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Abstract

The major heat shock protein Hsp72 is expressed at elevated levels in many human cancers and its 

expression correlates with tumor progression. Here we investigated the role of Hsp72 in Her2 

oncogene-induced neoplastic transformation and tumorigenesis. Expression of Her2 in 

untransformed MCF10A mammary epithelial cells caused transformation, as judged by foci 

formation in culture and tumorigenesis in xenografts. However, expression of Her2 in Hsp72-

depleted cells failed to induce transformation. The anti-tumorigenic effects of Hsp72 

downregulation were associated with cellular senescence due to accumulation of p21 and 

depletion of survivin. Accordingly, either knockdown of p21 or expression of survivin reversed 

this senescence process. Further, we developed an animal model of Hsp72-dependent breast 

cancer associated with expression of Her2. Knockout of Hsp72 almost completely suppressed 

tumorigenesis in the MMTVneu breast cancer mouse model. In young Hsp72 KO mice, 

expression of Her2 instead of mammary tissue hyperplasia led to suppression of duct development 

and blocked alveolar budding. These effects were due to massive cell senescence in mammary 

tissue, which was associated with upregulation of p21 and downregulation of survivin. Therefore 

Hsp72 plays an essential role in Her2-induced tumorigenesis by regulating oncogene-induced 

senescence pathways.
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Introduction

Two recent groundbreaking reports demonstrated that tumorigenesis in several animal 

models depends on the heat shock transcription factor Hsf1 (1, 2). For example, hsf1 

knockout dramatically delayed overall development of various tumors and increased 
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survival of p53 knock-in mutant (R172H) mice (1). Similarly, Hsf1 deficiency drastically 

delayed chemical skin carcinogenesis and increased survival (2). Importantly, knockdown of 

Hsf1 in several cancer cell lines led to significant growth inhibition. The growth dependence 

of cancer cells on Hsf1 was the basis for a novel concept of “non-oncogene addiction” of 

cancer cells (3, 4). According to this concept, cancer cells acquire properties that make their 

survival dependent on proteins which are dispensable for a normal cell, which makes these 

proteins attractive targets for drug development.

Recently, we developed a cell culture model to investigate effects of Hsf1 on tumor 

development. In this model, growth of untransformed immortalized human mammary 

epithelial cells MCF10A was not affected by the shRNA knockdown of Hsf1 (5). On the 

other hand, expression of the activated Her2 (ErbB2) oncogene in the Hsf1 knockdown 

MCF10A cells, instead of transformation, triggered growth arrest and senescence. As a 

result, these cells could not form tumors in xenografts (5). Accordingly, MCF10A cells 

expressing Her2 oncogene became “addicted” to Hsf1. Hsf1 is a transcription factor that 

affects expression of more than 5% of human genes, many of which could potentially 

influence tumor development, e.g. MDR, proinflammatory cytokines or MTA (6). However, 

the Hsf1 targets that define the “addiction” of tumor cells to Hsf1 remain unclear. We 

hypothesized that the major effect of Hsf1 on tumor development is via regulation of 

expression of the inducible heat shock protein Hsp72 (Hspa1). Indeed, we have previously 

demonstrated that Her2 oncogene induces Hsp72 in Hsf1-dependent fashion, and that 

knockdown of Hsp72 similarly promotes growth arrest and senescence of MCF10A cells 

expressing Her2 (5). One of the goals of this study was to investigate how Hsp72 regulates 

Her2-induced senescence of mammary epithelial cells.

In addition to mediating protein folding and degradation (7), Hsp72 can regulate cell 

signaling pathways, e.g. JNK, ERK or NF-kB, that play important roles in apoptosis, 

inflammation, diabetes and other physiological responses (8–12). There are multiple reports 

in the literature implicating Hsp72 in tumorigenesis (10, 13–15). The majority of these 

reports are correlative studies, demonstrating that in many tumors and cancer cell lines 

Hsp72 levels are constitutively elevated (10, 11, 14, 15). Moreover, high levels of Hsp72 

correlate with metastasis, resistance to anticancer drugs, and poor prognosis in many human 

cancers (13). In addition, there are studies demonstrating that Hsp72 plays a critical role in 

apoptosis survival and proliferation of cancer cell lines in culture. For example, depletion of 

Hsp72 along with its constitutively expressed housekeeping homolog, Hsc73 (Hspa8), led to 

apoptosis of certain cancer lines (8). Furthermore, downregulation of Hsp72 alone caused 

apoptosis or enhanced drug sensitivity (8, 16, 17). The latter observation suggests that 

Hsp72 may be a potential candidate for targeted drug design. In fact, a novel Hsp72 inhibitor 

has been shown to have tumor suppressor properties (18, 19), however, the drug currently 

lacks sufficient specificity, and has other targets as well (18, 19).

