experimental results are showed in Section 3. Section 4 further discusses and analyzes
the experimental results. The conclusion is provided in Section 5.

2. Materials and Methods

2.1. EEG Data Description

Four public motor imagery EEG datasets are briefly described as follow. For detailed information,
please refer to related literature or website.

Dataset 1: data set I of BCI competition IV (2008) [51]. This dataset has a total of 59 channels
with a sampling rate of 100 Hz. There are three types of motor imagery tasks, including left hand,
right hand, and right foot. Seven subjects (1a, 1b, 1c, 1d, 1e, 1f, 1g) selected two of them to be
performed. In this paper, the calibration data of this dataset are used for classification, which include
two runs with 100 single trials for each run. The first run was selected as the training set and the
second run was selected as the test set. For detailed information, please refer to the following website:
http://www.bbci.de/competition/IV/.

http://www.bbci.de/competition/IV/
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Dataset 2: data set IIa of BCI competition IV (2008) [52]. This dataset has a total of 22 channels
with a sampling rate of 250Hz. Nine subjects (A01, A02, . . . , and A09) performed four types of
motor imagery tasks, including left hand, right hand, foot, and tongue. There are two sessions in this
dataset, and each session was consisted of 6 runs with 48 trials (12 trials for each class) for each run.
In this paper, the first session was selected as the training set and the second session was selected
as the test set. The training and test sets of each subject were 72 trials. According to the practice of
reference [53], four types of tasks are arranged and combined to obtain multiple binary classification
problems, that is, C2

4 = 6 groups of binary classification. Therefore, a total of 9 × 6 = 54 data subsets
are obtained. The left hand, right hand, foot, and tongue motor imagery tasks were represented by
letters L, R, F and T, respectively. A01T -LR indicated that the subject A01T performed left hand and
right hand motor imagery tasks. For additional information, please refer to the following website:
http://www.bbci.de/competition/IV/.

Dataset 3: data set IIb of BCI competition IV (2008) [24]. This dataset has a total of 3 channels
with a sampling rate of 250Hz. Nine subjects (B01, B02, . . . , and B09) performed two types of motor
imagery tasks, including left hand and right hand. There are five sessions in this dataset. However,
only the third training session (B0103T, B0203T, . . . , B0903T) is used in this paper [24]. This session
is consisted of 160 trials, and half for each class. 80 trials are used for training set, and the other
80 trials are used for test set. For additional information, please refer to the following website:
http://www.bbci.de/competition/IV/.

Dataset 4: data set provided by David Steyrl (2016) [54]. This dataset has a total of 15 channels
with a sampling rate of 512 Hz. Fourteen subjects performed two types of motor imagery tasks,
including right hand and foot. The data of each subject were divided into two parts. The first part
(runs 1–5) was used for train set, whereas the second part (runs 6–8) was used for test set, and each run
was consisted of 20 trials (10 trials for each class). Therefore, the training and test sets are 100 and
60 trials, respectively. The original signals are downsampled with a sampling rate of 256 Hz. For more
information, please refer to the following website: http://bnci-horizon-2020.eu/database/data-sets.

All datasets are scalp EEG signals, which are recorded by multiple electrode sensors placed on the
scalp. Figure 1 shows the distribution of electrodes on the scalp for the four datasets. We focus on the
signal processing and pattern recognition of electrode sensor signals in this paper.
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Figure 1. Distribution of electrodes on the scalp for all datasets. (a) dataset 1, (b) dataset 2, (c) dataset 3.
(d) dataset 4.

2.2. The Processing Flow of the Proposed Method

Figure 2 is a flowchart of the overall processing of the proposed method. It mainly includes
preprocessing, CSP transformation, feature extraction, feature selection, and classification. Each part
will be discussed in detail in the following content.

2.3. Data Preprocessing

(1) A 6th order Butterworth filter is used to perform 8–30 Hz band-pass filtering on the EEG
signals of each channel, which filters out the EEG components that are not related to motor
imagery. Butterworth filters are often used in EEG band-pass filtering [53], we are consistent
with the practice of most literatures. Motor imagery can cause ERS and ERD phenomena, that is,

http://www.bbci.de/competition/IV/
http://www.bbci.de/competition/IV/
http://bnci-horizon-2020.eu/database/data-sets


Sensors 2020, 20, 4749 6 of 29

power changes in specific frequency bands of EEG signals, specifically mu (8–12 Hz) and beta
(18–26 Hz) rhythm [2]. Therefore, the 8–30 Hz band-pass filter is usually used to filter the motor
imagery signals [55].

(2) Extracting single trial data. The time window of dataset 1 is 0.5–3.5 s, and the other datasets
are 0.5–2.5 s, where 0 s is the time when the motor imagery task starts. The time window of
datasets 2–4 is different from that of dataset 1. This is because the sampling rate of datasets 2–4 is
relatively high. Choosing the time window from 0.5 s to 2.5 s can reduce the amount of data and
thus reduce the amount of calculation.
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2.4. Feature Extraction

2.4.1. CSP Transformation

For the binary classification problem, CSP looks for a set of spatial filters to maximize the variance
of the band-pass filtered EEG signals in one class while minimizing the other class. The spatial
filter w is calculated by simultaneous diagonalization of sample covariance matrix from both classes,
details as follows:

J(w) =
wT

¯
C1w

wT
¯
C2w

(1)

where T denotes transpose.
¯
C1 and

¯
C2 represent the average covariance matrix of two types of tasks,

respectively, which are defined as follows:

¯
Ck =

1
Nk

Nk∑
n=1

D(k,n)D
T
(k,n)

trace
(
D(k,n)D

T
(k,n)

) , k = 1, 2 (2)

where trace(·) denotes the solution of the matrix trace. Nk represents the number of samples of the kth
task, that is, the number of single trial data. D(k,n) ∈ RC×K represents the nth trial data of the kth task,
where C represents the total number of EEG signal channels, and K represents the number of samples
of each channel.

Formula (1) can be transformed into the following generalized eigenvalue problem [55].

¯
C
−1

2

¯
C1w = λw (3)

The spatial filters are then the eigenvectors of M =
¯
C
−1

2

¯
C1 . The M is arranged in descending

order of eigenvalues to obtain
~
M, and the feature vectors of the first m columns and the last m columns

of
~
M are usually taken as the final spatial filter, which is denoted as W. In all experiments in this paper,

m is set to 3. For single trial data D, its spatial projection signal is:

Z = WTD (4)
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The traditional CSP feature extraction method extracts the logarithm of the variances of spatially
filtered signals as features, details as follows:

fp = log


var

(
Zp

)
2m∑
i=1

var(Zi)

, p = 1, 2, · · · , 2m (5)

where var(·) represents the solution of the variance. Finally, the feature vector of the single trial data
can be obtained by calculating the formula (5), that is x = [ f1, f2, · · · , f2m].

