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Abstract: In this paper, the performance of epoxy/SbSI nanocomposite under tensile stress was
investigated. X-ray diffraction studies show the main stress mode has shear nature in the case of
elastic deformation, while a combination of shear and tensile stress during plastic deformation caused
lattice deformation of SbSI and shift of sulfur atoms along the c axis of the unit cell. Apart from that,
the piezoelectric signals were recorded during tensile tests. Epoxy/SbSI nanocomposite responded
to the applied tensile stress by generating a piezoelectric current with a relatively high value. The
measured piezoelectric peak-to-peak current is relatively high (Ip-p = 1 pA) in comparison to the
current flowing through the sample (8.16 pA) under an applied voltage of 100 V. The current level is
independent of the deformation speed rate in contradistinction to complex stress states. The signal
comes from the whole volume of the sample between electrodes and is generated by shear stress.

Keywords: X-ray diffraction; SbSI nanowires; nanocomposite; piezoelectricity; strain sensor

1. Introduction
Highlights

• X-ray diffraction studies combined with tensile tests confirm that SbSI acts as reinforcement.
• A strong shift of sulfur atoms in SbSI unit cell under plastic deformation of epoxy/SbSI

nanocomposite.
• Relatively high peak-to-peak current was measured (Ip-p = 1 pA) in elastic deformation.
• The piezoelectric response is independent of the deformation speed rate.

Deformation monitoring of composite structures is a very important issue, especially in
the case of applications of polymer composites in aviation, aeronautics, and the automotive
industry. The most frequently used structures and/or systems of strain gauges are mainly
microchips, but also optical sensors and integrated piezoelectric sensors [1–7]. The last
group of sensors has a particularly large application potential, due to the possibility of
introducing piezoelectric material in the form of a powder into the resin and placing it
in a specific layer of the laminate so that the generated current signal best describes the
deformation of the structure [7–9]. The use of piezoelectric materials as structural elements
of FRP (fiber reinforced polymer) composites allows for in situ monitoring of the current
deformations of laminate structures [1–7].

One of the very promising candidates to be applied in composite strain sensors is anti-
mony sulfoiodide (SbSI), which has been extensively examined over the past decades [9–39].
The antimony sulfoiodide (SbSI) is the main representative of the A15B16C17 class of fer-
roelectric semiconductors. It has a large number of interesting properties [40,41]. The
investigation of SbSI started after the discovery of its photoconductivity [42] and its ferro-
electric properties [10] in the early 1960s of the 20th century. The bulk antimony sulfoiodide
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(SbSI) in the ferroelectric phase crystallizes in the Pna21 orthorhombic structure and is
characterized by very high volume piezoelectric modulus dv = 1 × 10−9 C/N [43] and
electromechanical coupling coefficient k33 = 0.90 [13]. In a paraelectric phase i.e., above the
Curie temperature, the SbSI structure rebuilds into Pnam. As a material with promising
applications, SbSI single crystals were synthesized in a variety of ways. This material
was obtained in a form of nanowires by using the sonochemical method. One can find
the structure and the properties of SbSI nanowires in [23]. It shows not only excellent
piezoelectric properties but also photoelectrical, pyroelectric, triboelectric, and ferroelectric,
which allows it to be applied, eg. as gas sensors [33], humidity sensors [29], photoelec-
tronic devices [34,35,39] or for water purification [30,31,38]. Previous studies focused on
the fabrication and examination of polymer-based composites filled with SbSI nanowires
showing that this type of functional composites can also be applied as, e.g., strain sensors
in FRP structures [7–9,14,36], piezoelectric nanogenerators [26,36], energy harvesting or
smart textiles [36,37].

An especially interesting application of SbSI nanowires as well as of other piezoelectric
materials as BaTiO3 (BTO) [44–49], BiFeO3 (BFO) [50–53], K0.5Na0.5NbO3 (KNNO) [54–56],
AlN [57], and PLZT-based (Pb1-xLaxZryTi1-yO3) ceramic [58–61] are the strain sensors
in FRP, due to wide range of its applications in industry. However, proper design of
piezoelectric integrated sensors in FRP requires precise interpretation of generated signal
and its correlation with structure deformation. According to that, many different factors
should be considered, but the most important one is the viscoelastic nature of the polymer
matrix. The previous studies show that epoxy/SbSI sensors were characterized by different
electric signals than pure SbSI [7–9,12–14], which is related to the presence of epoxy and
its viscoelastic deformation. Another important factor is the orientation of nanowires,
especially in the meaning of uniaxial tensile load, because highly oriented nanofibers will
strongly increase the stiffness and tensile strength of composite [62–70]. However, even
randomly oriented fibers increase the mechanical properties of various composites [62–70].