Previously we have shown that knockdown of Hsp72 induces senescence in a variety of 

cancer lines but not in untransformed epithelial cells (5, 20). Interestingly, depending on the 

presence of either PIK3CA or Ras oncogenes depletion of Hsp72 triggered either p53- or 

MAPK-dependent senescence signaling pathways (20). Based on these data, we proposed a 

novel concept that Hsp72 plays a major role in cancer cell evasion of oncogene-induced 
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senescence (OIS). According to this concept, oncogene expression in an epithelial cell 

activates distinct senescence signaling pathways that are kept in check by elevated levels of 

Hsp72 allowing cell proliferation, and eventually formation of tumors. Conversely, 

decreasing Hsp72 levels shifts the balance to favor senescence signaling over mitogenic 

signaling, triggering cell senescence that prevents tumor development.

None of these works, however, addressed genetically effects of Hsp72 in a relevant animal 

model. Another goal of this investigation was to establish animal breast cancer models, both 

xenografts and knockouts, which are dependent on Hsp72. Further, we aimed to dissect the 

stage in tumor development that requires Hsp72.

Materials and methods

Animals

Animal maintenance and experiments were conducted in compliance with IACUC 

guidelines. MMTVneu+/+ mice (FVB/N, Jackson’s lab) were crossed with WT mice or 

hsp70−/− mice (C57/129)to generate WT-MMTVneu+/−, hsp70+/−MMTVneu+/−, and 

hsp70−/−MMTVneu+/− mice. Mice were sacrificed at 3-months of age to study mammary 

gland hyperplasia or were kept to monitor tumor development.

Cell cultures and reagents

MCF10A cells were cultured in DMEM/F12 medium supplemented with 5% horse serum, 

20 ng/mL epidermal growth factor, 0.5 μg/mL hydrocortisone, 10 μg/mL human insulin, and 

100 ng/mL cholera toxin. HEK293T cells were from ATCC and were cultivated in 

Dulbecco’s modified Eagle’s medium supplemented with 10% heat inactivated FBS. SK-

BR3 cells were cultured in McCoy’s 5A medium with 10% FBS and MDA-MB453 cells 

were cultured in Leibovitz’s L-15 medium with 10% FBS.

Retroviral vectors and infection

RNAi-Ready pSIREN-RetroQ vector from BD Biosciences retroviral delivery system was 

used for knockdown of Hsp72. The sequence of human Hsp72 gene was selected as reported 

before (19). Her2 and control (pBABE) retroviral vectors were a kind gift of C. 

Spangenberg (21). This version of Her2 carries the activating V664E mutation (NeuT). 

Retroviruses were produced as reported before (16, 20). Briefly, HEK293T cells were co-

transfected with plasmids expressing retroviral proteins Gag-Pol, VSV-G pseudotype, and 

enhanced green fluorescent protein (EGFP) or our constructs using lipofectamine 2000 

(Invitrogen). 48 hours after transfection, supernatants containing the retroviral particles were 

collected and frozen at −70 until use. MCF10A cells were infected with diluted supernatant 

in the presence of 10 μg/ml Polybrene overnight, and were selected with puromycin (0.75 

μg/ml) 48 hours after infection. Retroviral vectors expressing EGFP was used as infection 

efficiency indicator: usually ~90% of cells were fluorescent 2 days after infection.

Immunoblot analysis

Cells were washed twice with PBS and lysed in lysis buffer (40 mM HEPES [pH 7.5], 50 

mM KCl, 1% Triton X-100, 1mM Na3VO4, 50 mM glycerophosphate, 50 mM NaF, 5 mM 
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EDTA, 5 mM EGTA, 1 mM phenylmethylsulfonyl fluoride, 1 mM benzamidine, and 5 

μg/ml each leupeptin, pepstatin A, aprotinin). Protein concentration of the lysates was 

measured with the Bio-Rad protein assay reagent, after which they were diluted with lysis 

buffer to achieve equal protein concentrations. Antibodies used for this study were listed as 

follow: anti-Hsp72 from Stressgen; anti-p21 and anti-PARP from BD PharMingen; anti-

vimentin from LabVision (Thermo Scientific); anti-survivin from Santa Cruz; anti-β-actin 

from Sigma.

