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Escherichia coli (E. coli) O157:H7 can cause many food safety incidents, which seriously
affect human health and economic development. Therefore, the sensitive, accurate, and
rapid determination of E. coli O157:H7 is of great significance for preventing the outbreak
and spread of foodborne diseases. In this study, a carbon dots-Fe3O4 nanomaterial (CDs-
Fe3O4)-based sensitive electrochemical biosensor for E. coli O157:H7 detection was
developed. The CDs have good electrical conductivity, and the surface of carbon dots
contains abundant carboxyl groups, which can be used to immobilize probe DNA.
Meanwhile, the CDs can be used as a reducing agent to prepare CDs-Fe3O4

nanomaterial. The Fe3O4 nanomaterial can improve the performance of the
electrochemical biosensor; it also can realize the recovery of CDs-Fe3O4 due to its
magnetism. As expected, the electrochemical biosensor has excellent specificity of
E. coli O157:H7 among other bacteria. The electrochemical biosensor also exhibited
good performance for detecting E. coli O157:H7 with the detection range of 10–108 CFU/
ml, and the detection limit of this electrochemical biosensor was 6.88 CFU/ml (3S/N).
Furthermore, this electrochemical biosensor was successfully used for monitoring E. coli
O157:H7 in milk and water samples, indicating that this electrochemical biosensor has
good application prospect. More importantly, this research can provide a new idea for the
detection of other bacteria and viruses.

Keywords: Escherichia coli O157:H7, electrochemical biosensing interface, carbon dots, Fe3O4 nanomaterial, DNA
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INTRODUCTION

In recent years, food poisoning caused by foodborne pathogens has frequently occurred worldwide,
which is the most prominent public health problem in the world (Hou et al., 2020; Duan et al., 2021).
As one of the most hazardous foodborne pathogens, Escherichia coli (E. coli) O157:H7 can cause
some diseases such as hemorrhagic colitis and hemolytic uremic syndrome. What is more, low-dose
E. coli O157:H7 can make humans sick, and in severe cases, it can even cause kidney failure and

Edited by:
Zhong Feng Gao,

Linyi University, China

Reviewed by:
Miaomiao Yuan,

Sun Yat-sen University, China
占明 李,

Jiangsu University of Science and
Technology, China

*Correspondence:
Huifang Zhang

zhanghuifang93@163.com
Qitong Huang

hqt@gmu.edu.cn
hqtblue@163.com

Specialty section:
This article was submitted to

Nanoscience,
a section of the journal
Frontiers in Chemistry

Received: 02 September 2021
Accepted: 05 October 2021

Published: 19 November 2021

Citation:
Lin X, Mei Y, He C, Luo Y, Yang M,

Kuang Y, Ma X, Zhang H and Huang Q
(2021) Electrochemical Biosensing
Interface Based on Carbon Dots-

Fe3O4 Nanomaterial for the
Determination of Escherichia

coli O157:H7.
Front. Chem. 9:769648.

doi: 10.3389/fchem.2021.769648

Frontiers in Chemistry | www.frontiersin.org November 2021 | Volume 9 | Article 7696481

ORIGINAL RESEARCH
published: 19 November 2021

doi: 10.3389/fchem.2021.769648

http://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2021.769648&domain=pdf&date_stamp=2021-11-19
https://www.frontiersin.org/articles/10.3389/fchem.2021.769648/full
https://www.frontiersin.org/articles/10.3389/fchem.2021.769648/full
https://www.frontiersin.org/articles/10.3389/fchem.2021.769648/full
https://www.frontiersin.org/articles/10.3389/fchem.2021.769648/full
https://www.frontiersin.org/articles/10.3389/fchem.2021.769648/full
http://creativecommons.org/licenses/by/4.0/
mailto:zhanghuifang93@163.com
mailto:hqt@gmu.edu.cn
mailto:hqtblue@163.com
https://doi.org/10.3389/fchem.2021.769648
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2021.769648


death. Currently, more than twomillion acute foodborne diseases
worldwide are attributed to E. coli O157:H7 each year (Li et al.,
2015a; Zhou et al., 2020). Therefore, it is very important to
monitor the E. coli O157:H7 with high sensitivity. At present,
some bioanalytical methods have been applied for E. coli O157:
H7 detection, including enzyme-linked immunosorbent assay
(ELISA) (Guo et al., 2016; Zhao et al., 2020), lateral flow
immunochromatographic detection technology (Xie et al.,
2014; Ye et al., 2020), polymerase chain reaction (PCR) (Dong
et al., 2015), and so on. These alternative assays are the most
rapidly used tests because of their good specificity and stability.
Nevertheless, they are still faced with some limitations in
detecting foodborne pathogens, including low sensitivity,
complicated pretreatment, and high environmental impact.
Therefore, there is an urgent need to establish a sensitive,
simple, and highly specific method for detecting E. coli O157:
H7. At present, many different electrochemical sensors have been
used in food safety due to their some advantages, such as high
sensitivity, economy, and accuracy (Li et al., 2015b; Li et al., 2016;
Liu Y. et al., 2020; Dong et al., 2020). Therefore, electrochemical
biosensors for the detection of E. coli O157:H7 have received
extensive attention.

