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Abstract

MicroRNAs (miRNAs) have emerged as important regulators in the post-transcriptional control of gene expression. The discovery of their pres-
ence not only in tissues but also in extratissular fluids, including blood, urine and cerebro-spinal fluid, together with their changes in expression
in various pathological conditions, has implicated these extracellular miRNAs as informative biomarkers of disease. However, exploiting miR-
NAs in this capacity requires methodological rigour. Here, we report several key procedural aspects of miRNA isolation from plasma and serum,
as exemplified by research in cardiovascular and pulmonary diseases. We also highlight the advantages and disadvantages of various profiling
methods to determine the expression levels of plasma- and serum-derived miRNAs. Attention to such methodological details is critical, as circu-
lating miRNAs become diagnostic tools for various human diseases.
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Introduction

MicroRNAs (miRNAs) are small non-coding RNA sequences of about
22 nucleotides that are important post-transcriptional regulators of
gene expression. They impact many if not most developmental [1]
and homeostatic processes such as the immune response and
metabolism [2, 3] and epigenetic processes as well [1, 4].

A plethora of studies in humans, complemented by animal
models, demonstrate the importance of tissue miRNAs during
developmental processes [5–11] and various disease pathologies
[12–17]. Thus, significant changes of tissue miRNA ‘signatures’
occur in various diseases, such as cancers [18–20], cardiovascular
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disease (CVD)[21–26], diseases of the lung [27–31], kidney [16]
and nervous system [32, 33]. However, routine biopsies from any
organ for miRNA profiling are not a practical option; therefore,
investigators are turning towards less invasive procedures, involv-
ing circulating miRNA biomarkers (for a review of practical issues,
see [34]).

The presence of miRNA molecules in human plasma was con-
comitantly reported by several groups [35–38]. Once it became clear
that some miRNAs were released from their cells of origin and could
be captured in various extracellular fluids, numerous studies began
investigating whether tissue- and disease-specific miRNA signatures
were also reflected in fluids such as blood, urine, spinal fluid or sal-
iva [39]. Extracellular miRNAs are remarkably stable in the circulation
[35–37, 40]. As a result of cellular damage/tissue injury, such as in
acute myocardial infarction (MI) [41–43], atherosclerosis [44], non-
small cell lung cancer [45], neurodegenerative diseases [46–49],
skin fibrosis [50] and osteoarthritis [51] (Table 1), miRNA expres-
sion can change in the blood. Notably, this list is increasingly
expanding. Furthermore, miRNA expression can change not only in
the blood but in other body fluids as well (Table 1). Thus, circulating
miRNAs are attractive candidates for disease monitoring to serve as
valuable prognostic indicators of disease progression or resolution.
It is predicted that changes in miRNA expression in body fluids occur
earlier than conventional biomarkers. For instance, the markers of
inflammation and repair in the cardiovascular and lung systems
include troponin, C-reactive protein, chemokines and cytokines [52–
54]. However, by the time these proteins are detectable in the circu-
lation, much of the tissue damage has already occurred, which
makes it crucial that better biomarkers be uncovered for the early
detection of diseases.

However, miRNA fingerprinting as a novel and valid diagnostic,
prognostic and disease surveillance tool is still in the descriptive
stages. Currently, information is being gathered and compared in var-
ious disease states. The necessity of more thorough studies, based
on much larger patient cohorts, is required for their utility. This is
underscored by several studies using conventional biomarkers to
assess tissue damage from organs that would also require invasive
biopsies. For instance, comparison of circulating miRNA profile with
at least one protein marker of acute coronary syndromes, namely tro-
ponin, led to conflicting results [55, 56]. At the same time, there are
only few studies that analyse miRNA expression outside lung tissue
in chronic obstructive pulmonary disease [57, 58], pulmonary artery
hypertension [59], idiopathic pulmonary fibrosis [60] or lung cancer
[61]. Several studies have begun to examine the potential of miRNAs
to predict liver damage as well [62, 63].

Another level of complexity is added by the fact that, although
many circulating extracellular miRNA species are repeatedly found
having differential expression, such as miRs-1, -122, -126 and -223
in MI (Table 1; for comprehensive recent reviews, see Refs. 43, 64,
65), some of these are also associated with leukaemias and cancers
[12, 66], further complicating identification of a disease-specific pro-
file. In addition, extracellular miRNAs derived from viruses such as
human cytomegalovirus can be found in patients with CVD. For exam-
ple, hcmv-miR-UL112 is elevated in the circulation in hypertension
[67] (Table 1). Although the role of viral miRNAs in infection is just

beginning to be elucidated, little is known about their involvement in
the pathogenesis of other human diseases.

Sources of variability in miRNA assessment from body fluids
involve both the extraction methodology and the analysis platform
employed, which may lead to inconsistent or even contradictory
results. A comprehensive literature survey revealed that many method-
ological details are often overlooked, thus making it difficult to directly
compare the specific efficiency and accuracy of various methods. The
matter is further complicated by the fact that in the blood, miRNAs are
either associated with proteins, such as argonaute [68], lipoproteins
[69], or contained within cellular fragments designated as exosomes,
microparticles, microvesicles or extracellular vesicles (EVs) [36, 37,
70]. Extraction and analysis of miRNA from any or all of these compo-
nents may pose specific challenges and yield different results.

Initial studies [36, 37] utilized a large volume of blood to isolate
and profile >450 miRNAs. In contrast, advances in the approaches
now allow the interrogation of <1 ml of blood to examine the expres-
sion of extracellular miRNAs (Table 1). However, in-depth analyses of
the miRNA profiles often require more starting biological fluid, which
may be a limiting factor. This is especially true when the patients are
children, elderly or seriously ill. In addition, the RNA quantity can dic-
tate the platform used for miRNA analysis. As shown in Table 1, cur-
rent methods vary among laboratories both for miRNA isolation from
plasma or serum and for obtaining miRNA profiles from these isolates.

In this review, we will highlight important considerations, such as
blood collection methods or the choice of a profiling platform, when
embarking on studies to profile circulating miRNAs. Throughout the
review, we will refer to circulating extracellular miRNAs, as those
found in the serum or plasma and not blood cells, unless otherwise
stated. We focus on studies using limited sample volumes, as would
be practical for disease profiling in clinical settings, and highlight opti-
mal miRNA isolation protocols for small sample sizes. In this review,
we also discuss analytic methods to identify circulating miRNAs, as
well as other critical factors when designing these studies.