Cell growth and foci formation

Cell growth curve was performed by seeding 5000 cells per well in 12-well plate and cell 

number was monitored every two days. To study foci formation, cells were seeded at 3×105 

per well in 6-well plate and were let grow for 2 days until foci can be observed under 

microscope. Then cells were washed twice with PBS, fixed with 2% formaldehyde/0.2% 

glutaraldehyde in PBS for 10 min, and stained with hematoxylin.

Xenografts

For establishing tumor xenografts, cells were trypsinized, mixed at 1:1 ratio with matrigel, 

and 0.25 million cells of each culture were injected subcutaneously into 6-week-old female 

NCR nude mice (Taconic). Tumor growth was monitored twice a week using caliper.

β-galactosidase assay

β-galactosidase assay was carried out using X-gal (pH 6.0) as described previously (16, 20). 

Cells were plated at a low density and fixed with 2% formaldehyde and 0.2% 

glutaraldehyde. The β-galactosidase activity was determined by incubation with 1 mg/ml of 

solution of X-gal (5-bromo-4-chloro-3-indolyl β-D-galactopyranoside) in 40 mM sodium 

citrate, 5 mM K3FeCN6, 5 mM K4FeCN6, 150 mM NaCl, 2 mM MgCl2 diluted in 

phosphate-buffered saline (pH 6.0). The number of stained cells was counted under 

microscope from five different fields and the proportion of stained cells was calculated. The 

results were expressed as mean value ± S.D. on three independent experiments. Mammary 

gland whole mounts were fixed in formalin overnight at 4°C and were stained with the same 

β-galactosidase activity assay buffer mentioned above.

Immunohistochemistry

Mammary tissues from 3-month old virgin mice were fixed in formalin overnight and were 

processed into parafin sections (5 μm in thickness). Immunohistochemical staining was 

performed using the standard ABC method (Vector Laboratory).

Results

Hsp72 depletion precipitates senescence in MCF10A cells expressing Her2

Previously, we described that Hsf1 knockdown dramatically changes the response of 

immortalized mammary epithelial cells MCF10A to Her2 oncogene. In these cells, 

expression of Her2 instead of transformation precipitated senescence (5). We hypothesized 

that this effect was associated with the failure of Hsf1-mediated Hsp72 induction. This 
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hypothesis was consistent with our observation that Her2 expression in the Hsp72 

knockdown MCF10A cells also triggers senescence (5). To further explore this possibility, 

we investigated whether knockdown of Hsp72 changes the responses of MCF10A cells to 

expression of Her2 similarly to Hsf1. Accordingly, late passage MCF10A cells were 

infected with control retrovirus or retrovirus expressing the shRNA against Hsp72 

(shHsp72) (as described previously (5)) and selected with puromycin for 48h, which resulted 

in more than 80% downregulation of Hsp72 (Fig. 1A). This treatments did not affect cell 

viability, and only slightly diminished growth rate (Fig. 1B), indicating that Hsp72 is 

dispensable for growth of normal cells. Then cells were infected with retrovirus expressing 

the constitutively active Her2 mutant V664E (neuT). On day 2 post-infection, cells were 

plated and the cell number was counted every 2 days. Knockdown of Hsp72 slightly 

decreased the growth of control MCF10A cells (Fig. 1B). Expression of Her2 also caused a 

minor reduction of growth rate in control cells (probably because of a slight p21 

upregulation, see bellow, Fig. 2A). Importantly, when we expressed Her2 in Hsp72-depleted 

cells, a dramatic growth inhibition was observed (Fig. 1B). This slowdown of cell 

proliferation did not result from apoptosis, since little PARP cleavage was found under these 

conditions (Fig. S1). On the other hand, there was a pronounced change in cell morphology 

indicative of senescence, including enlarged, flattened morphology, extensive vacuolization 

(Fig. 1C) and appearance of the senescence-associated β-galactosidase (β-gal) activity(5).