2.4.2. New Feature Extraction Methods

CSP-Wavelet

After spatial filtering, we can get Z in Section 2.4.1. Discrete wavelet transform is performed
on each channel of Z. The derivation of the wavelet decomposition formula is described in detail
in [14], interested readers can refer to literature [14]. After the wavelet decomposition, the frequency
sub-bands related to motor imagery are selected, and the energy and standard deviation of the wavelet
coefficients of the selected sub-bands are extracted as features. The wavelet base is db4. In order to
select sub-bands related to motor imagery, we need to combine the sampling rate of the dataset to
select the appropriate number of wavelet decomposition layers. For dataset 1 (the sampling rate is
100 Hz), the number of decomposition layers is 3 in this paper. For datasets 2–4 (the sampling rate is
250 and 256 Hz, respectively), the number of decomposition layers is 4. The selection of the number of
decomposition layers will be discussed in detail in the discussion section. Figure 3 shows the process
of wavelet decomposition with different sampling rates. The sampling rate of 256 Hz and 250 Hz
are very close, so we only consider the decomposition process of 250 Hz, and the selected sub-bands
of 256 Hz and 250 Hz are the same. Wavelet coefficients with sub-band frequencies in the range of
8–30 Hz are selected and used for feature extraction. The selected sub-bands are marked by the red
dotted frame in Figure 3.

The energy of the wavelet coefficients of the selected sub-bands is calculated as follows:

ei =
N∑

j=1

∣∣∣Di j
∣∣∣2, i = 1, 2, · · · , B (6)

where B represents the number of selected sub-bands, N represents the number of the wavelet
coefficients, and Di j represents the jth wavelet coefficient of the ith sub-band.

The standard deviation of the wavelet coefficients of the selected sub-bands is calculated as follows:

si =

 1
N − 1

N∑
j=1

(
Di j − µi

)2


1/2

, i = 1, 2, · · · , B (7)

the meaning of B, N and Di j is consistent with formula (6) and µi represents the average value of the
wavelet coefficients of the ith sub-band. Finally, we can get the feature vector for the CSP-Wavelet
feature extraction method as follows:

xDWT = [e1
1, s1

1, e1
2, s1

2, · · · , e1
B, s1

B︸                     ︷︷                     ︸
channel 1

; e2
1, s2

1, e2
2, s2

2, · · · , e2
B, s2

B︸                     ︷︷                     ︸
channel 2

; · · · · · · ; e2m
1 , s2m

1 , e2m
2 , s2m

2 , · · · , e2m
B , s2m

B︸                                ︷︷                                ︸
channel 2m

] (8)

where ec
i and sc

i represent energy and standard deviation of the ith sub-band of the cth channel
of Z, respectively.
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The energy of the wavelet coefficients of the selected sub-bands is calculated as follows: 

Figure 3. Wavelet decomposition with different sampling rates. (a) The sampling rate is 100 Hz and the
number of decomposition layers is 3. (b) The sampling rate is 250 Hz and the number of decomposition
layers is 4.

CSP-WPD

Similar to CSP-Wavelet, Wavelet packet decomposition is performed on each channel of Z.
The derivation of the wavelet packet decomposition formula is described in detail in [56],
interested readers can refer to literature [56]. The energy and standard deviation of the wavelet
coefficients of the selected sub-bands are extracted as features. The wavelet base and the number of
decomposition layers are the same as CSP-Wavelet. Figure 4 shows the process of wavelet packet
decomposition with different sampling rates. Wavelet coefficients with sub-band frequencies in the
range of 8–30 Hz are selected and used for feature extraction. Similar to CSP-Wavelet, the selected
sub-bands of 256 Hz and 250 Hz are the same. The selected sub-bands are marked by the red dotted
frame in Figure 4.
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Figure 4. Wavelet packet decomposition with different sampling rates. (a) The sampling rate is 100 Hz
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decomposition layers is 4.
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The calculation of the energy and standard deviation are the same as CSP-Wavelet, so the final
feature vector form is similar, details as follow:

xWPD = [e1
1, s1

1, e1
2, s1

2, · · · , e1
B′ , s1

B′︸                      ︷︷                      ︸
channel 1

; e2
1, s2

1, e2
2, s2

2, · · · , e2
B′ , s2

B′︸                      ︷︷                      ︸
channel 2

; · · · · · · ; e2m
1 , s2m

1 , e2m
2 , s2m

2 , · · · , e2m
B′ , s2m

B′︸                                ︷︷                                ︸
channel 2m

] (9)

where B′ represents the number of the selected sub-bands of CSP-WPD.

CSP-FB

After spatial filtering, the signals of each channel of Z are filtered into 10 sub-bands with bandwidth
of 4 Hz and the overlap rate of 2 Hz in the range of 8–30 Hz. A 6th order Butterworth filter is used.
Then, the logarithm of the variances of each sub-band are extracted as features. So, the final feature
vector is

xFB = [ f 1
1 , f 1

2 , · · · , f 1
2m︸           ︷︷           ︸

f ilter band 1

; f 2
1 , f 2

2 , · · · , f 2
2m︸           ︷︷           ︸

f ilter band 2

; · · · · · · ; f B′′
1 , f B′′

2 , · · · , f B′′
2m︸                ︷︷                ︸

f ilter band B′′

] (10)

where B′′ represents the number of the filter bands.

2.5. Feature Selection

After feature extracted, we can get a sample feature matrix X = (x1, x2, . . . , xN)
T, where X ∈ RN×P,

N is the total number of feature samples, P is the dimension of feature sample, xi ∈ R P, i ∈ (1, 2, . . . , N)

represents the ith feature sample (feature vector). According to different feature extraction methods, x
can be xDWT, xWPD, or xFB.

The feature vector obtained by the feature extraction method usually contains redundant
information. The redundant features not only increase the complexity of the classification model
and model training time, but also easily lead to overfitting. Therefore, feature selection is required
to remove redundant features and improve the classification accuracy. LASSO [57] is often used for
feature selection, and its mathematical model is as follows:

min
w

1
2
‖y−Xw‖22 + λ‖w‖1 (11)

where λ > 0 is the regularization parameter, w is feature weight, ‖w‖1 =
P∑

i=1
|wi|, and wi is the ith

element of w, y = (y1, y2, . . . , yN)
T are the sample labels and yi ∈ {−1, 1}. Although LASSO is widely

used and works well, features selected by LASSO are usually too sparse and scattered throughout the
feature space. When the feature dimension is much larger than the sample size, which is very common
in EEG signal decoding, the selected results are unstable [58]. In addition, LASSO has a bias problem,
which would result in significantly biased estimates, and cannot achieve reliable recovery with the
least observations [59].

In order to ameliorate the bias problem of LASSO, we proposed a non-convex sparse optimization
method for feature selection. The mathematical model can be described as follows:

min
w

1
2
‖y−Xw‖22 + λ log(1 +

‖w‖1
a

) (12)

where a > 0 is the scale parameters, a is set to 0.001 in this paper. This concave LOG function has the
better ability to encourage the sparsity than l1-norm and penalizes all elements non-uniformly [60].
In order to solve the minimization problem (12), many efficient algorithms are proposed, such as
proximal algorithms [61] or the alternating direction of multipliers method [62]. The proximal splitting
algorithms including iterative shrinkage thresholding [63] are popular methods for solving (11) and (12).
Using proximal gradient methods has many advantages than the other methods. They can deal with
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general conditions, for functions which are non-convex, or non-smooth and convex. Those algorithms
have simple forms and it is easy to derive and implement. In particular, they can be used in large
scale problems.