Current methodologies for extracting
miRNAs from plasma and serum

The purposes of detecting extracellular miRNAs are to use them as
disease biomarkers, as well as to understand disease pathogenesis.
Therefore, much of the effort so far involves profiling miRNA species
in various body fluids to uncover differential expression patterns and
to correlate them with physiological status or disease progression.
The composition of these fluids is quite dissimilar, which implies that
isolation methods cannot be directly transposed from one tissue/fluid
to another. To date, most RNA and miRNA extraction methods use a
phenol:chloroform-based extraction technique, often facilitated by
adding guanidinium thiocyanate, whereas newer methods, faster and
some automated, include a selective solid phase (silica) adsorption of
RNA from the phenol:chloroform extraction onto mini-columns, fol-
lowed by elution in water or a buffer [101]. MiRNA molecules behave
physically and chemically different from the larger RNA molecules,
and their quantitative recovery requires optimization of existing total
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RNA isolation procedures. Various manufacturers have employed dif-
ferent strategies for this purpose.

MiRNA profiling is a multi-step process that includes: (i ) blood
collection; (ii ) RNA purification; (iii ) RNA quantification and quality
control; and (iv ) RNA profiling (Fig. 1). We will further discuss each
of these steps, highlighting methodological aspects that may impact
the outcome, as well as possible pitfalls. In addition to limited sample
volumes, these involve: (i ) the lack of standard protocols; (ii ) inter-
ference of anticoagulants in PCR-based profiling [101]; (iii ) low
recovery of miRNAs [64, 81]; and (iv ) the lack of known invariant
miRNA species to be used as endogenous controls.

Lastly, we should stress the fact that it is not possible to unequiv-
ocally assign the origin of detected miRNAs. While circulating miR-
NAs are associated with EVs [36, 70, 102], plasma lipoproteins [69]
and proteins [68], the levels of each of these components, combined
with efficiency of the extraction method used, further contribute to
bias in interpreting miRNA expression levels. The sections below dis-
cuss newer methods for isolating all circulating extracellular miRNAs,
regardless of plasma or serum components with which they may be
associated.

Considerations for the collection of plasma and
serum

Plasma or serum?
The essential difference between plasma and serum is the presence
and absence, respectively, of fibrinogen and clotting factors. More
importantly, platelets contain a wide spectrum of miRNAs [36], and
these may be released into the serum during coagulation, together

with miRNAs from red and white blood cells [103]. In the clinical set-
tings, both plasma and serum are used for extracellular miRNA detec-
tion. Plasma is routinely collected in various tubes containing
anticoagulants [K2 ethylenediaminetetraacetic acid (EDTA), Na3
citrate, heparin] and serum in tubes that promote coagulation and
permit clot separation from serum (serum separators). Many studies
comparing these biological fluids side-by-side find little or no differ-
ence in extracellular miRNA quantification [35, 37, 52], although
higher concentrations were consistently found in sera [103].

Moreover, some important factors to consider include that: (i )
platelets release EVs upon stimulation [104]; (ii ) serum miRNAs are
associated with EVs [102]; and (iii ) some circulating miRNAs in both
plasma and serum, such as miRs-126, -150, -191 and -223, display
differential expression upon platelet activation, which responds to
antiplatelet therapy [105]. These variables may contribute to notable
differences in reporting. Indeed, in a study dedicated to the methodo-
logical analysis of circulating extracellular miRNAs, the concentration
of several miRNAs (miRs-15b, -16 and -24) was significantly higher
in plasma collected in EDTA-containing tubes compared with serum
[73]. Wang et al. found higher total miRNA concentration in serum;
however, for specific miRNA, the results were more nuanced: for
some of the more abundant miRNA species in blood cells (miR-150,
miR-16 and miR-126), the concentrations were the same between
serum and plasma, whereas for others, they observed higher concen-
trations in the serum (e.g. miR-15b and miR-451) [103].

Thus, while plasma and sera generally have similar miRNA
expression patterns, in specific instances, significant differences
between these biological fluids are apparent [103, 105]. As there is
insufficient data to account for all of these situations, a standard

1. Blood collection

Heparin

Citrate

EDTA

Serum

Plasma

Parameters

Sample type

miRNA stability

Consistency in time 
of collection

qRT-PCR

NextGen

nCounter

Microarray

2. Extraction method

Nanodrop
Bioanalyzer3. Quality control

miRVana™ PARIS™ 
miRNeasy® mini 
MicroRNA Extraction Kit
Master Pure RNA Purification Kit
mir Premier® microRNA Isolation Kit

Isopropanol precipitation

Denaturing (safer storage) Factors to consider

Silica

Phenol/chloroform
Initial fluid volume

Yield

Purpose of study 
(profiling vs. a small 
number of miRNAs)

Procedural 
contaminants

Fig. 1 Summary of the workflow in

designing miRNA profiling from plasma or

serum. One needs to first decide if plasma

or serum will be analysed. If plasma is
selected, then the anticoagulant should be

carefully chosen, because of interference

with downstream applications. Consis-

tency in the time of collection, as well as
other phlebotomy parameters, is neces-

sary, concomitant with a similar time

frame of miRNA extraction. For the extrac-
tion method selection, other factors have

to be considered, such as the available

initial fluid volume and the expected yield.

Finally, quality control is a necessary step
for successful downstream applications.
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approach should be followed to ensure intra-experiment or intra-clini-
cal trial consistency. Additional caution should be used in the case of
archived samples, which are mostly stored as sera [103].

The effect of anticoagulants
In the clinical setting, the commonly used anticoagulants for plasma
collection are EDTA [36], citrate [42] or heparin [74]. In selecting a
tube for blood collection, consideration must be given to the platform
that will be used to profile the miRNA. One needs to avoid introducing
reagents that inhibit enzymes that will be used later in the process,
and that are difficult to be removed prior to subsequent profiling. For
example, heparin inhibits the reverse transcriptase and polymerase
enzymes used in PCR [106, 107]. Therefore, heparinase I [74] or LiCl
[108] treatments of RNA preparations need to be performed prior to
quantitative real-time PCR (qRT-PCR)-based profiling. Of note,
removal of the heparin may not be complete and may also reduce
RNA yield. Similar to heparin, citrate can interfere with PCR from
blood samples [109]. Fichtlscherer et al. found that miRNA expres-
sion profiling was better in EDTA-anticoagulated blood compared with
blood collected in sodium citrate [81]. Recently, we have confirmed
that citrate interferes with qRT-PCR-based miRNA assessment [101].