Since Hsp72 was critical for proliferation of Her2-expressing MCF10A cells, we further 

explored if Hsp72 knockdown has effects on cellular transformation. Expression of Her2 in 

control MCF10A cells led to increased expression of the epithelial-mesenchymal transition 

marker vimentin, and promoted formation of foci in control MCF10A cells (Fig. 1D), 

demonstrating that cells underwent neoplastic transformation. In contrast, expression of 

Her2 in cells with knockdown of Hsp72 led to minimal upregulation of vimentin, and failed 

to promote foci formation (Fig. 1E), indicating that Hsp72 is critical for Her2-induced 

transformation in cell culture. Importantly, knockdown of Hsp72 did not reduce Her2 

signaling, as judged by activation of the ERK and Akt pathways. In fact, the ERK signaling 

pathway was even over-activated by Her2 in Hsp72-depleted cells (Fig. S2), similar to what 

we observed with Ras oncogene expression (20). Taken together with the observation that 

expression of Her2 in control cells led to increased Hsp72 levels (Fig. 1A and ref. 5), this 

provides further support for the “chaperone addiction” model relating increased Hsp levels 

to oncogenic transformation.

Hsp72 controls Her2-induced senescence by regulating p21 and survivin

To clarify the Her2-induced senescence mechanisms controlled by Hsp72, we assessed the 

levels of p21Cip, which is one of the major regulators of senescence in cancer cells (22, 23). 

Furthermore, Hsf1 exerts its action on Her2-induced senescence in part through p21 (5). As 

expected, p21 was mildly up-regulated by Her2 expression in MCF10A cells. Similarly, 

Hsp72-depleted cells showed a minor increase in p21 levels (Fig. 2A). However, there was a 

strong induction of p21 upon expression of Her2 in shHsp72 cells (Fig. 2A). To investigate 

the importance of p21 in the onset of Her2-induced senescence in cells that lack Hsp72, we 

used wild type (WT) and p21 knockout (KO) MCF10A cells (a kind gift of Dr. Park, ref. 

24). In WT MCF10A cells, Hsp72-knockdown caused Her2 expression to induce senescence 
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whereas in p21 KO cells there was little senescence and the cells continue forming foci (Fig. 

2B and S3A). Therefore, p21 plays an important role in Her2-induced senescence and 

suppression of transformation in Hsp72-depleted cells.

Another component of the Her2-induced senescence regulated by Hsf1 was survivin (5), 

which affected senescence pathway independent of p21. Therefore, we addressed whether 

Hsp72 can also regulate the effect of Her2 on survivin. Survivin plays a critical role in cell 

proliferation (24), and its expression closely correlates with tumor grade and progression 

(24, 25). In MCF10A cells, expression of Her2 alone had little effect on survivin (Fig. 2C). 

Hsp72 knockdown in MCF10A cells caused about 60% downregulation of survivin, which 

however did not significantly affect cell growth, as shown on Fig. 1B. However, expression 

of Her2 in shHsp72 cells led to more than 90% depletion of survivin. To test for the 

importance of survivin in Her2-induced senescence, we infected control and shHsp72 

MCF10A cells with lentivirus expressing survivin, and following brief selection infected 

cells with Her2-expressing virus. Survivin expression rescued the senescence phenotype in 

Hsp72-knockdown cells upon Her2 expression, as judged by cell morphology and β-gal 

staining (Fig. 2D and S3B), indicating that suppression of survivin observed in Hsp72 

knockdown cells significantly contributes to growth inhibition and onset of senescence 

under these conditions.

To understand the relevance of the Hsp72 effects to human cancer, we studied the 

consequence of Hsp72 knockdown on proliferation of human cell line derived from Her2-

positive breast cancer MDA-MB453. In line with data with MCF10A cells, in the MDA-

MB453 cells (having WT p53) we observed growth inhibition and induction of p21 upon 

depletion of Hsp72 (Fig. 3A). Furthermore, there was significant downregulation of survivin 

in this cell line (Fig. 3A). Of note, growth inhibition under these conditions was not 

associated with development of the acidic β-gal activity (data not shown), suggesting that a 

component of the senescence mechanism responsible for β-gal upregulation is inactivated in 

this cancer line.

Her2-positive human cancers often lack p53. To understand the relationship between Hsp72-

regulated senescence programs, we investigated Her2-positive cancer line SK-BR3, which 

carries mutant p53. In contrast to MDA-MB453 cells that carry WT p53, Hsp72 depletion 

did not induce p21 in SK-BR3 cells (Fig. 3A). Nevertheless, depletion of Hsp72 in SK-BR3 

led to growth inhibition, which was associated with development of senescent morphology 

and accumulation of acidic β-gal activity (Fig. 3B and C), pointing to a p53-p21-

independent mechanism of senescence. Importantly, knockdown of Hsp72 in SK-BR3 cells 

led to a strong decrease in survivin levels (Fig. 3A), indicating that effects of Hsp72 on 

downregulation of survivin were p53-independent.