This paper presents the results of unique examination methods, which combine ten-
sile loading, X-ray diffraction studies, and measurement of the piezoelectric response of
epoxy/SbSI composite subjected to uniaxial tensile load. Combination of tensile load
with XRD studies was performed for the first time and allows us to obtain very important
data for the future design of integrated epoxy/SbSI composite strain sensor, in particular
a correlation between applied stress mode, stress distribution in the sample, nanowires
orientation, viscoelastic stress relaxation of the epoxy matrix, and measured signal.

2. Materials and Methods
2.1. Materials Fabrication

The first stage in the preparation of composite is the sonochemical fabrication of
SbSI nanowires by the so-called Nowak’s method [23]. In this procedure, pure elements
(antimony, sulfur, and iodine) were used to sonochemically obtain SbSI nanowires. The
stoichiometric mixture of elements was placed in ethanol in a closed container made of
polypropylene. It did not allow volatile synthesis products to escape. After that, the con-
tainer was submerged in water in a cup-horn connected to ultrasonic processor VCX-750
with converter VC-334 (Sonics & Materials, Inc., Newtown, CT, USA). Refrigerated circulat-
ing bath AD07R (PolyScience, Niles, IL, USA) was used to keep a constant temperature of
293 K during the entire time (2 h) of the synthesis process. In the next step, the obtained
gel was rinsed using pure ethanol and centrifuged to remove the remaining substrates.
Finally, SbSI gel was inserted in a vacuum chamber under reduced pressure (5 mbar) at
room temperature in order to evaporate ethanol from its volume. The SbSI nanowires in
prepared xerogel have cross dimensions of tens of nanometers, with a medium value of
69 nm [39]. Their length reaches several microns. Further information on the sonochemical
process, as well as on obtained SbSI xerogel, (e.g., SEM and HRTEM micrographs, SAED
patterns, DRS spectrum) can be found in [23].
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The SbSI nanowires and LH288 epoxy resin (HAVEL COMPOSITES, Svesedlice, Czech
Republic) were mixed in a 20% mass ratio to fabricate the composite. Then, they were
pre-mixed mechanically and then mixed again in the ultrasonic bath. In the next step, the
hardener H281 (HAVEL COMPOSITES, Svesedlice, Czech Republic) was added with a
volume proportion to resin 1:4, according to technical requirements. The prepared mixture
was placed in a silicone mold in form of 2 mm × 19 mm × 38 mm (thick × width ×
length), with 2 mm × 9.5 mm × 14.5 mm measurement base (Figure 1) and left in an
Environmental Chamber SH-242 (Espec, Osaka, Japan) at a constant temperature (283 K)
for 24 h to be cured. For piezoelectric measurements, the silver electrodes with dimensions
of 9 mm × 5 mm were painted on both sides of the measurement base using high-purity
silver paste 05002-AB (SPI Supplies) and copper wires were connected to them (Figure 1).
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Figure 1. Photo of the sample with visible top electrode deposited for piezoelectric measurements.

2.2. Evaluation Methods

XRD studies were performed using the D8 Advance diffractometer (Bruker AXS,
Karlsruhe, Germany) with Cu-Kα cathode (λ = 1.54 Å) operating at 40 kV voltage and
40 mA current. The scan rate was 2◦/min with scanning step 0.02◦ in the range of 10◦ to
120◦ 2Θ, resulting in a measurement time of about 55 min. Identification and fitting of the
registered phase were performed using DIFFRAC.EVA program with use of ICDD PDF#4
database, while exact peak shapes, lattice parameters, crystallite size, lattice strain, and
scale were refined simultaneously using Rietveld refinement [71–73] in TOPAS 6 program,
based on Williamson–Hall theory. After convergence, atomic positions and finally isotropic
temperature factors were included in the refinement. The pseudo-Voigt function was used
in the description of diffraction line profiles at the Rietveld refinement [71,72]. The Rwp
(weighted-pattern factor) and GOF (goodness-of-fit) parameters were used as numerical
criteria for the fitting quality of experimental diffraction data.