As is known, due to the excellent chemical, physical and
biological properties of nanomaterials, they have been widely
used in biomedical (Liu H. et al., 2020; Kuang et al., 2020;
Thakur et al., 2020; Wu et al., 2020; Yi et al., 2021), analytical
science (Chen et al., 2018; Broza et al., 2019; Jia et al., 2020; Lee et al.,
2020; Mao et al., 2020; He S. et al., 2021; Mao et al., 2021), energy
catalytic (Zhuang et al., 2019a; Zhuang et al., 2019b; Enesca, 2020;
Zhuang et al., 2021), and other fields. Till now, some nanomaterials
have been successfully used to construct electrochemical sensors for
E. coli O157:H7 detection, such as graphene/AuNPs (You et al.,
2020), reduced graphene oxide/polyaniline/Au@Pt/neutral red
(rGO/PANI/Au@Pt/Nr) (Mo et al., 2019), rGO/Au@Pt (Zhu
et al., 2018), rGO-poly (vinyl alcohol)/gold nanoparticles
nanocomposite (AuNPs/rGO-PVA) (Qaanei et al., 2021), and so
on. Although the abovementioned materials have made certain
contributions to electrochemical sensors for detecting E. coliO157:
H7, the abovementioned materials still have disadvantages,
including complicated preparation, insufficient economy, and
environmental protection, or low sensitivity of sensors.
Therefore, it is important to prepare an easy-to-obtain,
economical, and environmentally friendly functional material for
the construction of electrochemical sensors for detecting E. coli
O157:H7. As a member of “zero-dimensional” carbon
nanomaterials, carbon dots (CDs) have some advantages of
good biocompatibility, simple synthesis, and excellent
conductivity (Zhang et al., 2019; Huang et al., 2020; Zhang and
Du, 2020; He H. et al., 2021; Lin et al., 2021; Xu and Liu, 2021), and
they have been successfully used to construct new electrochemical
sensors, such as Pd-Au@CDs nanocomposite that we prepared for
the preparation of the novel electrochemical DNA biosensor
(Huang et al., 2017). Liu et al. designed an electrochemical
sensor for measuring catechol based on F, N-doped CDs (Liu
et al., 2019). Giang et al. constructed a wireless electrochemical
biosensor based on CDs-hyaluronic acid/TiO2/Cu

2+ for cancer cell
detection (Giang et al., 2021). Sri et al. developed a CD/polymethyl

methacrylate-based electrochemical biosensor for monitoring
TNF-α targeting (Sri et al., 2021).

In this study, a CDs-Fe3O4 nanomaterial-based
electrochemical biosensor is constructed for detecting E. coli
O157:H7, which is highly sensitive and reliable (Figure 1).
The CDs have good electrical conductivity and large specific
surface areas to improve the sensitivity of the sensor. The CDs
also can be used as the reducing agent to synthesize the CDs-
Fe3O4 nanomaterial. The Fe3O4 can improve the catalytic
performance of the electrochemical biosensor, and it also can
realize the recovery of CDs-Fe3O4 due to its magnetism. This
electrochemical biosensor can achieve a good linear and detection
limit for monitoring E. coli O157:H7. In addition, the biosensor
has been also successfully applied to measure the E. coli O157:H7
in milk, indicating that the electrochemical biosensor has a broad
application prospect. What is more, this study can provide a new
idea for the preparation of electrochemical biosensors for other
bacteria and virus detection, such as Staphylococcus aureus (S.
aureus), Listeria, SARS-CoV-2, Hepatitis B virus, etc.