In conclusion, the choice among regularly used anticoagulants
should be EDTA. Citrate and heparin should be avoided as a result of
their inhibitory effects on qRT-PCR. In addition, heparinized blood
should be avoided for next-generation sequencing (NGS) studies as
well, as these also utilize reverse transcriptase (reviewed in Section
3.5). The effect of citrate on this platform is unknown at this time.
Furthermore, if a patient has several tubes of blood collected for vari-
ous clinical tests, the EDTA-containing tube must be collected prior to
those containing heparin or citrate, to avoid inadvertent contamina-
tion with these anticoagulants. All these critical elements need to be
outlined in clinical protocols as well as in the study reports.

The effect of fasting and blood draw timing
Some blood components, such as glucose and lipoproteins, vary
according to food intake. This is common knowledge; however, much
less is known about how this impacts miRNA levels. Fasting may
affect miRNA detection in different ways. First, various miRNAs may
be transported in circulation as ‘cargo’ by different carriers, which
might themselves be affected by the fasting state of the individual.
For example, HDL particles, which can carry some extracellular miR-
NAs, vary diurnally in their blood concentrations [69]. Second, higher
levels of circulating lipoproteins might interfere with the extraction
process, affecting efficiency of miRNA recovery [75]. In this context,
one needs to correlate the observed changes in miRNA expression
patterns in patients with atherosclerosis with their lipoprotein levels
(Table 1). In the clinical setting, the general practice is to draw blood
in fasting conditions; however, this is rarely mentioned in reports on
circulating plasma or serum miRNAs. Wang et al. are one of the few
research groups who have recorded this information [77].

Another factor that is not routinely considered is the diurnal varia-
tion in circulating miRNAs levels. Although it is not known whether
circulating miRNAs undergo daily variations in concentration in
human cases, there is at least one report of miRNA circadian rhythm

in mouse serum [110]. Previously, we found no difference in the
expression of extracellular miRNAs from plasma collected in the
morning or afternoon from healthy individuals [36].

Thus, a good practice should be to maintain consistency in time
of day for sample collection to minimize variability because of such
unknown factors. Moreover, reports should attempt to capture all this
information when describing their protocols in publications. Ulti-
mately, this information will be necessary to facilitate standardization
of practices for analysis of circulating miRNAs.

MiRNA stability and interference of blood cells with
detection
miRNAs are desirable candidate biomarkers because of their stability
over time, even after repeated freeze-thaw cycles in plasma and
serum [35, 37, 72, 73]. Their stability is explained by several protec-
tive mechanisms, related to the association of extracellular miRNAs
with plasma proteins [111], specifically argonaute-2 [68] or lipopro-
teins [69], or, in other circumstances, their encapsulation in EVs [36,
70, 102]. Circulating EVs, which are phospholipid-enclosed vesicles
of various sizes and cellular origins [112], deserve special attention
because they are produced by many cell types, and their quantity,
quality and composition vary according to the physio-pathological
status, including cardiovascular events [113, 114]. One needs to take
in account that the EVs are a mixed population in the blood. There are
numerous published methods and several excellent reviews for EVs
isolation and characterization from plasma or serum [115–118]. To
date, the technology is not adequate or advanced enough to isolate
EV subpopulations of sufficient purity for miRNA profiling.

Nevertheless, although the extracellular miRNAs are stable in puri-
fied plasma or serum, it is recommended that the blood be processed
within 6 hrs in EDTA tubes [119]. It is possible that the cellular com-
ponents of blood are releasing miRNAs during the storage period that
would account for some changes. In fact, extracellular miRNA expres-
sion changes in packed red blood cells after long-term storage [120,
121]. Thus, rapid processing, within 2–4 hrs from collection, is opti-
mal. Furthermore, as peripheral blood cells, including erythrocytes,
can contribute to extracellular miRNAs found in plasma or serum
[122], increased blood cell counts in an individual need to be consid-
ered in the total miRNA recovered from blood-based analysis.

Phlebotomy variables such as lysis of erythrocytes and other
blood cells, and subsequent miRNA release should be also considered
[73, 123]. The importance of these factors also lies in the fact that
haemoglobin and lactoferrin may be released in the process, and
these have been demonstrated to inhibit subsequent qRT-PCR [107].
As discussed, platelet-derived miRNAs are present in plasma and
serum [36, 105]. In some medical conditions, platelet counts increase
and may be reflected as changes in plasma or serum miRNA expres-
sion patterns [124]. Although it is difficult to determine the contribu-
tion of each of these blood cell components to miRNAs found in the
serum or plasma, studies should include at least WBC and platelet
counts from individuals, and data should be expressed with regard to
these variables. In addition, platelets can be inadvertently activated
and thus induced to release miRNAs when using small gauge needles
to collect blood [118]. Thus, standardization and reporting of these
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specific details are important when analysing circulating miRNAs as
biomarkers.

In conclusion, to reduce the influence of all these factors, the pro-
tocols should be consistent in sample acquisition, storage and pro-
cessing within the first 2–4 hrs from collection. Moreover, samples
should be checked for small clots and haemolysis in both plasma and
sera, as these could contribute to the variability in miRNAs detection.
Another useful practice is to discard the first couple of ml of blood,
which would remove possible tissue and cell contaminants derived
from the puncture site [118]. Presentation of detailed information in
publications will certainly advance our understanding of extracellular
miRNAs in the circulation and how to best use them as biomarkers.

Extraction methods

As discussed in the introduction to this section, most of present tech-
niques for miRNA isolation are based on phenol:chloroform extraction.
However, until recently, these methods were designed for use with tis-
sues or cell cultures. A major difficulty in RNA/miRNA isolation from
body fluids, including plasma and serum, is the generation of large vol-
umes of aqueous phase. To ensure adequate denaturing and removal
of the high protein content from samples (albumin, immunoglobulins,
coagulation and complement components among others), the lysis
reagent-to-specimen ratio has to be increased several-fold. Together
with the starting fluid volume, this is the most variable step in the pro-
tocols reviewed (Table 1). Unfortunately, very few authors reported
the yield of RNA recovered in the specific conditions used, making it
difficult to determine the efficiency of these extraction protocols.