So, in this paper we use the iterative log thresholding [64] to solve (12). It has only two basic steps
which are iterated until convergence: (i) Gradient step. Define an intermediate point vt at the tth step
by taking a gradient step with respect to the differentiable term

vt = wt − 1/γ
(
XT(Xwt − y)

)
(13)

(ii) Proximal operator step. Evaluate the proximal operator of the non-convex log function at the
intermediate point vt

wt+1 = proxγ log(vt) = proxγ log

(
wt − 1/γ

(
XT(Xwt − y)

))
(14)

where γ = ‖XTX‖2 and proxγ log(vt) is the proximal operator of log regularization function, which is
defined as

wt+1 = proxγ log(vt) = argmin
w
λ log(1 +

‖w‖1
a

) +
γ

2
‖w− vt‖

2
2 (15)

From the paper [65], we know that (15) has the explicit solution. Therefore, wt+1 is given by the
log function’s proximal operator:

wt+1 = sign(vt)/2
(
|vt| − a +

√
(a− |vt|)

2 + 4×max(a|vt| − λ/γ, 0)
)

(16)

where sign(vt) is the algebraic sign of vt. Hence, the detailed iteration steps for solving (12) can be
expressed as 

vt = wt − 1/γ
(
XT(Xwt − y)

)
wt+1 = sign(vt)/2

(
|vt| − a +

√
(a− |vt|)

2 + 4×max(a|vt| − λ/γ, 0)
)

(17)

We can see the iteration scheme (17) is easy to implement and only involved the matrix vector
multiplication. Also, every step has a closed form solution. It is suitable for the large scale problems.
At last, the convergence of (17) is established in [64], and we refer the interested readers to [64]
for more details.

2.6. Secondary Feature Selection and Classification Model Construction

In order to select more effective features and construct a more robust classification model,
we propose an ensemble learning method for secondary feature selection and the construction of
multiple classification models. The overall processing flow is shown in Figure 5, where |w| represents
the absolute value of w. In Section 2.5, we can obtain feature weights after feature selection performed
by LASSO or LOG method. We further select features by setting a series of weight thresholds.
The candidate threshold parameters are: [0, 0.1, ..., 0.8]. The features whose weight is bigger than the
set threshold will be selected.

During the training phase, different thresholds will get different feature subsets, and feature
subsets are trained to get different classification models. In this paper, we use FLDA as the classifier,
so we get multiple FLDA classification models. During the test phase, we use the rules in the training
phase to select a subset of features, and then use the classification models obtained in the training phase
for classification. Because there are multiple classification models, we can get multiple classification
accuracy. We take the maximum of these classification accuracy as the final classification accuracy. It is
worth noting that if the feature subset is empty, the classification accuracy is directly set to 0.
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Traditional machine learning methods use cross-validation to select the optimal feature subset and
classification model in the training phase, and then use the obtained classification model for classification
in the testing phase. However, our method trains multiple models and selects the maximum value of
them as the final accuracy. This is where our work differs from previous research work. EEG signals have
strong randomness and non-stationarity, and are also easily affected by the surrounding environment
and noise during the collection process. The optimal feature subset and classification model selected
in the training phase may not be optimal in the test set when they are interfered by noise. Different
data samples suffer from different interferences. When classifying, they may get the best classification
results in different feature subsets and classification models. We choose the maximum value of multiple
classification models as the final accuracy, which has a certain degree of anti-interference and can
increase the stability and robustness of the EEG decoding model.

3. Results

3.1. Compared Methods and Parameter Settings

In this paper, we use classification accuracy as the evaluation criterion. The classification accuracy
is equal to the number of corrected classifications divided by the total number of test sets. FLDA is
used for classification. For all methods, except for SFBCSP and SBLFB methods, the original EEG
signals are filtered by 8–30 Hz band-pass filters. The compared methods are listed in Table 1, and the
parameter setting will be introduced below.
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Table 1. Compared methods.

Methods Algorithm Composition and Processing Flow

CSP Band-pass filtered EEG signals are spatially filtered by CSP. The logarithm of the
variances of spatially filtered signals are extracted as features [10].

Wavelet-CSP

The EEG signals of each channel are decomposed using DWT, the wavelet base is
db4. The number of decomposition layers of dataset 1 is 3, and the other datasets
are 4. The sub-bands related to motor imagery are used to reconstruct new
channels, and then feature extraction is performed using CSP [13].

WPD-CSP

The EEG signals of each channel are decomposed using WPD, the wavelet base is
db4. The number of decomposition layers of dataset 1 is 3, and the other datasets
are 4. The sub-bands related to motor imagery are used to reconstruct new
channels, and then feature extraction is performed using CSP [15].

SFBCSP
The original EEG signals are filtered into 17 sub-bands, and features are extracted
for each sub-band using CSP. The filter bandwidth is 4 Hz and the overlap rate is
2 Hz in the range of 4-40 Hz. The sub-band features are selected by LASSO [23].

SBLFB

The original EEG signals are filtered into 17 sub-bands, and features are extracted
for each sub-band using CSP. The filter bandwidth is 4 Hz and the overlap rate is
2 Hz in the range of 4–40 Hz. The sub-band features are selected by sparse Bayesian
learning [24].

CSP-Wavelet+LASSO
After band-pass filtering, features are extracted using CSP-Wavelet. Features are
selected by LASSO. Ensemble learning is used for secondary feature selection and
classification model construction.

CSP-WPD+LASSO
After band-pass filtering, features are extracted using CSP-WPD. Features are
selected by LASSO. Ensemble learning is used for secondary feature selection and
classification model construction.

CSP-FB+LASSO
After band-pass filtering, features are extracted using CSP-FB. Features are selected
by LASSO. Ensemble learning is used for secondary feature selection and
classification model construction.

CSP-Wavelet+LOG
After band-pass filtering, features are extracted using CSP-Wavelet. Features are
selected by LOG. Ensemble learning is used for secondary feature selection and
classification model construction.

CSP-WPD+LOG
After band-pass filtering, features are extracted using CSP-WPD. Features are
selected by LOG. Ensemble learning is used for secondary feature selection and
classification model construction.

CSP-FB+LOG
After band-pass filtering, features are extracted using CSP-FB. Features are selected
by LOG. Ensemble learning is used for secondary feature selection and
classification model construction.

The regularization parameters of LASSO and LOG are selected using 10-fold cross-validation and
grid search method. The alternative set of hyperparameters is: λ ∈ [2−5, 2−4.8, . . . 24.8, 25

]
. The LASSO

was implemented using the SLEP toolbox [66].