To test the role of survivin in p53-independent senescence upon depletion of Hsp72, we 

over-expressed survivin in SK-BR3 cells using lentiviral vector, and then knocked down 

Hsp72, as described above. As judged by suppression of β-gal activity, expression of 

survivin strongly suppressed senescence in Hsp72-depleted SK-BR3 cells (Fig. 3B), 

indicating that survivin depletion is a critical factor in the p53-independent senescence upon 

Hsp72 knockdown.

Meng et al. Page 6

Oncogene. Author manuscript; available in PMC 2012 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Thus, Hsp72 exerts its effects on Her2-induced transformation via regulation of p21 and 

survivin pathways. Taken together, these data indicate that depletion of Hsp72, a 

downstream target of Hsf1, has similar to Hsf1 knockdown effects on Her2-positive cells, 

suggesting that Hsp72 is the major contributor to the effects of Hsf1 on Her2-driven 

transformation. Furthermore, these experiments directly prove the hypothesis that Hsp72 

functions to suppress the intrinsic senescence programs activated by Her2 oncogene.

Hsp72-mediated regulation of tumor development in xenograft model

As mentioned in the introduction, so far no animal cancer model has been established to 

address the Hsp72-dependence of tumor development. Accordingly, we studied the effect of 

Hsp72 depletion on tumor formation using xenografts in nude mice. Control and Hsp72 

knockdown MCF10A cells expressing Her2 were mixed with matrigel and injected 

subcutaneously in flanks of female nude mice. Her2 appeared to cause very aggressive 

tumorigenesis, where control Her2-expressing MCF10A cells formed detectable tumors at 

xenograft injection sites with 100% probability. Tumors appeared by day 3 post-injection 

and had a very high growth rate (Fig. 4A). In contrast, Her2-expressing Hsp72 knockdown 

cells did not form tumors for at least three weeks. In a fraction of animals, tumors became 

detectable in three-four weeks post-injection (Fig. 4A). However, these tumors appear to be 

selected from cells that escaped Hsp72 knockdown (e.g. have lost the Hsp72 shRNA), since 

Hsp72 levels in these tumors were comparable to that of control cells (Fig. 4B). Therefore, it 

appears that only cells that escaped the shRNA control could form tumors, indicating the 

critical role of Hsp72 for tumorigenesis in the xenograft model.

Hsp72-mediated regulation of tumor development in transgenic model

Since experiments with the cell culture model indicate that Hsp72 controls the oncogene-

induced senescence, a simple prediction was that Hsp72 should regulate early stages of 

tumorigenesis associated with expression of the oncogenic Her2. Accordingly, depletion of 

Hsp72 might block early hyperplasia. Xenograft model does not allow dissecting where in 

the tumorigenic process Hsp72 exerts its activity. Therefore, to address this question, we 

used the transgenic animal model. Accordingly we established a mouse model in which 

Hsp72 knockout is combined with expression of Her2. For these experiments we used mice 

with both orthologs of human Hsp72, Hsp70a (Hspa1a) and Hsp70b (Hspa1b), deleted (26) 

and, hereafter termed hsp70−/−. These animals were bred with mice expressing Her2/neu 

(neu - a rodent homolog of Her2) under the control of MMTV promoter (MMTVneu) (27). 

Accordingly, we generated WT-MMTVneu+/−, hsp70+/−MMTVneu+/−, and 

hsp70−/−MMTVneu+/− mice, and followed tumor development in these animals. Because of 

the mixed background, in the experiments with transgenic animals we used littermates WT 

as controls for the knockouts. Immunostaining of sections of mammary glands obtained 

from three months old mice indicated that there was a strong induction of Her2/neu 

transgene in all animal lines compared to control animals, and there was no significant 

difference in the Her2 expression among the lines (Fig. S4). There was similar tumor 

incidence between heterozygous hsp70+/−MMTVneu+/− and WT-MMTVneu+/− mice 

(median tumor appearance in this strain was 66 weeks), indicating that one copy of the 

hsp70 genes is sufficient to support mammary tumorigenesis induced by Her2. In contrast, 

the absence of Hsp72 in the homozygous knockout animals almost completely blocked 
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mammary tumor development (Fig. 4C). Indeed, within more than 100 weeks no tumors 

appeared in ten out of eleven animals, and in one hsp70−/−MMTVneu+/− mouse a tumor 

appeared by 88 weeks of age, which is far later than tumor appearance in control animals. 

This animal model confirms that Hsp72 is critical for Her2-induced tumor development.