EXPERIMENTAL

Synthesis of carbon dots Fe3O4

nanomaterial
The preparation of CDs-Fe3O4 nanocomposite was based on the
method of instrument preparation of our group (Kuang et al.,
2020): First, 3 g of citric acid and 1 g of glucose were added in 5 ml
H2O and reacted under microwave with a radiation power of
900W for 6 min to synthesize CDs. Second, the above solution
was cooled and added 30 ml H2O, centrifuged them at
12,000 rpm for 15 min and took the supernatant, then dialyzed
the supernatant for 24 h and then freeze dried. Third, the
abovementioned CD solid was dissolved in 25 ml of the
aqueous solution, then 1 g of sodium acetate and 1 g of ferric
chloride was added into 15 ml of CD solution, the mixed solution
was sonicated for 8 h, then placed in an autoclave, and reacted at
210°C for 24 h; after cooling, they were centrifuged at 12,000 rpm
for 10 min to acquire CDs-Fe3O4 nanomaterial.

Preparation of electrodes
First, 5.0 μl of CDs-Fe3O4 nanomaterial was slowly dropped on
the glassy surface of the carbon electrode (GCE) to prepare a
CDs-Fe3O4/GCE working electrode. Second, the CDs-Fe3O4/
GCE electrode was immersed in 1 ml of 0.1 mM PBS,
8.00 mM EDC, and 8.00 mM NHS mixed solution for 3 h to
activate the electrode, then it was rinsed with TE buffer solution.
Third, the above electrode was immersed in 1 ml of 0.1 μM probe
DNA to react for 24 h, and it was rinsed with TE buffer solution to
prepare the DNA/CDs-Fe3O4/GCE probe electrode. Finally, the
prepared electrode was stored at 4°C.

Preparation of the biosensor
The prepared DNA/CDs-Fe3O4/GCE was immersed into
different concentrations (C) of E. coli O157:H7 solutions and
reacted for 40 min at 42°C in a water bath. After the reaction, TE
buffer solution was used to wash off non-specifically adsorbed
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E. coli on the surface to obtain the E. coli O157:H7-DNA/CDs-
Fe3O4/GCE. Cyclic voltammetry (CV) and differential pulse
voltammetry (DPV) have characterized the layer-by-layer
assembly of each modified electrode: the [Fe (CN)6]

3-/4- has
been applied as the electrolyte. For the test parameters of CV,
the potential scanning range was −0.2–0.8 V, and the scan rate(5)
was 0.1 V/s. DPV was used to record the electrochemical signal
changes before and after the identification of the electrode and
different substances, and the potential interval was −0.2–0.8 V,
the amplitude was 0.05 V, the pulse width was 0.05 s.

RESULTS AND DISCUSSION

Characterization of nanomaterial
Transmission electron microscopy (TEM) has characterized the
morphologies of CDs and CDs-Fe3O4 nanomaterial. As shown in
Figure 2A, the particle size distribution of the prepared CDs is

relatively uniform, mainly at 3–4 nm. Figure 2B shows the high-
resolution TEM (HRTEM) image of CDs. It shows that CDs have
a good crystal lattice, and the lattice spacing is 0.210 nm, which is
a typical (002) carbon crystal plane. As shown in Figure 2C, the
particle size of the CDs-Fe3O4 nanomaterial was in the range of
15–40 nm. The HRTEM characterization of CDs-Fe3O4

(Figure 2D) shows that the nanomaterial has two lattice
spacings, 0.345 and 0.210 nm, respectively. The corresponding
crystal planes are (220) of the Fe3O4 and (002) of the carbon. The
above morphology characterization can indicate that CDs-Fe3O4

nanomaterial has been successfully prepared.

Cyclic voltammetry behavior of electrodes
It is well known that [Fe(CN)6]

3−/4− is often used as a supporting
electrolyte for electrochemical biosensors (Fan et al., 2018; Li et al.,
2021; Nano et al., 2021). The working electrodes were
electrochemically characterized by CVs in 1.0 mM [Fe(CN)6]

3−/4−

and 0.1M KCl solution (Figure 3A). On the surface of GCE, the

FIGURE 1 | A sensitive electrochemical DNA biosensor based on CDs/Fe3O4 nanocomposite is constructed for E. coli O157:H7 detection.

FIGURE 2 | TEM and HRTEM image of CDs (A,B) and carbon dots (CDs)-Fe3O4 nanomaterial (C,D).
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redox peak current (I) has good reversibility, and the oxidation peak
potential (Ipa) and reduction peak potential (Ipc) are −6.616 and
5.958 A, respectively. When the CDs are modified on the surface of
GCE, the Ipa and Ipc are promoted to −12.29 and 12.06 A,
respectively, indicating that the prepared CDs have good
conductivity. When the electrode is CDs-Fe3O4/GCE, the Ipa and
Ipc are further enhanced, indicating that the introduction of Fe3O4

can improve the conductivity of the electrode. However, when the
probe DNA is self-assembled on the surface of CDs-Fe3O4/GCE
through carboxyammonia coupling reaction, the I decreases; the
main reason is that the DNA molecules will hinder the diffusion of
[Fe(CN)6]

3−/4− on the surface of CDs-Fe3O4/GCE. At the same time,
the results indicate that the probeDNAwas successfullymodified on
CDs-Fe3O4/GCE’s surface.