3.2. Experimental Results and Analysis

Table 2 shows the classification accuracy of various subjects in dataset 1 for each method.
Except for CSP, the three proposed methods are significantly better than the compared methods.
The CSP-FB+LOG method has achieved the highest average classification accuracy among the three
proposed methods, and the highest classification accuracy in multiple subjects. Four CSP improvement
methods, including Wavelet-CSP, WPD-CSP, SFBCSP, and SBLFB, have lower average accuracy than
the traditional CSP.

There are 6 types of binary classification tasks in dataset 2 and a total of 54 subject-tasks. Table 3
shows the classification accuracy of various subjects in dataset 2 for each method. The three proposed
methods are significantly better than the compared methods. The CSP-Wavelet+LOG method has
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achieved the highest average classification accuracy, followed by CSP-WPD+LOG and CSP-FB+LOG.
The Wavelet-CSP and WPD-CSP methods are slightly better than CSP, but the SFBCSP and SBLFB
methods are lower than CSP.

Table 4 shows the classification accuracy of various subjects in dataset 3 for each method.
The CSP-FB+LOG methods are significantly better than the compared methods. CSP-WPD+LOG and
CSP achieved the same average classification accuracy, and CSP-Wavelet+LOG was slightly lower
than CSP. Other methods are lower than CSP.

Table 5 shows the classification accuracy of various subjects in dataset 4 for each method. The three
proposed methods are significantly better than the compared methods. The CSP-WPD+LOG method
has achieved the highest average classification accuracy among the three proposed methods, and the
highest classification accuracy in multiple subjects. The Wavelet-CSP and WPD-CSP methods are
better than CSP, but the SFBCSP and SBLFB methods are still lower than CSP.

In order to better demonstrate the superiority of the proposed methods, Figure 6 shows the
classification accuracy of all methods in each subject. The red circle represents the classification accuracy
of dataset 1 (seven subjects). The blue box represents the classification accuracy of dataset 2 (54 subjects).
The cyan asterisk represents the classification accuracy of dataset 3 (nine subjects). The magenta
triangle represents the classification accuracy of dataset 4 (14 subjects). Points above the diagonal
indicate that the proposed methods are superior to the compared methods. From Figure 6, it can be seen
that most of the points are above the diagonal, illustrating the superiority of the proposed methods.

In order to show the overall classification effect of the proposed methods more intuitively, Figure 7
shows the average classification accuracy of each dataset and the total average classification accuracy
of all data. From Figure 7, it can be seen that the proposed methods are significantly better than other
methods. For all data, the average classification accuracy and standard deviation obtained by the CSP,
Wavelet-CSP, WPD-CSP, SFBCSP, SBLFB, CSP-Wavelet+LOG, CSP-WPD+LOG, and CSP-FB+LOG
methods are: 79.58 ± 14.47, 79.68 ± 14.98, 79.36 ± 14.17, 74.97 ± 13.42, 75.30 ± 13.58, 82.25 ± 13.57,
82.38 ± 13.77 and 82.3 ± 13.61, respectively. The CSP-WPD+LOG method achieves the highest average
classification accuracy in all data. The CSP-Wavelet+LOG and CSP-FB+LOG are slightly lower than
CSP-WPD+LOG. The Wavelet-CSP and WPD-CSP methods are slightly better than CSP. The SFBCSP
and SBLFB methods are always lower than CSP in each dataset and all data.

In order to study the effectiveness of secondary feature selection, Tables 6 and 7 show the
classification results with secondary feature selection and without secondary feature selection.
LASSO and LOG are used for feature selection, respectively. It can be seen from Tables 6 and 7
that no matter which feature extraction method, the second feature selection has achieved better
results. Especially for CSP-FB feature extraction method, the overall average classification accuracy is
improved by 3.91% for LASSO, and 3.62% for LOG.

Comparing Tables 6 and 7, we can analyze the performance of LASSO and LOG. First, we analyze
the situation without secondary feature selection. For all data, except for CSP-WPD feature extraction
method, the average classification accuracy of LOG is higher than LASSO. In the situation with
secondary feature selection, LOG is better than LASSO. No matter whether secondary feature selection
is performed, LOG is better to LASSO for CSP-Wavelet and CSP-FB feature extraction method.
In summary, the LOG is superior to LASSO.
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Table 2. Classification accuracy (Dataset 1).

Subjects CSP Wavelet-CSP WPD-CSP SFBCSP SBLFB CSP-Wavelet+LOG CSP-WPD+LOG CSP-FB+LOG

1a 77.00 61.00 59.00 63.00 61.00 67.00 64.00 73.00

1b 67.00 63.00 64.00 54.00 53.00 69.00 69.00 75.00

1c 74.00 80.00 81.00 58.00 58.00 76.00 80.00 87.00

1d 92.00 93.00 92.00 90.00 89.00 97.00 95.00 98.00

1e 97.00 97.00 97.00 96.00 96.00 97.00 100.00 99.00

1f 89.00 86.00 86.00 82.00 80.00 90.00 93.00 93.00

1g 94.00 95.00 72.00 80.00 80.00 94.00 94.00 97.00

Mean ± Std 84.29 ± 10.66 82.14 ± 13.82 78.71 ± 13.20 74.71 ± 15.18 73.86 ± 15.34 84.29 ± 12.26 85.00 ± 13.05 88.86 ± 10.12

Table 3. Classification accuracy (Dataset 2).

Subjects CSP Wavelet-CSP WPD-CSP SFBCSP SBLFB CSP-Wavelet+LOG CSP-WPD+LOG CSP-FB+LOG

A01-LR 89.58 88.19 90.28 76.39 79.17 93.06 91.67 90.28

A02-LR 56.25 51.39 54.17 52.78 52.78 61.81 55.56 61.81

A03-LR 96.53 93.06 93.75 87.5 88.89 95.83 97.22 97.92

A04-LR 71.53 66.67 64.58 63.89 63.19 72.92 72.22 69.44

A05-LR 52.08 50 54.86 81.94 81.25 58.33 62.5 52.78

A06-LR 70.14 61.81 70.83 57.64 59.03 68.06 68.06 69.44

A07-LR 81.94 82.64 85.42 77.78 82.64 81.25 79.17 77.08

A08-LR 93.06 93.75 94.44 88.19 90.28 95.14 95.14 95.14

A09-LR 89.58 90.28 90.28 85.42 84.03 93.06 93.06 90.97

A01-LF 95.83 95.14 98.61 89.58 90.28 99.31 99.31 97.22

A02-LF 71.53 68.06 72.22 70.83 73.61 69.44 67.36 75.69

A03-LF 94.44 95.83 95.14 90.28 90.97 95.83 95.14 95.83

A04-LF 78.47 83.33 84.72 81.25 80.56 81.94 88.89 85.42
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Table 3. Cont.