The transport conditions in the blood for a particular miRNA spe-
cies such as argonaute-2 [68], lipoproteins [69] or EVs [36, 102] also
need to be considered prior to RNA isolation. As some EVs are pro-
duced from the exocytic pathway, their membranes have a different
lipid composition from cellular plasma membranes [125, 126] indi-
cating that methods used to extract miRNAs from cells may not be
suitable for extracting EVs-derived miRNAs leading to changes in
expression. Indeed, comparison of RNA extraction methods from in
vitro–generated exosomes reported that phenol-based methods were
less efficient than column-based ones for total RNA [101, 127]. Con-
versely, a better yield of small RNAs was recovered from exosomes
using combined phenol and column-based methods [101, 127]. Of
particular note, the total RNA extracted from EVs consists of various
RNA species, of which miRNAs comprise a small percentage and
transfer RNAs are the most abundant [128]. How each method
impacts the isolation of various RNA species still needs to be empiri-
cally examined. Therefore, this section highlights general protocol
considerations for isolating miRNAs from plasma or serum.

Phenol:Chloroform extraction for miRNA
This procedure relies on the differential solubility of cellular compo-
nents in organic solvents, such as phenol, chloroform or ethanol. The
main components of this protocol are phenol and guanidinium thiocy-
anate, mostly commonly marketed as Trizol�. Because Trizol� dena-
tures proteins, including RNases, samples are safe for long-term

storage [129]. After phase separation, RNA is recovered by precipita-
tion with isopropyl alcohol. As miRNAs are small, ample time is
needed to recover these RNA species. Thus, it is recommend that at
least an overnight precipitation at �20°C or �80°C [36], followed by
longer pelleting times be used, such as a 16,000–21,000 9 g centri-
fugation for 1 hr, at 4°C.

While Trizol� is widely employed (Table 1), there are important
considerations using this method. Recently, a paper was retracted
[130], as the authors realized that there was selective loss of small
RNA molecules with low GC content when using Trizol, especially
when low number of cells were analysed [131]. The same was found
true for some pre-miRNAs, small interfering RNA duplexes and trans-
fer RNAs [131]. Although this study refers to miRNAs extracted from
cells rather than body fluids, one should nevertheless be cautious as
it is unknown if these factors alter RNA isolation from plasma or
serum as well.

Silica-based miRNA recovery methods
Several methodologies are available, of which miRVanaTM PARISTM

and miRNeasy� mini kits are more widely used (Table 1). As the
majority of studies do not report the actual yield and quality of miR-
NA, it makes direct comparison of these methods difficult.

The miRVanaTM PARISTM kit is a commercially available method of
separating both nucleic acids and proteins. The method is unique in
that it isolates native proteins and small RNAs, using a non-ionic
detergent to disrupt cells prior to phenol:chloroform extraction. The
miRNAs are isolated over a glass-fibre filter. Specific to the miR-
VanaTM PARISTM method is a two-part, sequential filtration with
increasing ethanol concentrations, allowing for the collection of a
highly enriched fraction of RNA molecules below 200 nucleotides.
This method works very well for the isolation of miRNA from tissues,
and greater than a third of the articles cited in this review have used
this kit for body fluids as well, as it requires small starting fluid vol-
umes (from <100 ll, up to 625 ll). On the basis of the lack of details
in these studies (Table 1), we do not know the efficiency of miRNA
recovery from body fluids.

The miRNeasy� Mini kit uses a silica-based column system to
recover miRNAs. Some groups reported that this kit leads to a two-
to threefold better yield than miRVanaTM PARISTM kit [75, 81]; how-
ever, only a few studies used it for miRNA extraction from plasma/
serum (Table 1) [39, 62, 81]. The kit also utilizes phenol:chloroform
to separate the miRNA from other plasma components, by the
adsorption on a silica mini-column in the presence of ethanol. Nota-
bly, the binding, washing and elution steps can be automated using
the Qiagen QIAcube [132], which, when available, decreases both
working time and variability.

Several variations of the QIAzolTM and miRNeasy� protocol exist,
encompassing (i ) different starting plasma/serum volumes, between
40 and 400 ll [38,63,81] and (ii ) different QIAzol:fluid ratios, from
1:1 [35, 37, 133] to 3:1 [77], 3.5:1 [62], 5:1 [68] or 10:1 [134]. As
the yields are almost never reported, one should empirically deter-
mine the best QIAzol™-to-sample ratio to obtain high-quality RNA
from small sample volumes for one’s studies. We recently published
an optimized protocol in using this approach [101].
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Other kits used for miRNA isolation from plasma/serum
samples
The MicroRNA Extraction Kit has been used for total and miRNA iso-
lation from 100 ll plasma that was subsequently subjected to qRT-
PCR [87]. Specifically, this study examined the expression of only
eight miRNAs from the recovered RNA. miRNA is extracted by
homogenization in the lysis buffer rather than phenol and chloroform.
The sample is then treated with ethanol. Prior to the recovery of
miRNAs, the manufacturer suggests an optional in-column DNase
treatment using a NucleoPurTM spin column.

For analysis of diagnostic and prognostic values of several circu-
lating miRNAs in acute coronary syndrome, Widera et al. used
MasterPureTM RNA Purification Kit [43]. These investigators started
from 50 ll of plasma to examine the expression of a few miRNAs by
qRT-PCR. Thus, both these kits recovered sufficient and suitable RNA
to examine the expression of limited miRNA species.

Instead of using phenol:chloroform and silica-based columns,
the Exiqon miRCURY™RNA Isolation kit is based on a proprietary
resin as a separation matrix. A recent comparison of several
methods for miRNA isolation from exosomes found that this kit
gave the highest yields [127]. However, to date, we did not find the
miRCURYTM kit used for miRNA extraction from body fluids,
although in its protocol, it specifies that it can be used with as low
as 100 ll of whole blood.

Sigma-Aldrich� markets the mir Premier� microRNA Isolation Kit
to purify miRNAs and other small RNAs without phenol and chloro-
form. According to the manufacturer, the proprietary lysis solution
achieves three functions: RNA release, inactivation of ribonucleases,
and precipitation of large RNA and genomic DNA. Similar to the
majority of other kits, RNA is recovered by a silica column. To date,
we did not find studies using this kit to extract miRNAs from plasma
or serum.

In conclusion, the choice of the specific methodology for miRNA
extraction from body fluids depends on many factors, such as (i )
available initial volume, (ii ) number of miRNA species intended to be
assessed, (iii ) method of subsequent analysis, (iv ) ease of use and
(v ) price per sample. Most of these variables are investigator/study-
dependent; therefore, there is no universal solution.