Hsp72 knockout blocks hyperplasia and triggers senescence in mammary tissue in mice

To investigate the role of Hsp72 in Her2-induced hyperplasia, whole mounts of mammary 

glands were taken from 3-month old virgin mice to evaluate duct branching. By this age 

Her2 transgene was fully expressed (Fig. S4). Hsp70 KO itself did not affect duct or alveoli 

morphology (Fig. 4C). Expression of Her2 in WT-MMTVneu+/− mammary gland strongly 

enhanced the density of ducts and led to more extensive alveoli branching, as reported 

previously (27). Importantly, expression of Her2 in the hsp70−/− background (hsp70−/− 

MMTVneu+/−) led to dramatic reduction in duct density, as compared to control or hsp70−/− 

animals, and completely prevented alveoli branching (Fig. 5A and B). Histological 

examination by hematoxylin-eosin staining also detected extensive alveoli branching and 

hyperplasia in WT-MMTVneu+/−, but not in hsp70−/−MMTVneu+/− mice (Fig. 5C). 

Immunostaining of tissue sections with Ki-67 antibody confirmed extensive cell 

proliferation in WT-MMTVneu+/− animals, and lack of such proliferation 

hsp70−/−MMTVneu+/− mice (Fig. 5C). Therefore, Hsp70 KO prevented Her2-induced tissue 

hyperplasia. In other words, effects of Hsp70 were detected at very early stages, almost ten 

months before pulpable tumors appeared.

To address whether Hsp72 KO suppresses Her2-dependent tumorigenesis in vivo via 

precipitating senescence, we performed β-gal staining of mammary glands from 3-month old 

mice. There was almost no β-gal staining in control, WT MMTVneu+/− and hsp70−/− 

animals. In contrast, extensiveβ-gal staining of ducts (Fig. 6A) was seen when expression of 

Her2 was combined with Hsp70 knockout (hsp70−/−MMTVneu+/−). Therefore in an 

hsp70−/− background, Her2/neu oncogene, instead of epithelial transformation, triggers 

senescence and suppresses alveoli branching. In other words, Hsp72 appears to become 

critical for hyperplasia upon expression of Her2 because it allows epithelial cells to escape 

growth arrest and senescence controls.

To evaluate whether Hsp72 regulates Her2 effects on p21 and survivin in mammary tissue in 

vivo, we assessed levels of these proteins in mice by immunohistochemistry. Indeed, we 

observed strong accumulation of p21 in mammary glands from hsp70−/−MMTVneu+/− 

mouse as compared to tissue from WT-MMTVneu+/− animals (Fig. 6B). Furthermore, we 

observed a strong decrease of survivin levels in hsp70−/−MMTVneu+/− mouse mammary 

glands compared to mammary tissue from WT-MMTVneu+/− animals (Fig. 6C). Therefore, 

expression of Her2 in cells lacking Hsp72 leads to upregulation of p21 and downregulation 

of survivin both in vitro and in vivo.

Discussion

This work, which is built upon our previous publication on the role of Hsf1 in Her2-induced 

tumorigenesis, had two goals: first to investigate whether induction Hsp72 is the major 

contributor to the effects of Hsf1, and second to develop animal models that allow 

Meng et al. Page 8

Oncogene. Author manuscript; available in PMC 2012 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



investigating the role of Hsp72 in tumor development. The involvement of Hsp72 in Hsf1-

mediated effects on tumorigenesis was hinted by previous observations that (a) Hsp72 is 

induced by Her2 in Hsf1-dependent manner, and (b) similar to Hsf1 knockdown, expression 

of Her2 in Hsp72 knockdown precipitates senescence of MCF10A cells instead of 

promoting transformation (5). Here we confirmed these observations, and demonstrated that 

other effects of Hsp72 knockdown on Her2-mediated transformation also recapitulate effects 

of Hsf1 depletion. In fact, we observed that in the shHsp72 cells Her2 expression blocks 

proliferation and suppresses EMT, as judged by suppression of foci formation and reduced 

expression of vimentin (Fig. 1D and E).