Subjects CSP Wavelet-CSP WPD-CSP SFBCSP SBLFB CSP-Wavelet+LOG CSP-WPD+LOG CSP-FB+LOG

A05-LF 62.5 68.75 54.86 53.47 54.17 71.53 70.83 63.89

A06-LF 66.67 68.06 72.22 64.58 65.28 70.83 68.75 68.75

A07-LF 98.61 99.31 95.83 92.36 94.44 99.31 99.31 100

A08-LF 75.69 83.33 75.69 77.08 78.47 86.11 79.86 84.72

A09-LF 95.83 93.06 93.75 93.75 93.06 97.22 97.22 93.75

A01-LT 95.14 97.92 95.14 88.19 86.81 99.31 98.61 94.44

A02-LT 65.28 61.81 64.58 61.11 62.5 69.44 67.36 63.19

A03-LT 94.44 96.53 96.53 83.33 85.42 95.83 96.53 95.83

A04-LT 87.5 89.58 88.19 76.39 77.78 88.89 88.19 89.58

A05-LT 71.53 67.36 69.44 68.06 70.83 70.14 70.83 72.92

A06-LT 70.14 65.97 71.53 66.67 68.75 70.14 70.14 76.39

A07-LT 98.61 97.22 95.14 88.89 88.89 95.14 96.53 96.53

A08-LT 91.67 89.58 90.97 80.56 84.72 93.75 93.75 88.19

A09-LT 95.83 95.83 96.53 95.83 95.83 97.92 97.92 97.92

A01-RF 93.06 96.53 96.53 77.08 78.47 98.61 98.61 98.61

A02-RF 79.86 68.06 72.92 67.36 67.36 81.94 81.25 77.08

A03-RF 93.06 95.14 95.14 84.03 84.72 93.75 95.83 97.22

A04-RF 89.58 92.36 86.11 81.94 79.86 90.28 93.75 90.28

A05-RF 52.78 55.56 58.33 59.72 58.33 64.58 67.36 63.89

A06-RF 61.81 66.67 67.36 71.53 67.36 66.67 66.67 64.58

A07-RF 97.22 100 98.61 97.22 98.61 100 97.92 98.61

A08-RF 79.86 77.08 71.53 73.61 76.39 77.08 74.31 81.25

A09-RF 83.33 84.03 85.42 74.31 75 86.81 86.81 87.5

A01-RT 98.61 100 100 87.5 85.42 100 100 99.31

A02-RT 67.36 66.67 65.28 61.81 60.42 65.28 65.28 70.83
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Table 3. Cont.

Subjects CSP Wavelet-CSP WPD-CSP SFBCSP SBLFB CSP-Wavelet+LOG CSP-WPD+LOG CSP-FB+LOG

A03-RT 90.97 96.53 95.83 90.97 89.58 96.53 96.53 96.53

A04-RT 85.42 86.11 84.72 81.94 83.33 85.42 86.81 90.28

A05-RT 57.64 57.64 62.5 81.25 80.56 73.61 74.31 63.89

A06-RT 65.28 68.75 64.58 56.94 58.33 73.61 74.31 67.36

A07-RT 97.92 95.83 97.92 95.14 97.22 99.31 97.92 97.92

A08-RT 90.28 89.58 88.89 78.47 79.86 89.58 91.67 88.89

A09-RT 90.28 86.11 84.03 78.47 82.64 93.75 93.06 80.56

A01-FT 68.75 75.69 73.61 71.53 72.22 74.31 72.22 74.31

A02-FT 70.14 66.67 75 63.89 63.89 78.47 75 70.14

A03-FT 69.44 80.56 78.47 72.92 70.83 75.69 75.69 87.5

A07-FT 59.72 72.22 69.44 75 77.78 71.53 61.11 70.83

A08-FT 60.42 55.56 61.11 50.69 50.69 65.28 59.72 54.86

A09-FT 68.75 72.22 70.14 63.19 65.97 69.44 71.53 70.14

A07-FT 80.56 78.47 80.56 75 74.31 83.33 84.72 78.47

A08-FT 83.33 79.17 82.64 77.08 79.86 82.64 86.81 84.72

A09-FT 93.75 90.28 90.28 72.92 72.22 94.44 94.44 85.42

Mean ± Std 80.36 ± 3.98 80.52 ± 4.36 80.86 ± 3.54 76.21 ± 1.80 76.94 ± 11.94 83.40 ± 12.47 83.05 ± 3.15 82.15 ± 3.16

Table 4. Classification accuracy (Dataset 3).

Subjects CSP Wavelet-CSP WPD-CSP SFBCSP SBLFB CSP-Wavelet+LOG CSP-WPD+LOG CSP-FB+LOG

B01 77.5 78.75 76.25 71.25 78.75 78.75 81.25 88.75

B02 60 52.5 56.25 46.25 45 56.25 57.5 52.5

B03 46.25 43.75 45 47.5 48.75 45 45 48.75

B04 98.75 98.75 98.75 100 98.75 96.25 96.25 98.75
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Table 4. Cont.

Subjects CSP Wavelet-CSP WPD-CSP SFBCSP SBLFB CSP-Wavelet+LOG CSP-WPD+LOG CSP-FB+LOG

B05 88.75 91.25 91.25 83.75 76.25 91.25 91.25 88.75

B06 81.25 81.25 75 67.5 63.75 77.5 80 90

B07 81.25 78.75 78.75 85 83.75 85 86.25 90

B08 93.75 93.75 93.75 75 71.25 92.5 92.5 92.5

B09 81.25 81.25 73.75 65 68.75 81.25 78.75 83.75

Mean ± Std 78.75 ± 15.47 77.78 ± 17.32 76.53 ± 16.42 71.25 ± 16.43 70.56 ± 15.8 78.19 ± 16.13 78.75 ± 16.01 81.53 ± 16.95

Table 5. Classification accuracy (Dataset 4).

Subjects CSP Wavelet-CSP WPD-CSP SFBCSP SBLFB CSP-Wavelet+LOG CSP-WPD+LOG CSP-FB+LOG