Stress-XRD analysis was performed using DEBEN microtensile stage mounted at D8
Advance diffractometer with use of iso-inclination mode (Bruker, Karlsruhe, Germany)
based on (411) and (530) peaks of SbSI phase with the nominal position at 48.98◦ and 60.84◦

of 2θ pattern, respectively, according to EN-15305 standard [74]. In tensile tests, a 2 kN
crosshead was used, moving with a speed of 0.4 mm/min. For residual stress analysis, the
following materials parameters were used: Young’s modulus 31 GPa and Poisson ratio 0.26,
which gives S1 = −8.387 × 10−6 MPa and 1/S2 = 4.065 × 10−5 MPa−1.The 2.5 MPa limit
was used for a stress-free material, while the 1.25 MPa limit was used for a shear stress
contribution. After preliminary tensile tests, the stress analysis in SbSI nanowires was per-
formed using different applied loads, corresponding to various displacements of samples
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(Figure S1). For stress analysis, the standard fit was used in (411) peak position fitting,
while for (530) peak gravity fit was used. Applied stress mode was established as normal
with shear stress contribution. Residual stress analysis was used in two configurations—up
to composite break and for elastic deformation only. Scanning electron microscopy studies
of obtained fractures were performed using Quanta FEG 250 (ThermoFischer Scientific,
Waltham, MA, USA) using 5 kV voltage and low vacuum mode.

Piezoelectric response of epoxy/SbSI composites was determined by uniaxial tensile
test using Instron 4469 testing machine with two electrodes in a sandwich configuration.
The electric signal was registered by Keithley 6517A electrometer (Keithley Instruments,
Cleveland, OH, USA). The electric response of the sample was continuously measured
during the test. The sample was stretched by 0.025 mm successively for the loading
bar speeds assumed at 1, 2, 5, 10, 20, 50, 100, 200, and 500 mm/min. The maximum
detected force was in the range of 115–130 N and decrease to approximately 80 N after
60 s for every deformation speed. The waiting period of 60 s until a constant value of the
measured voltage was established (sample loading) during the voltage measurement and
then the system returned to its initial state (sample unloading). The 60 s time was based on
preliminary tests for small deflections and low strain rates. It guaranteed that the value of
the recorded signal was fixed.

3. Results and Discussion
3.1. Uniaxial Tensile Tests and X-ray Diffraction Studies

All peaks in the registered X-ray diffraction patterns (Figure 2) are identified as SbSI
with an orthorhombic Pnam structure (PDF#01-075-0781). However, some minor changes
in peak positions under different loads were detected, as can be seen in Figure 3 and
Table S1. The typical peaks shift under tensile load should be toward lower angles direction,
corresponding to higher interplanar spacing and confirming that SbSI nanowires act as
reinforcing fibers in an epoxy matrix and are stretched (Figure 3a,b, Table S1). However, the
viscoelastic nature of the epoxy matrix is also visible on X-ray diffraction patterns in form of
peaks shifted toward higher angles direction, corresponding to lower interplanar spacing.
It shows that epoxy matrix sheared SbSI nanowires (Figure 3c, Table S1) [8,64,65,75–77].
One can see that the 2θ angle of (530) peak position is about 60.5◦. It results in about a 25
min delay time between the beginning of stress application and (530) peak measurement
considering the applied scan rate (2◦/min), which might explain the peak shift in higher
angles direction due to strain relaxation.

Rietveld refinement (Table S2, Section S1) shows that the application of various loads
slightly changes the lattice parameters and volume, especially b-axis length, which becomes
smaller by about 0.03 Å under 700 N load in comparison to the nonstressed sample. More-
over, lattice strain increased from 0.27% up to 0.48%. Crystallite size does not significantly
change with the mean value of approximately 80 nm. Atomic positions of antimony, sulfur,
and iodine calculated using Rietveld refinement are almost stable up to 300 N load (see
Supplementary Materials, Section S1), but for over 400 N loads the strong shift of the sulfur
atom was detected, which is presented in Figure 4. This shift is in the c-axis direction, which
might suggest a strong interaction between atoms in the unit cell, especially considering
the atomic radii of sulfur [14–16,20,78,79]. It might be a result of viscoelastic interactions
between the epoxy matrix and SbSI nanowires as well as an effect of shear stress presence,
but its nature is not clear and requires additional studies on SbSI single crystals or poly-
crystalline SbSI samples under various loads, considering tensile, compressive, and more
complex stress states. However, to obtain more clear results, residual stress analysis studies
were performed, as was established in the evaluation methods paragraph.
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Figure 3. Peak shift of interplanar spacing observed under different loads: (a) (120), (200) and (210)
peaks, (b) (411) peak and (c) (530) peak; dashed lines indicate peak position of the unloaded sample.