Global quantity and quality assessment of
miRNAs

Several methods exist to determine the concentration and quality
of purified miRNAs. Spectrophotometric analysis is one of the
easiest and most common methods to determine concentration
and protein or phenol contamination in RNA preparations [135].
As the absorbance of phenol (270 nm) is in close proximity to
that of nucleic acids (260 nm), phenol contamination can lead to
overestimation of RNA quantity. Furthermore, proteins absorb light
at 280 nm, but the ratio of absorbance at 260 and 280 (260/280)
estimates protein contamination in a nucleic acid solution with
low sensitivity [135].

It is difficult, using this method, to discern the relative composi-
tion of the isolated miRNAs compared with total RNA or other small

non-coding molecules and precursor miRNAs. As both total extracel-
lular RNA and miRNAs are recovered, the miRNA concentration is
prone to be overestimated if the total RNA is degraded during the iso-
lation process. These issues can be reflected in unreliable profiling
results [136]. As extracellular miRNAs are less than 1% of the total
RNA recovered [128], their concentration is often under the detection
limits of spectrophotometric devices. In this instance, it is recom-
mended to use a fixed volume rather than a fixed miRNA amount for
qRT-PCR [37, 75].

When the miRNA amount and concentration are sufficient, qual-
ity assessment of the preparation can be performed by capillary
electrophoresis using the Small RNA kit in the Agilent Bioanalyzer.
This system examines the presence of small RNAs between 6 and
150 nucleotides and using an algorithm based on ribosomal RNA
detection, assigns an RNA integrity number (RIN) to demonstrate
miRNA quality [137, 138]. Although this system can quantify small
RNA molecules <150 nucleotides, it cannot distinguish between
precursor and mature miRNA forms. A low RIN sample might indi-
cate the presence of degraded miRNA that is not of sufficient qual-
ity to profile large number of miRNAs. However, examination of
individual miRNAs by qRT-PCR might still be accomplished [137].
We [36] and others [139, 140] found that RINs >6 are acceptable
for miRNA profiling from plasma or serum samples. Of note, when
miRNA is extracted from purified EVs, this algorithm is not applica-
ble, as it relies on ribosomal RNAs, which are not consistent in
EVs [127]. Thus, if using RIN for quality evaluation, then each
investigator must determine and define the acceptable quality levels
through their study.

MiRNAs profiling methods

To date, there are several methods to examine miRNA expression
profiling including (i ) qRT-PCR, (ii ) microarrays, (iii ) sequence-
specific hybridization in solution followed by miRNA molecules
counting based on reporter probes and (iv) direct sequencing
(Table 1). Each method has advantages and limitations (Fig. 2). In
addition, miRNA assessment is also confronted with (i ) the inabil-
ity to distinguish between precursor and mature forms of miRNAs
on some profiling platforms and (ii ) the difficulty to validate and
correlate individual miRNA expression between different profiling
platforms [18, 103]. In addition, considerations for endogenous
controls are dependent on the platform used. Although there are
inconsistencies across profiling platforms, qRT-PCR platforms
seem to have better sensitivity than array technologies for miRNA
profiling from body fluids [141]. These issues and methods are
briefly described below.

Using a qRT-PCR approach is limited in the species as well as the
number of detectable miRNA species compared with microarrays.
However, medium- and large-scale, high-throughput platforms are
commercially available using a qRT-PCR approach, such as microflui-
dic cards or plates. These are customizable. However, for profiling a
large number of miRNA species, the microfluidic cards are at the
same time more flexible, but more limited in the number of miRNAs
that can be examined compared with microarrays. To date, Qiagen
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PCR arrays cover human, mouse and rat, with primer assays extend-
ing to Rhesus, hamster, chicken, several viruses, etc., whereas Life
Technologies assays cover ~200 species. The design of PCR arrays
can accommodate as few or as many miRNA species desired, but the
higher their number, the more labour-intensive the study becomes,
and less price-efficient compared with microarray methodology.

Real-time PCR

Overview of qRT-PCR platforms
Analysis of miRNA expression by qRT-PCR can be performed by
either TaqMan� or SYBR� Green methodologies. However, each
requires specific reverse transcription (RT) and PCR reagents. For the
Life Technologies miRNA TaqMan� assays, a unique stem-loop RT
primer is designed to quantify only mature miRNAs and is miRNA
specific. This primer produces a primer/mature miRNA chimera that
extends the 3′ end of the miRNA, generating a longer RT product for
the specific primers and probe to anneal during the PCR step.

Similar to the TaqMan� assay, the Qiagen SYBR� green–based
miScript PCR System enables the profiling of several hundred miRNAs
from the same sample. The RT for this system utilizes poly(A) poly-
merase and a unique universal oligo(dT) primer, which extends the
template and converts mature miRNA species, as well as all other RNA
species (precursor miRNA, other ncRNAs and mRNAs) into cDNA.
The specificity is facilitated by a dual buffer system for the RT step,
which selectively converts either miRNA or mRNA to cDNA. For PCR,
a miRNA-specific forward primer and a universal reverse primer are
used in combination with QuantiTect SYBR Green PCR Master Mix.

Exiqon also offers a SYBR green–based qRT-PCR system, miR-
CURY LNATM PCR Kit. This kit examines the expression of individual
miRNAs requiring as little as 1 pg total RNA. To increase sensitivity,
miRNA-specific PCR primers generated with their ‘locked nucleic acid’
(LNATM) technology [21] are utilized. The ribose rings of nucleotides
are ‘locked’ by connecting the 2′-O to the 4′-C atom using a methy-
lene bridge. This locked conformation increases thermal stability of
the nucleotide and high-affinity base pairing to the complementary
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DNA strand. Furthermore, the oligonucleotides used for PCR can be
shorter and still maintain high melting temperatures.

Pre-amplification for qRT-PCR
To profile hundreds of differentially expressed miRNAs from serum
or plasma when RNA quantity is limited poses a technical chal-
lenge. Pre-amplification of cDNA can overcome this issue. Applied
Biosystems offers a kit for pre-amplification of the cDNA obtained
after RT using the MegaplexTM Primer pools [36, 72, 142]. These
stem-looped RT primers reduce the number of RT reactions, as
well as the amount of total input RNA required to 1 ng per sample.
Pre-amplification enhances the detection of low-expressed species
and does not appear to introduce a bias in miRNA detection [143].
Furthermore, MegaplexTM-generated template is versatile and can be
used for individual TaqMan� miRNA Assays or TaqMan� Low Den-
sity Arrays (TLDA) Cards. The TaqMan� assay is one of the most
specific and sensitive methods for miRNA profiling [141, 144], and
is also one of the most widely used in our literature survey. It may
be labour-intensive if using a 384-well format, but the TLDA cards
and the TaqMan� Open Array� MicroRNA panels simplify the
profiling process. However, additional equipment is required to use
these platforms.

qRT-PCR normalization controls
Quantification of miRNA expression by qRT-PCR may be performed
in two different ways [36, 144, 145]. One method involves calculating
the absolute quantification of the number of copies of a gene using a
standard curve. This is generated for each miRNA by serial dilutions
of the cDNA obtained from a known amount of template. The proce-
dure is advantageous for diagnostic purposes, especially considering
that there is no consensus on endogenous controls (as described
below). However, it is impractical to use this method when profiling a
higher number of miRNA species. It has been used occasionally, for
instance for finding miRNA biomarkers for early detection of lung
cancer [146].