S01 56.67 58.33 65.00 63.33 66.67 68.33 70.00 66.67

S02 85.00 90.00 86.67 76.67 78.33 90.00 93.33 90.00

S03 100.00 98.33 100.00 98.33 98.33 100.00 100.00 100.00

S04 85.00 85.00 85.00 76.67 83.33 91.67 91.67 86.67

S05 60.00 58.33 60.00 50.00 50.00 63.33 63.33 71.67

S06 66.67 75.00 66.67 60.00 56.67 76.67 75.00 81.67

S07 90.00 93.33 88.33 93.33 91.67 91.67 91.67 85.00

S08 81.67 83.33 86.67 81.67 81.67 88.33 90.00 91.67

S09 98.33 98.33 98.33 95.00 93.33 100.00 100.00 98.33

S10 53.33 55.00 60.00 51.67 55.00 53.33 60.00 65.00

S11 76.67 80.00 71.67 80.00 80.00 81.67 81.67 80.00

S12 81.67 75.00 75.00 71.67 70.00 88.33 90.00 88.33

S13 60.00 50.00 55.00 61.67 63.33 58.33 61.67 60.00

S14 51.67 70.00 61.67 58.33 50.00 60.00 63.33 56.67

Mean ± Std 74.76 ± 15.93 76.43 ± 15.63 75.72 ± 14.44 72.74 ± 15.31 72.74 ± 15.70 79.40 ± 15.39 80.83 ± 14.29 80.12 ± 13.44
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In addition to LASSO, our method is also compared with other three feature selection methods,
and the corresponding results are showed in Table 8. Fisher score (F-score) [36] combined with FLDA
classifier constitutes a wrapped feature selection method. The optimal feature subset is selected using
10-fold cross-validation. Genetic algorithm (GA) and binary particle swarm optimization (BPSO)
can be referred to the literature [67], and the parameter settings and classifier of these two methods are
consistent with literature [67]. After feature selection, FLDA is used for classification. For data set 1,
when CSP-WPD is usd for feature extraction, the average classification accuracy of LOG is slightly lower
than that of LASSO. For dataset 2, when CSP-FB is used for feature extraction, the average classification
accuracy of LOG is slightly lower than that of LASSO. In other cases, LOG is better than LASSO. It can
be seen from Table 8 that LOG has achieved the best classification effect, which is significantly better
than other feature selection methods. In addition, F-score is better than GA and BPSO.

In order to study the effect of different classifiers on the performance of LOG, Table 9 shows the
classification results of LOG using three classifiers. SVM is implemented using LIBSVM toolbox [68].
SVM uses the linear kernel function, and the parameter settings of SVM are set according to the
toolbox default settings. Bayesian linear discriminant analysis (BLDA) [69] is an improvement of FLDA.
The BLDA model parameters are automatically estimated from the training data. For CSP-Wavelet+LOG
and CSP-WPD+LOG, the average accuracy (for all data) of FLDA is higher than that of SVM and
BLDA. For CSP-FB+LOG, the average accuracy of FLDA is almost the same as that of SVM and BLDA.
In general, FLDA is better than SVM and BLDA. Therefore, when selecting a classifier, FLDA is a better
choice for the proposed methods in this paper.

In order to more comprehensively evaluate the effectiveness of our method, Tables 10–12
respectively show the classification results of our method and other existing methods in the three BCI
data sets.

Table 10 shows the classification accuracy of the proposed methods and other resent methods
for BCI Competition IV Dataset I. It can be seen from Table 10 that CSP-FB+LOG is second only
to literature [73]. The average classification accuracy of CSP-WPD+LOG is lower than that of
literatures [73,74]. CSP-Wavelet+LOG is not good but not bad either, rather the effect is mediocre.
The literature [73] proposed a novel feature extraction method in which the hybrid features of the brain
function based on the bilevel network are extracted. Minimum spanning tree (MST) based on EEG
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signal nodes in different motor imagery is constructed as the first network layer to solve the global
network connectivity problem. In addition, the regional network in different movement patterns is
constructed as the second network layer to determine the network characteristics, which is consistent
with the correspondence between limb movement patterns and cerebral cortex in neurophysiology.
Although literature [73] has achieved better results, it is stronger a priori both in terms of frequency
bands and EEG electrodes used to perform the classification. Our method does not require any
prior information.

Table 11 shows the classification accuracy of the proposed methods and other resent methods
for BCI Competition IV Dataset IIa. It can be seen from Table 11 that CSP-Wavelet+LOG
and CSP-WPD+LOG is second only to literature [80]. CSP-FB+LOG is slightly lower than the
literatures [76,77]. Although the literature [80] has achieved good classification results, the literature [80]
relies on the data of other subjects. Our method only uses data from the subjects themselves. Therefore,
our method is more independent.

Table 12 shows the classification accuracy of the proposed methods and other resent methods
for BCI Competition IV Dataset IIb. It can be seen from Table 12 that CSP-FB+LOG is second only to
literature [30]. CSP-WPD+LOG is lower than the literatures [30,84]. The effect of CSP-Wavelet+LOG is
relatively poor. Literature [30] uses EMD time-frequency analysis method for feature extraction and
CNN for classification. Compared with literature [30], considering the time of feature extraction and
the complexity of the model, our method has certain advantages.
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Table 6. The effect of secondary feature selection on average classification accuracy of various datasets (the LASSO method).

Datasets
Without Secondary Feature Selection With Secondary Feature Selection

CSP-Wavelet+LASSO CSP-WPD+LASSO CSP-FB+LASSO CSP-Wavelet+LASSO CSP-WPD+LASSO CSP-FB+LASSO

dataset 1 80.71 81.86 78.29 82.71 85.43 86

dataset 2 80.53 80.95 79.51 82.69 82.91 82.57

dataset 3 76.94 75.14 77.36 77.64 75.97 80.97

dataset 4 76.55 76.79 73.33 78.57 79.17 78.81

All data 79.5 79.71 78.15 81.46 81.75 82.06

Table 7. The effect of secondary feature selection on average classification accuracy of various datasets (the LOG method).

Datasets
Without Secondary Feature Selection With Secondary Feature Selection

CSP-Wavelet+LOG CSP-WPD+LOG CSP-FB+LOG CSP-Wavelet+LOG CSP-WPD+LOG CSP-FB+LOG

dataset 1 80.71 81.57 81.71 84.29 85 88.86

dataset 2 80.63 80.4 79.22 83.4 83.05 82.15

dataset 3 75.97 76.11 79.17 78.19 78.75 81.53

dataset 4 77.38 77.86 74.76 79.4 80.83 80.12

All data 79.6 79.62 78.68 82.25 82.38 82.3
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Table 8. The effect of different feature selection methods on average classification accuracy of various datasets.

Feature Extraction Feature
Selection Dataset 1 Dataset 2 Dataset 3 Dataset 4 All Data

CSP-Wavelet

F-score 82.86 80.79 75.83 76.79 79.76

GA 79.29 80.09 75.97 75.12 78.76

BPSO 81.29 80.17 78.47 76.43 79.46

LASSO 82.71 82.69 77.64 78.57 81.46

LOG 84.29 83.4 78.19 79.4 82.25

CSP-WPD

F-score 81.57 80.56 75.56 77.97 79.67

GA 81.57 80.59 74.72 77.14 79.47

BPSO 81.14 80.08 74.86 75.59 78.86

LASSO 85.43 82.91 75.97 79.17 81.75

LOG 85 83.05 78.75 80.83 82.38

CSP-FB

F-score 82.29 80.74 78.75 77.26 80.07

GA 81.86 80.03 78.75 74.05 79.05

BPSO 81.86 79.49 79.17 73.81 78.7

LASSO 86 82.57 80.97 78.81 82.06

LOG 88.86 82.15 81.53 80.12 82.3

Table 9. The effect of different classifiers on average classification accuracy of various datasets.