In Figure 4 one can see that atoms shift in a lattice under applied stress. It is especially
visible on sulfur atoms, in which the shift is significant due to its small molar mass compared
with iodine and antimony and the interaction between them [80,81]. The sulfur atoms
shift along the c-axis direction. This explains the anisotropy of piezoelectric response in
SbSI crystals, which is characterized by the best piezoelectric and other physical properties
along the c-axis [12].
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Figure 4. Schematic representation of SbSI atomic position in Pnam orthorhombic lattice: in un-
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•—iodine atoms.

3.2. Stress Analysis up to Break Using (411) Peak

Typical residual stress diagrams are shown in Figure S2, while values of linear and
shear stress calculated for SbSI nanowires in epoxy resin are listed in Table 1. It can be
seen that with the increase in applied tensile load, the linear stress increases from stress-
free material up to 120 MPa. This is possible only due to the nanometric cross-section
of SbSI nanowires. Shear stress shows a similar tendency, with an increase from 11 to
approximately 30 MPa at 600 N load. High values of shear stress are the result of SbSI
nanowires’ random orientation in the epoxy matrix, but in the initial state, it is most likely
an effect of epoxy shrinkage during the curing process. Detected stress values for SbSI
nanowires are much higher than the applied load to composite; however, nanowires act as
short fibers in this case, and the load applied by them is much higher than for composite
due to their low cross-sectional dimensions.

However, the elastic deformation region of epoxy/SbSI composite is in the load
range from 0 to about 150 N; thus, calculated stress refers not only to the stretching of SbSI
nanowires but also to shear interactions between epoxy matrix and nanowires [8,64,65,75–77].
According to that, further tests were performed, in the elastic deformation region of
examined composite.
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Table 1. Stress values calculated for SbSI nanowires using residual stress analysis under different
loads; sample broke at 686 N.

Step Linear Stress, MPa Shear Stress, MPa

Initial −0.4 (2) * 11 (2)

100 N 18 (3) 12 (2)

200 N 39 (21) 14 (2)

300 N 66 (17) 19 (1)

400 N 100 (20) 22 (3)

500 N 110 (33) 27 (2)

600 N 120 (37) 29 (3)
* No linear stress in the material.

3.3. Stress Analysis in the Elastic Region Using (411) and (530) Peak

Results of stress evaluation in the elastic region show that the dependence of tensile
stress distribution on applied stress is linear in the range from 60 N load up to 150 N load,
independent of the chosen peak (Table 2). However, the (411) peak shows lower values of
shear stress contribution than the (530) peak, especially under higher loads. High values
of linear stress detected for 120 N and 150 N loads suggest a partial contribution of epoxy
deformation and its interaction with SbSI nanowires [8,75–77].

Table 2. Values of residual stress analysis in elastic deformation region using various peaks.

Step
(411) Peak (530) Peak

Linear Stress, MPa Shear Stress, MPa Linear Stress, MPa Shear Stress, MPa

Initial −0.4 (2) * 11 (2) 0.3 (4) * 8 (4)

30 N 6 (4) 12 (3) 4 (3) 13 (3)

60 N 12 (3) 15 (2) 21 (4) 13 (3)

90 N 12 (3) 16 (2) 22 (3) 16 (5)

120 N 20 (6) 18 (3) 24 (5) 19 (5)

150 N 27 (5) 19 (3) 27 (2) 26 (4)

* No linear stress in the material.

3.4. Piezoelectric Response of the Composite Sensor

The piezoelectric current response for non-destructive static tensile tests at a constant
deformation of 0.025 mm and an increasingly higher crosshead speed rate in the range of
1–500 mm/min is presented in Figure 5.