Effects of scan rate
The effect of different v on the electrochemical response of DNA/
CDs-Fe3O4/GCE in [Fe(CN)6]

3−/4− has also been studied. Figure 4A
shows that in the process of increasing v, the I also keeps increasing.

As shown in Figure 4B, the Ipa and Ipc show an excellent linear
relationship with ]1/2, and the linear regression equations are
Ipa � 3.598 + 80.265 v1/2 and Ipa � −2.551–85.187 v1/2, respectively.
The results show that the electrochemical behavior of [Fe(CN)6]

3−/4−

on the surface of DNA/CDs-Fe3O4/GCE is mainly affected by the
diffusion-controlled process (Alam and Deen, 2020).

Effect of interaction time
The interaction time between the probe electrode and the target
substance is one of the key factors affecting the performance of
the biosensors. Therefore, the interaction time of E. coli O157:H7
with DNA/CDs-Fe3O4/GCE was studied. When the C of E. coli
O157:H7 was 10 CFU/Ml, the optimum hybridization time was
determined to be 40 min (Supplementary Figure S1). However,
when the C of E. coli O157:H7 was 108 CFU/Ml, the optimum
hybridization time was determined to be 35 min (Supplementary
Figure S2). Therefore, in this electrochemical biosensor, the best
reaction time between E. coli O157:H7 and DNA/CDs-Fe3O4/
GCE is 40 min.

Specificity of the biosensor
The specificity of the electrochemical biosensor is a necessary
factor to ensure the accuracy of the biosensor. Therefore, the
interferences of different bacteria with 105 CFU/ml on the DNA/
CDs-Fe3O4/GCE through DPV have been investigated, such as S.
aureus, Salmonella, Staphylococcus lactis (S. lactis), and Listeria.
Figure 5A shows that DNA/CDs-Fe3O4/GCE has almost no
effect on other bacteria. However, the DNA/CDs-Fe3O4/GCE
has a very strong response to E. coliO157:H7, and the Ipa drops by
53.42%. As shown in Figure 5B, other interfering substances have
almost no effect on the determination of E. coli O157:H7. The
above results show that the electrochemical biosensor based on
DNA/CDs-Fe3O4/GCE for detecting E. coli O157:H7 has very
excellent specificity and is expected to realize the determination of
E. coli O157:H7 in real samples.

Sensitivity of the biosensor
As is known, DPV has been extensively applied in the
construction of electrochemical sensors because it has good
detection sensitivity. This study explores the sensitivity and

FIGURE 3 | CVs of the electrodes in the 1.0 mM [Fe(CN)6]
3−/4− and

0.1 M KCl solution (v: 0.1 V/s).

FIGURE 4 | (A) CVs of DNA/CDs-Fe3O4/GCE in1.0 mM [Fe(CN)6]
3-/4- and 0.1 M KCl solution with different v (a–m: 0.01, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15,

0.175, 0.20, 0.225, 0.25, 0,275, 0.3 Vs−1). (B) The relationship of redox peak current (I) with v1/2.
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detection range of the electrochemical biosensors via DPV.
Figure 6A shows that when E. coli O157:H7 interacts with
DNA/CDs-Fe3O4/GCE, Ipa decreases as the C of E. coli O157:
H7 increases. The main possible reason is E. coli O157:H7 has
poor electrical conductivity, which affects the electrical
conductivity of the working electrode’s interface, leading to a
weakening of the electrochemical signal. When the C of E. coli
O157:H7 is in the range of 10–107 CFU/ml, the lgC and Ipa show
a good linear relationship (Figure 6B): Ipa � 1.5422 lgC—14.387.
At the same time, the detection limit (LOD) can reach 6.88 CFU/
ml. Compared with other electrochemical biosensors for
monitoring E. coli O157:H7 (Table 1), this electrochemical
biosensor based on DNA/CDs-Fe3O4/GCE has very good
sensitivity.