The second method is the relative quantification: the level of
expression is expressed as a ratio of the Ct values of the genes of
interest to the Ct values of one or more genes, the ‘endogenous
controls’, considered invariant in (at least) the conditions tested
including the control samples [147]. The method has been widely
used for mRNA and miRNA isolated from tissues and cells, as
many genes and small miRNA were found relatively constant
and thus useful as endogenous controls. However, characterizing
miRNA expression in plasma/serum using relative quantification
has encountered a serious challenge: since their identification in
these fluids, no universally invariant calibrator miRNA or any other
small RNA molecule has been found to date. There are a few
invariant miRNAs in solid tissues [148], but their presence and/or
consistent expression in various pathological instances has not yet
been demonstrated for any body fluid. This problem has three
solutions so far, neither perfect.

The first solution is to spike-in exogenous, synthetic miRNA mi-
metics. These allow for normalization, as well as estimating the effi-
ciency of miRNA extraction and the reverse transcription step.
Mitchell et al. used three synthetic miRNAs corresponding to Caenor-

habditis elegans miRNAs that do not have homologous sequences in
humans: cel-miR-39, cel-miR-54 and cel-miR-238 [37]. These miR-
NAs are spiked-in after the addition of the denaturing agents to avoid
their degradation by plasma RNases. Some investigators use all three
[70, 73, 74, 78], while others use only one [43, 72, 81, 82]. Finally,
some groups designed their own spike-in controls [41, 84] or used
synthetic human miR-422b as it is minimally expressed in plasma
[87]. However, a serious drawback of the spike-in method is its reli-
ability for normalization when quantification of extracted RNA is not
possible. Spike-in miRNAs are a good measure of the extraction effi-
ciency; however, when the starting volume is low and the amount of
miRNA cannot be reliably detected, some investigators chose to use
the same starting sample volume for each sample, rather than the
same miRNA amount [e.g. 42, 74]. Moreover, using a fixed volume
does not imply that RNA content is invariable; therefore, spiking-in of
a fixed amount of one or several synthetic miRNAs into samples con-
taining variables amounts of RNA with the aim of normalizing qRT-
PCR is not the best choice.

The second solution is to use endogenous controls, such as small
nuclear (sn)RNA and small nucleolar (sno)RNAs [63, 67, 80, 85,
149], or specific miRNAs including miR-1249 [83], miR-223 or miR-
16 [75]. However, these miRNAs have been shown to be invariant
only in specific instances, whereas in other situations, they were
found to change with disease [150]. Furthermore, snRNAs/snoRNAs
are variable among tissues [151]. We have utilized snRNAs and snoR-
NAs as well as 18s and 5s rRNAs for normalization of plasma miRNAs
[36, 70].

Finally, mean normalization of the miRNA profiling data sets is
another possibility to quantify miRNA expression [36, 70]. In this
case, one determines which miRNA Ct values are invariant across all
(control and disease) samples. Thus, either one or a set or several
consistent miRNAs across the samples can be used for normalization.
One caveat is that it may be difficult to compare data using this
method with other normalization methods or data representing
another disease condition. More studies are needed to identify miR-
NAs that can serve as a true universal miRNA endogenous controls
[152]. As extracellular RNA expression data are shared and placed in
repositories such as Vesiclepedia [153], the identification of invariant
miRNAs in body fluids should emerge.

Some general rules regarding whether to use an endogenous or
exogenous control need to be considered. Either control type needs
to be amendable for the miRNA assay. They should have sizes similar
to miRNAs, such as snRNAs, and the amplification efficiency should
be comparable to the tested miRNAs. For an endogenous control, the
level of expression should be invariant across tissues and cell types
as well as in various physiological and pathological conditions. Exog-
enous controls need to be stable. Applied Biosystems offers detection
assays for several snRNAs/snoRNAs, miRNAs as well as traditional
controls (18S rRNA). However, their applicability to plasma or serum
samples is reduced because the presence and the variability (or lack
thereof) of these small RNA species are not comprehensively estab-
lished. To date, no universal endogenous control for all experimental
conditions exists, neither for RNA nor miRNA, a fact especially true
for body fluids including plasma and serum. Thus, selection of several
(at least three) exogenous and endogenous controls with the lowest
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variability among all samples within a specific study should be con-
sidered for normalization.

Hybridization-based detection of miRNA
expression

A remarkable advantage of microarrays is their comprehensive cov-
erage and, for some, the ability to be customized, thus making
them a flexible and versatile tool [154]. However, specific instru-
mentation and software is required to perform these analyses.
Depending on the microarray manufacturer, they differ according to
the chemistries involved in miRNA labelling as well as probe design
and methods used to immobilize the probes [155]. Moreover, as
opposed to qRT-PCR, they cannot be used for absolute quantifica-
tion and they have a lower sensitivity and specificity than qRT-PCR.
For instance, Jensen et al. [141] have found that the GeneChip
miRNA 2.0 Array platform from Affymetrix was not reliable at a low
input level, similar to that of the miRNAs that can be recovered
from small amounts of plasma (250 ll). Another limiting factor for
microarrays is that, like qRT-PCR, they can only detect known
miRNA species [155].

Furthermore, although both intra- and inter-platform reproducibil-
ity of data is obviously desirable, this is not always attainable. Various
studies have been designed to understand the reproducibility, sensi-
tivity and specificity of various platforms for mRNA [156] or miRNA
[157]. With respect to miRNA, the results are staggering: the intra-
platform reproducibility is usually good to very good; however, the
agreement between various microarray technologies is low, especially
for the lower expressed miRNAs [143, 157–159]. This outcome was
the same regardless of the profiling technology, and qRT-PCR always
proved to be the most sensitive. The inability to validate miRNA
expression profiles across platforms may be due not only to differ-
ences in technologies but may also be a reflection of the lack of stan-
dard methods for (i ) normalization, (ii ) miRNA processing and (iii )
distinguishing mature miRNAs from precursor miRNAs or other
ncRNAs.