One can notice that the current flowing through the sample under an applied voltage
of 100 V is 8.16 pA. It allows calculating the resistivity of epoxy/SbSI composite considering
the dimension of the sample. The calculated volume resistivity is ρ = 2.74 × 1011 Ωm.

During tensile tests, the measurable signals were recorded, which were independent
of various deformation speed rates (Figure 5). Most likely, it is an effect of applied voltage
resulting in current flow. In this case, the piezoelectric response of the sample results
in charge generation, i.e., piezoelectric current, but it is not dependent on the applied
speed rate.



Sensors 2022, 22, 3886 8 of 14Sensors 2022, 22, x FOR PEER REVIEW 8 of 14 
 

 

 

Figure 5. Current flowing through the sample under 100 V of applied voltage, registered during the 

non-destructive static tensile tests at a constant deformation of 0.025 mm, with a stretching rate of 

1–500 mm/min (black points—measurement data; red line—expected ideal characteristic). 

Due to the high resistivity of the epoxy/SbSI composite, the measured piezoelectric 

peak-to-peak current is relatively high (Ip-p = 1 pA) in comparison to the current flowing 

through the sample (8.16 pA) under an applied voltage of 100 V. The signal comes from 

the whole volume of the sample between electrodes and is generated by shear stress in 

SbSI nanowires during tensile tests [8,75–77]. Moreover, during tensile tests in a sandwich 

configuration, both electrodes are in a similar stress mode, unlike in bending tests (Figure 

6). One can see the rapid growth of piezoelectric current under shear stress (Figure S2). At 

this time, every nanowire act as a dipole due to lattice deformation and ions displacement 

(Figure 4). Electrons and holes flow through the sample volume in order to shield these 

dipoles (Figure 7b). The charge transfer is visible as maxima in the current characteristic 

(Figure 5). The charges run in the opposite direction during relaxation, which is apparent 

as minima in Figure 5. In our previous research [7–9] only bending tests were applied, 

where one of the electrodes was on the top of the sample and the second one was on the 

bottom, as shown in Figure 6a. It additionally allows the generation of a difference in 

electronic charge due to differences in stress distribution and generates a measurable volt-

age or current as a result. A comparison of both tests allows us to state that this type of 

composite piezoelectric sensor with randomly oriented SbSI nanowires generates a higher 

signal during a complex stress state, such as bending. 

Figure 5. Current flowing through the sample under 100 V of applied voltage, registered during the
non-destructive static tensile tests at a constant deformation of 0.025 mm, with a stretching rate of
1–500 mm/min (black points—measurement data; red line—expected ideal characteristic).

Due to the high resistivity of the epoxy/SbSI composite, the measured piezoelectric
peak-to-peak current is relatively high (Ip-p = 1 pA) in comparison to the current flowing
through the sample (8.16 pA) under an applied voltage of 100 V. The signal comes from
the whole volume of the sample between electrodes and is generated by shear stress in
SbSI nanowires during tensile tests [8,75–77]. Moreover, during tensile tests in a sandwich
configuration, both electrodes are in a similar stress mode, unlike in bending tests (Figure 6).
One can see the rapid growth of piezoelectric current under shear stress (Figure S2). At
this time, every nanowire act as a dipole due to lattice deformation and ions displacement
(Figure 4). Electrons and holes flow through the sample volume in order to shield these
dipoles (Figure 7b). The charge transfer is visible as maxima in the current characteristic
(Figure 5). The charges run in the opposite direction during relaxation, which is apparent as
minima in Figure 5. In our previous research [7–9] only bending tests were applied, where
one of the electrodes was on the top of the sample and the second one was on the bottom, as
shown in Figure 6a. It additionally allows the generation of a difference in electronic charge
due to differences in stress distribution and generates a measurable voltage or current as a
result. A comparison of both tests allows us to state that this type of composite piezoelectric
sensor with randomly oriented SbSI nanowires generates a higher signal during a complex
stress state, such as bending.
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Figure 7. Schematic representation of epoxy/SbSI nanocomposite (a), and scheme of piezoelectric
response (b) under tensile stress; 1—epoxy matrix, 2—SbSI nanowires, 3—electrodes; white arrows
in (a) indicate the force direction.