Datasets
CSP-Wavelet+LOG CSP-WPD+LOG CSP-FB+LOG

SVM BLDA FLDA SVM BLDA FLDA SVM BLDA FLDA

dataset 1 85 83.14 84.29 84.29 84.29 85 89.14 89.29 88.86

dataset 2 82.11 82.99 83.4 82.82 82.91 83.05 82.54 82.64 82.15

dataset 3 78.47 78.33 78.19 78.75 80.28 78.75 80.83 80.28 81.53

dataset 4 76.67 79.52 79.4 77.02 79.52 80.83 79.52 79.4 80.12

All data 81.06 81.92 82.25 81.54 82.18 82.38 82.4 82.4 82.3

Table 10. Classification accuracy of the proposed methods and other resent methods for BCI Competition
IV Dataset I.

Methods 1a 1b 1c 1d 1e 1f 1g Mean ± Std

PELM [70] (2018) 79.00 56.50 59.50 73.00 71.50 64.50 85.00 70.00 ± 10.33
LRFCSP [71] (2019) 87.40 70.00 67.40 92.90 93.40 88.80 93.20 84.70 ± 11.22

OPTICAL [72] (2019) 87.32 61.67 71.83 88.17 89.00 85.83 93.83 82.53 ± 8.17
BF [73] (2020) 86.24 88.31 92.89 89.51 90.92 88.46 90.16 89.50 ± 2.12

SCSP-RDA [74] (2020) 97.00 96.00 72.50 75.00 78.50 96.00 95.50 87.21 ± 11.26
CSP-Wavelet+LOG 67 69 76 97 97 90 94 84.29 ± 12.26

CSP-WPD+LOG 64 69 80 95 100 93 94 85.00 ± 13.05
CSP-FB+LOG 73 75 87 98 99 93 97 88.86 ± 10.12

Table 11. Classification accuracy of the proposed methods and other resent methods for BCI Competition
IV Dataset IIa.

Methods A01 A02 A03 A04 A05 A06 A07 A08 A09 Mean ± Std

GRU-RNN [75] (2018) 84.82 65.32 83.54 67.67 64.00 70.87 84.96 71.95 68.90 73.56 ± 4.38
CSP\AM-BA-SVM [76] (2018) 90.56 66.32 91.99 70.28 68.53 55.75 90.63 87.80 85.07 78.55 ± 13.40

ERDSA [77] (2018) 86.81 63.89 94.44 68.75 56.25 69.44 78.47 97.91 93.75 78.86 ± 15.07
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Table 11. Cont.

Methods A01 A02 A03 A04 A05 A06 A07 A08 A09 Mean ± Std

IST-TSVM [78] (2019) 80.14 51.55 95.54 53.60 51.65 56.83 56.58 93.42 92.66 70.22 ± 19.74
CA+PSR+CSP [79] (2020) 80.00 65.36 87.14 67.50 55.54 50.18 91.79 84.11 87.86 74.39 ± 15.18

MTFL [80] (2020) 91.67 63.19 95.14 72.22 64.58 68.06 79.17 97.92 92.37 80.48 ± 13.97
p-LTCSP [81] (2020) 82.60 70.23 70.23 55.15 54.36 60.14 73.38 85.29 74.62 69.56 ± 11.10
CSP-Wavelet+LOG 93.06 61.81 95.83 72.92 58.33 68.06 81.25 95.14 93.06 79.91 ± 15.06

CSP-WPD+LOG 91.67 55.56 97.22 72.22 62.50 68.06 79.17 95.14 93.06 79.40 ± 15.56
CSP-FB+LOG 90.28 61.81 97.92 69.44 52.78 69.44 77.08 95.14 90.97 78.32 ± 16.02

Table 12. Classification accuracy of the proposed methods and other resent methods for BCI Competition
IV Dataset IIb.

Methods B01 B02 B03 B04 B05 B06 B07 B08 B09 Mean ± Std

DBN [82] (2018) 70.38 70.34 71.20 71.24 71.21 70.52 70.79 70.49 70.32 70.72 ± 0.40
CapsNet [83] (2019) 78.75 55.71 55.00 95.93 83.12 83.43 75.62 91.25 87.18 78.44 ± 14.44
SGRM [48] (2019) 77.30 59.10 51.50 97.00 87.40 72.50 86.70 84.70 85.60 78.00 ± 2.30
NCFS [84] (2020) 79.25 63.48 56.65 99.28 88.67 79.96 88.76 92.66 84.95 81.52 ± 13.72
CEMD [30] (2020) 80.56 65.44 65.97 99.32 89.19 86.11 81.25 88.82 86.81 82.61 ± 11.00

CSP-Wavelet+LOG 78.75 56.25 45 96.25 91.25 77.5 85 92.5 81.25 78.19 ± 16.13
CSP-WPD+LOG 81.25 57.5 45 96.25 91.25 80 86.25 92.5 78.75 78.75 ± 16.01

CSP-FB+LOG 88.75 52.5 48.75 98.75 88.75 90 90 92.5 83.75 81.53 ± 16.95

In summary, although our method has not achieved the best classification accuracy on each data
set, they are better than most existing methods. In addition, our methods have certain advantages in
feature extraction time and classification model complexity. Our method uses FLDA for classification,
and obviously the complexity of the classification model is relatively low. For the feature extraction
time, we will introduce it in detail in the discussion section.

4. Discussion

When CSP-Wavelet and CSP-WPD methods are used for feature extraction, the number of wavelet
decomposition layers has a greater impact on classification accuracy. The selection for the number
of layers considers two factors, namely the frequency resolution and the decomposition time. For a
dataset with a sampling rate of 100 Hz, when the number of decomposition layers is less than or equal
to 2, the frequency resolution is too low. It is impossible to correctly distinguish the frequency bands
related to motor imagery, which is not conducive to extracting discriminative information. When the
number of decomposition layers is greater than or equal to 5, the frequency band resolution is too high,
and the extracted features are easily affected by noise. At the same time, the decomposition time also
increased significantly. Therefore, for a dataset with a sampling rate of 100 Hz (dataset 1), only the
case of the number of layers with 3 and 4 are considered in this paper. Similarly, for a dataset with a
sampling rate of 250 Hz or 256 Hz (datasets 2–4), we only consider the case of the number of layers
with 4 and 5.

Tables 13 and 14 show the classification results of CSP-Wavelet and CSP-WPD methods using
different decomposition layers, respectively. We first discuss the CSP-Wavelet method. In Table 13,
when the sampling rate of the dataset is 100 Hz, L1 = 3, and L2 = 4. When the sampling rate of the
dataset is 250 Hz or 256 Hz, L1 = 4, and L2 = 5. It can be seen from Table 13 that the classification
accuracy of the smaller number of decomposition layers is usually greater than that of the larger
number of decomposition layers. Even in some cases, the larger number of decomposition layers get a
slightly better classification accuracy, considering the decomposition time, we still choose a smaller
number of decomposition layers. In Table 14, for CSP-WPD method, we can obtain similar results.
Therefore, for the sampling rate of the dataset is 100 Hz, the number of decomposition layer with
3 is selected in this paper. For the sampling rate of the dataset is 250 Hz or 256 Hz, the number of
decomposition layer with 4 is selected.
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Table 13. The effect of wavelet decomposition layers and sub-band selection on average classification
accuracy of various datasets (the CSP-Wavelet method).