Importantly, as with Hsf1 depletion, expression of Her2 in Hsp72 knockdown cells 

upregulated p21 and downregulated survivin. Both of these effects were found to be 

involved in Her2-mediated senescence. Indeed, we observed partial suppression of 

senescence by either knockout of p21 or expression of recombinant survivin (Fig. 2B and 

D). It appears that p21 and survivin represent parallel and independent pathways of 

senescence controlled by Hsp72. This is evident from the experiments with human Her2-

positive cancer cell lines. Indeed, in MDA-MB-453 cells that carry normal p53 depletion of 

Hsp72 both upregulated p21 and downregulated survivin. These effects were associated with 

growth inhibition (although β-gal activity was not upregulated, probably because of an 

additional defect in this pathway). In contrast, in Her2-positive SK-BR-3 cell line, which 

carry mutant p53, depletion of Hsp72 did not cause upregulation of p21, but still triggered 

downregulation of survivin, indicating that these pathways are independent, and that 

survivin regulation is not associated with functional p53. Furthermore, expression of 

survivin in this cell line was sufficient to almost completely reverse Hsp72 depletion-

mediated senescence (Fig. 3C). On the other hand, expression of survivin only partially 

reversed Hsp72 depletion-mediated senescence in MCF10A cells which have functional p21 

pathway, suggesting a significant contribution of p21 in this system (Fig. 2).

Altogether these experiments with several cell culture models indicated that effects of 

Hsp72 on Her2-induced transformation are very similar to effects of Hsf1. This finding 

strongly suggest that Hsp72 in the major factor which mediates effects of Hsf1 on 

tumorigenesis. This is an important advance since as mentioned in Introduction almost 5% 

of human genes are regulated by Hsf1 either directly or indirectly, and identifying the 

downstream target critical for cancer development is important. On the other hand, while 

claiming that Hsp72 downregulation is sufficient for effects of Hsf1 knockdown, we realize 

that it may not be essential, since Hsp27 and possibly other downstream targets could play a 

role in this regulation as well. In fact, Her2 similarly precipitates senescence in Hsp27-

depleted cells. Furthermore, overexpression of Hsp72 is unable to suppress effects of Hsf1 

depletion (unpublished data). Nevertheless, strong similarity of effects of Hsp72 knockdown 

to effects of Hsf1 knockdown indicates that Hsp72 is the important contributor to these 

effects.

Another goal of this study was to develop animal models to investigate effects of Hsp72 on 

tumor development. In fact, so far all studies that experimentally addressed the critical role 

of Hsp72 in tumorigenesis were either done with cell culture or were correlative using 

biopsies. An exception was recent publication with a novel compound that inhibits Hsp72, 
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which was tested with tumor xenografts (18). However, these data should be taken 

cautiously because of the obvious question of specificity of the compound. Here we first 

demonstrated that shHsp72 MCF10A cells that express Her2 cannot form tumor xenografts 

in contrast to control Her2-expressing MCF10A cells (Fig. 4A). Although tumors appeared 

from shHsp72 cells with almost three weeks delay, these tumors only support the notion that 

Hsp72 is essential for Her2-induced tumor formation, since in all of them the shRNA control 

of Hsp72 expression was lost.

Further we addressed at what stage of tumor development Hsp72 exerts its activity. Cell 

culture experiments suggested that Hsp72 should act early in tumor development when the 

process of the oncogene-induced senescence may take place. Accordingly, we expected that 

Hsp72 knockout could suppress Her2-induced hyperplasia of mammary tissue. This kind of 

analyses is not possible with the xenograft models, and we developed the transgenic model. 

With this model we observed an extremely strong effect of Hsp72 KO. In fact, there was 

almost complete prevention of Her2-induced mammary tumors in Hsp72 KO animals. As 

predicted, this effect was associated with suppression of hyperplasia and cell proliferation, 

as judged by histology and Ki-67 immunostaining (Fig. 5). Very importantly, we observed 

strong β-gal staining indicative of extensive senescence in mammary ducts from Her2-

expressing Hsp72 KO animals (Fig. 6A). Senescence was so strong that it led not only to 

suppression of hyperplasia, but also to suppression of normal alveolar branching. These 

effects were specifically associated with Her2 oncogene, since neither senescence nor 

suppression of alveolar branching was seen in Hsp72 KO animals that do not express Her2 

(Fig. 5A and B). It should be noted that these effects were seen in young mice, at least 

several months before tumors appeared. Another important note is that in the transgenic 

model we observed both upregulation of p21 and downregulation of survivin in Her2-

expressing Hsp72 KO animals specifically (Fig. 6B and C), which recapitulates effects seen 

in cell culture.

Recently there was a publication that Hsp72 KO does not prevent, but rather promotes 

carcinogen-induced colon cancer (28). Cancer caused by this carcinogen requires chronic 

inflammatory response. The authors argued that Hsp72 KO promotes inflammation and thus 

facilitates cancer development. This may be the main difference with Her2-induced cancer, 

which does not require chronic inflammation. The other difference could be in tissue type, 

since in this work colon cancer was studied, while we study breast cancer.