Similar observations were reported by Purusothaman et al. [82], where authors mea-
sured the negligible response of the PMMA/SbSI composite and SbSI micro-rods sensors
under tensile stress, while weaker responses were detected for compressive stress and
stronger for bending. However, the authors used polycrystalline SbSI rods fabricated by
solid-state reaction with micrometric size, but the general pattern is convergent. Similar
studies have been performed in past years for sensors based on ZnO nanorods [83–85],
laminated PZT thin films [86], Bi4Ti3O12 nanoparticles [87], Si/SiO2 nanowires [88], and
BN nanotubes [89] which show that bending or compressive stress is more favorable than
the tensile one.

As described above, features of epoxy/SbSI nanocomposite allow for its applica-
tion not only as a strain sensor but also in smart sensing [26,87–90] and energy harvest-
ing [9,36,37,76] applications, due to the extraordinary piezoelectric constant of SbSI [13,14].
Moreover, the usage of the epoxy matrix allows for obtaining almost all possible shapes of
the nanocomposite, which due to its easy formability, is typical for them. As the result of
the fabrication procedure, prepared samples belong to the so-called 0–3 group of nanocom-
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posites [91] since SbSI nanowires are randomly dispersed in an epoxy matrix (see scheme
in Figure 7a).

3.5. Scanning Electron Microscopy Studies

Fractures of epoxy/SbSI nanocomposite sample broken during measurements at
686 N are presented in Figure 8. The presented broken interfaces are normal for the applied
force direction. It can be seen that nanowires are well dispersed in the epoxy matrix and
randomly oriented, as was described in previous works [7–9,36]. Part of the SbSI nanowires
was ripped out from epoxy or broken during tensile stress. Some minor pores are also
visible, with shapes and sizes similar to SbSI nanowires. Some of the nanowires were also
untouched, with visible cracks at the epoxy/reinforcement interface. It suggests the partial
orientation of SbSI nanowires during tensile stress, due to the viscoelastic nature of the
epoxy matrix, resulting in pores formation at the interface, and explains the untouched
structure and presence of ripped out nanowires and pores with similar sizes and shapes.
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4. Conclusions

Results from epoxy/SbSI nanowires integrated piezoelectric strain sensor has been
presented. As a novel approach, structural changes in SbSI morphology as composite
reinforcement under various loads were presented and residual stress in SbSI nanowires
was calculated. Performed studies allow us to formulate the following conclusions:

1. Rietveld refinement of XRD patterns obtained at various loads (in the range of
0–700 N) shows that a and b lattice parameters of SbSI unit cell slightly decrease,
while the c parameter remains constant. It results in a slight decrease in lattice volume,
but also results in a relatively high lattice strain, especially under plastic deforma-
tion of composite. Moreover, the strong shift of sulfur atoms was detected under
loads higher than 400 N, which is responsible for the anisotropy of the piezoelectric
properties of SbSI.

2. Major stress that affects SbSI nanowires in the epoxy matrix has shear nature, due to
its random orientation in a matrix. Moreover, two other types of stress were detected
in SbSI nanowires—the tensile one, which is present during tensile tests, and slight
compression, regarding the viscoelastic nature of the epoxy matrix.

3. This type of composite piezoelectric strain sensor with randomly oriented SbSI
nanowires requires a complex stress state, such as bending. Uniaxial stress, especially
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in the elastic deformation range, requires external voltage to measure the piezoelectric
response due to the high impedance and resistivity (ρ = 2.74 × 1011 Ωm) of the sample.

4. Epoxy/SbSI nanocomposites driven with an applied voltage respond to the applied
tensile stress by generating a piezoelectric current with a relatively high value (8.16 pA,
Ip-p = 1 pA). The current level is independent of the deformation speed rate in con-
tradistinction to complex stress states. Piezoelectric measurements may incline this
material as potentially applicable in a piezoelectric strain sensor as well as smart
sensing materials.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22103886/s1. Figure S1. Force vs. displacement curves of
epoxy/SbSI composite obtained during a static tensile test (red line) and in situ XRD tensile test
(black dashed line); Table S1. Peak position determined for peaks visible at Figure 3; Table S2. Lattice
evolution of SbSI orthorhombic phase in epoxy/SbSI composite during tensile test; Figure S2. Typical
residual stress diagram obtained for SbSI nanowires in epoxy-based composites under different
applied loads; Section S1. Results of Rietveld refinement of epoxy/SbSI nanocomposite under
various loads.
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