Dataset
Without Sub-Bands Selected With Sub-Bands Selected

CSP-Wavelet+LOG
(L1)

CSP-Wavelet+LOG
(L2)

CSP-Wavelet+LOG
(L1)

CSP-Wavelet+LOG
(L2)

dataset 1 83 82.86 84.29 84.29

dataset 2 83.03 82.96 83.4 83.4

dataset 3 79.72 79.44 78.19 78.19

dataset 4 80.12 80.48 79.4 79.4

All data 82.19 82.16 82.25 82.25

Table 14. The effect of wavelet decomposition layers and sub-band selection on average classification
accuracy of various datasets (the CSP-WPD method).

Dataset
Without Sub-Bands Selected With Sub-Bands Selected

CSP-WPD+LOG
(L1)

CSP-WPD+LOG
(L2)

CSP-WPD+LOG
(L1)

CSP-WPD+LOG
(L2)

dataset 1 84.14 83.86 85 84.71
dataset 2 82.65 80.95 83.05 82.51
dataset 3 78.33 76.81 78.75 77.36
dataset 4 77.62 77.86 80.83 80.48
All data 81.47 80.24 82.38 81.8

In Tables 13 and 14, we not only studied the influence of the number of decomposition layers
on the classification results, but also studied the influence of sub-band selection on the classification
results. As it can be seen from Tables 13 and 14, in most cases, sub-band selection helps to improve
the classification accuracy. Manually excluding sub-bands that are obviously unrelated to the motor
imagery tasks can remove redundant information and reduce noise interference, and also reducing
feature dimensions and model complexity. Therefore, sub-band selection can improve classification
accuracy. It is worth pointing out that, when selecting sub-bands of CSP-Wavelet, the number of
decomposition layers has no effect on the classification accuracy. The reason for this is that, when the
number of decomposition layers is greater than or equal to three (100 Hz sampling rate) or greater
than or equal to four (250 Hz or 256 Hz sampling rate), the selected sub-band are the same.

LASSO has been widely used in EEG feature selection. However, LASSO is a biased estimation
of the l0-norm, which regularize the feature weights with l1-norm. The feature weights obtained by
LASSO deviate from the true value and are too sparse. Non-convex regularization can alleviate the
bias problem of l1-norm [50]. Therefore, the LOG method proposed in this paper can improve the
classification accuracy. To illustrate the problem more intuitively, for subject A01 with motor imagery
tasks of left hand vs. right hand, Figure 8 shows the feature weights obtained by LASSO and LOG,
where features are extracted by CSP-FB. The lower part of Figure 8 is the feature weight obtained by
performing the second feature selection on the feature weights obtained by LASSO and LOG. A total of
six channels of signals are retained after CSP filtered. The feature index 1–10 in Figure 8 corresponds
to the features of the first channel signal after filtered by 8–12 Hz, 10–14 Hz, ..., 26–30 Hz band-pass
filters. The feature index 11–20 corresponds to the features of the second channel signal after filtered
by 8–12 Hz, 10–14 Hz, ..., 26–30 Hz band-pass filters. The other feature indexes can be deduced by
analogy. It can be seen from Figure 8 that the features selected by the LOG method include the features
of the first and second channel signals and the fifth and sixth channel signals, while LASSO only
selects the features of the second channel signal and the sixth channel signal. Therefore, the features
selected by the LOG method contain more information, which is more discriminative (according to
the CSP principle, the signals of the front and back m channel signals are more discriminative).
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In summary, the features selected by LASSO are too few, and at the same time the selected features are
not discriminative enough.
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In the classification results of all datasets, the SFBCSP and SBLFB methods are relatively poor.
We use the ensemble learning method proposed in this paper to optimize these two methods, and the
results are shown in Figure 9. Although the classification accuracy of the SFBCSP and SBLFB methods
are effectively improved, compared with the other methods, the effect is still not good. The SFBCSP
and SBLFB methods do not achieve good classification results in this paper, there may be two reasons.
On the one hand, the datasets used in this paper are different from the compared methods. The SFBCSP
and SBLFB methods may not be applicable to new datasets. On the other hand, although we have
tried to restore the SFBCSP and SBLFB methods described by the author, there may be some data
processing steps and some details may not be handled properly. It is worth noting that the effect of the
algorithms restored in this paper is similar to that in the literature [26]. Specifically, the SFBCSP and
SBLFB methods do not perform well on the dataset 1.

Table 15 shows the feature extraction time of training set for each method. Three subjects were used
for the experiment, namely 1a, A01, and S01. These three subjects were from three different datasets,
and these three datasets had different sampling rates and channel number. The feature extraction
process of SFBCSP and SBLFB is the same, so the feature extraction time is the same. Comparing
the three proposed methods with existing methods (CSP-Wavelet vs. Wavelet-CSP, CSP-WPD vs.
WPD-CSP, and CSP-FB vs. SFBCSP), the feature extraction time is significantly reduced. Among the
three newly proposed methods, CSP-FB has the least time. Although CSP-FB takes longer time than
CSP, it can still be used in real-time BCI.

The three proposed methods in this paper do not consider the selection of time window during
feature extraction. The correct selection of time window can effectively improve the classification
accuracy, which has been verified in many existing works, such as literature [44,46]. Therefore,
in future work, we will consider integrating the selection of time windows into the proposed methods
to further improve classification performance. In addition, the feature selection method proposed in
this paper uses cross-validation to obtain model parameters. The model training is cumbersome and
time-consuming. On the other hand, the parameters obtained by cross-validation are not necessarily
optimal, especially in the case of small samples [85]. Implementing LASSO and LOG under the
Bayesian framework [86] to avoid tedious cross-validation will further improve the performance of the
proposed methods.
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Table 15. Feature extraction time of training set for each method (Unit: second).

Subject CSP Wavelet-CSP WPD-CSP SFBCSP (SBLFB) CSP-Wavelet CSP-WPD CSP-FB

1a 0.145 11.702 60.797 1.037 2.109 8.299 0.543
A01 0.126 8.420 36.241 0.850 3.648 19.525 0.809
S01 0.096 3.286 17.283 0.646 2.650 13.636 0.492

5. Conclusions

In this paper, we have proposed three new feature extraction methods and one feature selection
method. FLDA is used for classification. Combining feature extraction and feature selection methods,
we can obtain three new EEG decoding methods, namely CSP-Wavelet+LOG, CSP-WPD+LOG,
and CSP-FB. The classification performance of the proposed methods is better than the existing
methods. CSP-WPD+LOG has achieved the highest total average classification accuracy among the
three new methods, but the feature extraction time is the longest. The classification accuracy of
CSP-Wavelet+LOG and CSP-FB is slightly lower than CSP-WPD+LOG, but these two methods have a
huge time advantage, especially CSP-FB, which can be used in real-time brain-computer interface.

In future work, we will continue to optimize the proposed method. For example, we can improve
the selection of the optimal filtering frequency band and time window, and the selection method
of model parameters. In addition, multi-classification expansion will also be part of our future
research content.
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