We conclude that Hsp72 could potentially be an anti-cancer drug target similar to Hsf1. 

Furthermore, animal models developed in this work demonstrating full dependence of Her2-

induced tumor development on Hsp72 could be used for drug testing.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Her2 overexpression in Hsp72-depleted MCF10A cells precipitates senescence. (A) Hsp72 

depletion by shHsp72 retrovirus. MCF10A cells were infected with control (Cont.) or 

shHsp72 retroviruses and following three days selection, cells were infected with empty 

virus (EV) or Her2-expressing virus (Her2). After four more days, Hsp72 levels were 

measured by immunoblotting. (B) Cell growth curves of control (Cont.) and shHsp72 

MCF10A cells with (Her2) or without (empty vector, EV) Her2 overexpression. (C) 

Morphology of cells described in (A) on day 4 after Her2 overexpression. (D) Effect of 

Hsp72 depletion on Her2-induced vimentin expression. Samples from (A) were re-blotted 

for vimentin. (E) Effect of Hsp72 depletion on Her2-induced foci formation. Cells described 

in (A) were stained with hematoxylin to visualize foci. Dark masses in the bottom left panel 

represent foci. Average foci numbers in five fields were quantified (lower panel).
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Figure 2. 
p21 and survivin are involved in Her2-induced senescence in Hsp72-deficient cells. (A) p21 

levels in control and shHsp72 MCF10A cells with (Her2) or without (EV) Her2 

overexpression. (B) Average foci numbers in five fields were quantified from cultures 

described in (A). (C) Survivin levels in control or shHsp72 MCF10A cells with (Her2) or 

without (EV) Her2 overexpression. (D) Control and shHsp72 MCF10A cells were infected 

with retrovirus expressing survivin (surv), and two days later these cells were infected with 

Her2-expressing (Her2) retrovirus. EV1 – control empty vector for survivin. EV2 – control 

empty vector for Her2. Populations were stained for β-gal and quantification of β-gal 

staining is shown.
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Figure 3. 
Effects of Hsp72 knockdown on p21 and survivin levels in Her2-positive human breast 

cancer cells. Of note, MDA-MB453 line has WT p53 while SK-BR-3 line has mutant p53. 

(A) Hsp72 was depleted from MDA-MB453 and SK-BR-3 cell lines and four days later 

samples were harvested for evaluation of Hsp72, p21 and survivin by immunoblotting. (B) 

Effect of Hsp72 knockdown on development of cellular senescence in SK-BR-3 cells. 

Morphology of Hsp72-depleted cells is shown. (C) Expression of recombinant survivin 

reverses the effect of Hsp72 on β-gal staining in SK-BR-3 cells. Survivin was expressed 

using retroviral expression system prior to depletion of Hsp72.

Meng et al. Page 15

Oncogene. Author manuscript; available in PMC 2012 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Lack of Hsp72 strongly inhibits tumor development. (A) Hsp72 depletion suppresses tumor 

emergence in xenografts. Growth curves of individual tumors in xenografts of Her2-

expressing control (Cont.) and shHsp72 MCF10A cells. (B) Levels of Hsp72 were restored 

in xenograft tumors derived from shHsp72 cells. (C) Effect of Hsp72 on mammary tumor 

incidence in Her2-expressing mice.
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Figure 5. 
Hsp72 knockout robustly suppresses Her2-induced mammary duct hyperplasia in vivo. (A) 

Ducts and alveoli in mammary glands of three months-old WT and hsp70−/− (Hsp72 KO) 

mice with and without MMTVneu (Her2). Tissue samples were fixed with Carnoy’s fixative 

and stained with carmine. (B) Higher magnification of dust hyperplasia in (A). (C) Tissue 

sections described in (A) were stained with hematoxylin or immunostained with Ki-67 

antibody.
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Figure 6. 
Hsp72 knockout allows Her2-induced senescence in mammary ducts. (A) Her2 causes 

development of acidic β-gal activity in mammary tissue of Hsp72 KO animals. Whole 

mount mammary tissue samples were fixed and stained for β-gal. (B) Mammary tissue 

sections from WT-MMTVneu and hsp70−/−MMTVneu mice immunostained for p21. (C) 

Mammary gland sections from WT-MMTVneu and hsp70−/−MMTVneu mice 

immunostained for survivin.
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