The specific choice of microarray platform depends on several
factors, an important one being availability. Many are highly sophisti-
cated and mostly accessible in core laboratories because of the high
cost of instrumentation and technical specialization. Other factors
may also influence the platform choice: (i ) As most of the arrays
require as low as 100 ng starting material, the amount of biological
material available may be a deciding factor. The miRNA needs to be
concentrated within a maximum volume of 3–8 ll for many plat-
forms. This can be easily attained when the sources are tissues or
cells, but much more difficult from the small sample volumes from
plasma. (ii ) The number of miRNAs to be examined and whether the
investigator is interested in, for example, viral miRNA expression indi-
cate that a wider coverage is needed (such as Affymetrix). If the
objective is to follow a specific set of miRNAs as biomarkers or to
better understand their role, then arrays that encompass a lower
number of miRNAs are more suitable. Some of the technologies
described are customizable (e.g. Agilent or NanoString), whereas for

others, the fabrication process makes customization less easy to
apply and more expensive (e.g. Affymetrix). (iii) Finally, other impor-
tant issues are sensitivity, reproducibility and a good understanding
of the type of information obtained by the raw data. Below, we high-
light several microarray types that are widely used and one unique
system involving miRNA hybridization in fluid rather than on a solid
surface.

Agilent oligonucleotides microarrays
Samples containing as low as 100 ng of miRNA can be profiled using
the Agilent printed DNA oligonucleotide microarrays [160, 161]. The
labelling method starts from total RNA, without fractionation or ampli-
fication, and consists of RNA dephosphorylation followed by dye
(Cyanine 3-pCp, Cy3) ligation using T4 RNA ligase. The dynamic
range is reported to be from 0.2 amol to 2 fmol miRNA, and the
probe design helps to equalize melting temperatures by adding a G to
the 5′ end to complement the 3′ cytosine introduced during labelling
and ultimately stabilizes the cognate miRNA [161]. The slide printing
allows for customizations, for instance [162], that vary mainly in the
oligonucleotide probe design and miRNA labelling, as well as other
procedural aspects. A good agreement was found between the detec-
tion by Agilent microarray and qRT-PCR, although a few miRNAs
were consistently differentially expressed between platforms [163].
As such, this finding calls for caution when qRT-PCR is used to vali-
date for microarray results.

Affymetrix GeneChipª miRNA arrays
Affymetrix is widely known for mRNA GeneChips© and has recently
released GeneChip miRNA 3.0 Array. This new version covers
100% of the miRNAs described in miRBase v.17 for 153 organisms
as well as viral miRNAs, all on the same array. It has probe sets
for small nucleolar snoRNAs and pre-miRNA hairpins. For detection,
a poly(A) tail is added to the 3′ end, then a 3DNA� dendrimer (a
branched structure of single- and double-stranded DNA conjugated
with numerous biotin molecules) is ligated. The biotin-labelled miR-
NA is then hybridized to the chip and detected by streptavidin-phy-
coerythrin. The miRNA GeneChip© requires a minimum of 100 ng
input total RNA and is not customizable. The procedure is straight-
forward and has the advantage of detecting human and viral miR-
NAs at the same time, which may shed light into the possible
connections between some diseases and various viral infections.
However, several reports found low correlation between Affymetrix
miRNA GeneChip results and other types of microarrays or qRT-
PCR [163, 164].

Exiqon miRCURY LNATM microRNA arrays

This array has extensive coverage for human, mouse and rat miRNAs
based on miRBase v.19 and contains 3100 capture probes as well as
146 viral miRNAs. Notably, this fluorescent system requires as little
as 30 ng of input RNA. The capture probes have been designed using
their LNATM technology [21]. The LNA incorporation into the probes
standardizes hybridization conditions, which are optimized against
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the melting temperature rather than GC content to increase specific-
ity. This system also includes 52 spike-in control miRNAs for normal-
ization. As for the other microarrays, the miRNA is first
dephosphorylated and then a fluorophore is attached to the 3′ end. An
advantage of these arrays is that they also allow for either one- or
two-colour assays. However, although Exiqon claims higher sensitiv-
ity and specificity of the LNA technology, especially applicable to
plasma or serum [165], we could find only few instances of its utiliza-
tion for plasma miRNA profiling in humans [e.g. 166].

NanoString technologies nCounterª miRNA
expression assay

Unlike the microarray tools, NanoString Technologies does not uti-
lize printed chips. Rather, it uses fluorescent colour-coded ‘molecu-
lar barcode’ oligonucleotides that hybridize directly to the target
molecules. A biotinylated capture probe and a miRNA-specific fluo-
rescent reporter probe are hybridized to the miRNA in solution. The
tripartite-hybridized molecule is affinity-purified and attached to a
streptavidin-coated slide, then imaged to count each fluorescent ‘bar
code’ [167]. Importantly, the nCounter© Analysis System does not
rely on enzymes for processing or amplification, but requires
100 ng of concentrated RNA (33 ng/ll). Therefore, when using
plasma/serum-derived miRNAs, an additional concentration step is
necessary. The company claims a sensitivity close to qRT-PCR;
however, the number of miRNA species detectable in a single reac-
tion is limited to ~800, and the normalization method may affect out-
come.

Next-generation sequencing

Perhaps, there is no more promising technology for analysing miRNA
profiles than NGS, also known as massively parallel sequencing.
There are currently several companies offering high-throughput NGS
platforms [Illumina HiSeq200 or GAIIX, ABI SOLiD and the Roche GS
FLX+ (454)], although newer smaller scale NGS platforms are becom-
ing available to be used in individual laboratories (Illumina MiSeq, In-
vitrogen Ion Torrent and Roche GS Junior 454). In the short term,
NGS offers important advantages over other technologies, including
the possibility to generate comprehensive and definitive analyses of
miRNAs in samples, comprising those derived from sera and plasma
[168, 169]. The primary advantage of this technology is that it does
not require knowledge of target miRNAs nor does it require specific
probes or primers, and therefore does not limit studies to known
miRNAs. Thus, until such time as unambiguous libraries of miRNAs
are generated for humans and other organisms, NGS is currently the
best platform for miRNA discovery.