Repeatability and stability of the biosensor
To investigate the reproducibility of this biosensor, six DNA/
CDs-Fe3O4/GCE working electrodes were prepared, and they
have been applied to detect 105 CFU/ml of E. coli O157:H7

respectively. Supplementary Figure S3 shows that the
relative standard deviation (RSD) was 2.6%, which
indicates the electrochemical biosensor based on DNA/
CDs-Fe3O4/GCE for E. coli O157:H7 detection has good
reproducibility. The stability of the electrochemical
biosensor has been also studied; the DNA/CDs-Fe3O4/GCE
was placed in a dryer at 4°C, and the above working electrode
was applied to measure 105 CFU/ml of E. coli O157:H7 every
3 days. As shown in Supplementary Figure S4 after 30 days,
the Ipa was only dropped by 2.7%, which shows that the
electrochemical biosensor based on DNA/CDs- Fe3O4/GCE
has good stability.

Analysis of real samples
Since milk and water are often contaminated by E. coli O157:H7,
it is very necessary to efficiently determine E. coli O157:H7 in
milk and water. In this study, to verify the practical applicability
of the biosensor, the electrochemical biosensor is used to
determine the E. coli O157:H7 in milk and water. Table 2

FIGURE 5 | (A) Ipa of 10
5 CFU/ml different bacteria on the DNA/CDs-Fe3O4/GCE, (B) Ipa of 10

5 CFU/ml E. coli O157:H7 with different bacteria on the DNA/CDs-
Fe3O4/GCE (a: none, b: E. coli O157:H7, c: S. aureus, d: Salmonella, e: S. lactis, and f: Listeria).

FIGURE 6 | (A)Differential pulse voltammetry (DPV) of E. coliO157:H7with different concentrations (from a to i: 0, 10, 102, 103, 104, 105, 106, 107, 108 CFU/ml). (B)
The relationship of Ipa with the lgC.

Frontiers in Chemistry | www.frontiersin.org November 2021 | Volume 9 | Article 7696485

Lin et al. Escherichia coli O157:H7 Detection

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


shows that 103, 104, and 105 CFU/ml of E. coli O157:H7 were
added to the samples, and the recovery rates are between 95.2%
and 102.0%, At the same time, the results were consistent with
ELISA results, indicating that the method is feasible for
monitoring E. coli O157:H7 in milk and water samples.

CONCLUSIONS

In conclusion, a sensitive electrochemical DNA biosensor has
been prepared for monitoring E. coli O157:H7 by CDs-Fe3O4

nanomaterial. Under the best conditions, when the C of E. coli
O157:H7 is in the range of 10–108 CFU/ml, the lgC has a good
linear relationship with the Ipa, and the LOD reaches
6.88 CFU/ml. At the same time, the electrochemical DNA
biosensor has been successfully used to determine E. coli
O157:H7 in milk and water samples. Therefore, this
research provides an effective biosensor manufacturing
strategy, which is expected to provide a reference for the
preparation of electrochemical DNA biosensors for other
bacteria or viruses detection.
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TABLE 1 | Electrochemical biosensors for detecting Escherichia (E.) coli O157:H7.

Materials Methods Detection ranges (CFU/ml) LOD (CFU/ml) References

Graphene/AuNPs/array electrode EIS 102–108 102 You et al. (2020)
rGO/Au@Pt/Screen printed carbon electrode CV 4 × 103–4 × 108 4.5 × 102 Zhu et al. (2018)
rGO/PANI/Au@Pt/Nr/Screen printed carbon electrode CV 8.9 × 103–8.9 × 109 2.84 × 103 Mo et al. (2019)
AuNPs/rGO-PVA/GCE DPV 9.2–9.2 × 108 9.34 Qaanei et al. (2021)
AuNPs/3D DNA walker/GCE DPV 10–104 7 Li et al. (2020)
Cu3(PO4)2/methylene blue/Gold electrode DPV 102–107 32 Bu et al. (2020)
Cocoon-like DNA nanostructures/Gold electrode DPV 10–106 10 Bai et al. (2020)
DNA/CDs-Fe3O4/GCE DPV 10–108 6.88 This work

TABLE 2 | Electrochemical biosensor for monitoring E. coli O157:H7 in milk and water samples.

Sample Spike (CFU/ml) Found (CFU/ml) Recovery (%) Detection by ELISA

Milk 103 9.52 × 102 95.2 9.46 × 102

104 9.96 × 103 99.6 9.53 × 103

105 1.02 × 105 102.0 9.91 × 104

Water 103 9.93 × 102 99.3 9.86 × 102

104 9.89 × 103 98.9 9.81 × 103

105 9.79 × 104 97.9 9.69 × 104
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