Next-generation sequencing also offers several additional advan-
tages compared to microarray profiling (reviewed by Pritchard and
colleagues [155]): (i ) NGS is extremely sensitive. ABI claims that its
SOLiD system detects one miRNA copy per cell. (ii ) NGS provides
relative expression data for small RNAs in a sample with greater
dynamic range than miRNA microarrays. Next-generation sequencing

platforms discern relative expression over a six to seven log-fold
range, allowing relative quantification of miRNAs that are estimated to
vary in abundance by four orders of magnitude. It should be noted,
however, that qRT-PCR is still the only platform capable of generating
absolute quantification. (iii ) Another specific advantage of NGS rela-
tive to microarray technology is that NGS provides sequence data,
allowing the investigator to distinguish isomiRs from miRNAs that
differ by a single nucleotide, including changes related to RNA editing
that may influence miRNA stability [170, 171]. (iv ) Lastly, NGS will
generate a profile of all small RNAs in a sample, including ncRNAs,
such as short interfering RNA (siRNA), piwi-RNA (piRNA) and repeat-
associated siRNA (rasiRNA). Depending on the source and size range
of RNA analysed, NGS may also capture other non-coding small
RNAs including promoter-associated small RNAs (PASRs), transcrip-
tion initiation RNAs (tiRNAs), centromere repeat-associated small
interacting RNAs (crasiRNAs) and telomere-specific small RNAs (tel-
sRNAs) [172].

A detailed overview of NGS platforms for miRNA sequencing
and sample preparation parameters is reviewed elsewhere [155].
Sample preparation is similar for all platforms. After RNA isolation
and size fractionation of the small RNA population, adaptors are
ligated to the ends of the RNA molecules and reverse transcrip-
tion is used to generate cDNA. PCR amplification of cDNA occurs
on an immobilized surface and solid-phase PCR on the Illumina
platform. The Roche and ABI platforms immobilize cDNA on beads
followed by emulsion PCR.

The ABI SOLiD system requires 10–500 ng of total RNA, feasi-
ble for RNA amounts isolated from plasma or serum and can gen-
erate 120 million tags per slide or 240 million per run. The
Illumina small RNA protocols require 50 ng–1 lg of RNA. Illumina
systems can deliver 3.4 million to 3 billion reads per run and
offer the advantage of multiplexing, which can generate 1–600 Gb
of output. Sequences are then mapped to the appropriate refer-
ence genomes.

There are also some disadvantages of NGS platforms that
require consideration: First, there is the high cost of profiling miR-
NA populations using NGS. Second, the data analysis requires an
advanced computational infrastructure and bioinformatics support.
We previously described a pipeline for bioinformatics analysis
based on NGS data from cells infected with human cytomegalovirus
including sequence tag alignment, threshold determination, visuali-
zation to reference genomes and comparison to sequences in miR-
Base [173]. Finally, it has been observed that miRNA sequences
generated by NGS vary from miRBase reference sequence as a
result of RNA editing [174–176], 3′ end nucleotide additions and
clusters of isomiRs showing variable 3′ and 5′ ends relative to the
reference genome, which can influence comparison to validated
sequences in miRBase.

The most profound advantage to the NGS approach is the poten-
tial for discovery of novel small RNAs such as the detection of ncR-
NAs. Notably, validation of these observations using experimental
approaches (PCR, cloning and sequencing and/or northern analysis)
to satisfy accepted miRNA criteria including size and the formation of
hairpin precursor structures is necessary. Although miRBase pro-
vides a comprehensive database of validated miRNAs from multiple
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organisms, databases of other small RNAs are absent or still evolv-
ing. An excellent resource in this regard is RNAdb 2.0—a database of
mammalian ncRNAs (http://research.imb.uq.edu.au/rnadb/) [177].
Thus, experimentally validated RNA sequences identified through
NGS that do not fulfil standard miRNA criteria may require additional
studies to establish classification in other small RNA families. In sum-
mary, NGS also offers researchers the opportunity to extend analysis
to the exciting and rapidly expanding arena of small regulatory RNAs
that may be relevant to disease. Cost and availability of computational
infrastructure and bioinformatics support are top considerations
when choosing this approach.

Discussion

The search for useful diagnostic and prognostic biomarkers obtained
from minimally invasive techniques is at the forefront of many dis-
ease-oriented studies. From these studies, circulating extracellular
miRNAs from the blood are emerging as ideal candidates. As high-
lighted throughout this review, using extracellular miRNAs from body
fluids as biomarkers is in its infancy. While an abundance of studies
report miRNAs differential expression, important procedural informa-
tion is lacking and needs to be standardized and disseminated to the
research community. Importantly, attention to the fasting status of
the patient and blood collection procedures, such as anticoagulants
and needle size, should be considered when profiling extracellular
miRNA from blood. Furthermore, extraction methods vary among
reports, while information on the starting fluid volume and especially
the efficiency of extraction is often missing. The availability of this
information will enable investigators to standardize procedures and
perhaps compare profiles across various patient cohorts.

As discussed, there are currently no known endogenous con-
trols for serum or plasma miRNAs [36, 37, 75]. While the miRNA
profile of plasma and serum are comparable in general terms [35,
37, 52], subtle changes in expression patterns may be present.
Finally, optimization of RNA extraction methodologies from fluid
samples should enable the analysis of a few miRNA species up to
several hundred miRNAs. Ultimately, the RNA quantity and quality
may dictate the platform used to obtain the extracellular miRNA
profile.

Conclusions

There is sufficient evidence to support circulating extracellular miR-
NAs, retrieved either from plasma or serum, as important players
and/or promising biomarkers for a variety of diseases. Current stud-
ies are improving the ability to retrieve sufficient RNA for analysis and
profile numerous miRNAs. However, the field still lacks consistency
and standardization, and thus effort is needed to establish common
practices. Furthermore, several important considerations are needed
before designing studies to analyse circulating miRNAs. As this field
evolves, circulating miRNA profiles from plasma or serum are still
susceptible to significant technological advancement. The potential to
obtain extracellular miRNA signature from body fluids collected by
non-invasive means exists. In fact, the knowledge of isolating extra-
cellular RNAs from plasma or serum can be extrapolated to other
body fluids, such as saliva or urine [68, 165, 178]. Certainly, this
information will lead to the development of diagnostic tests from eas-
ily assessable biofluids. Thus, as future experimental and clinical
investigations start filling the gaps of our knowledge, the power of
using not only extracellular miRNAs but perhaps other RNA species
will greatly expand our understanding of diseases and may lead to
new exciting therapies.
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