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Abstract

The sharing and re-use of data has become a cornerstone of modern science. Multiple platforms now allow easy
publication of datasets. So far, however, platforms for data sharing offer limited functions for distributing and interacting
with evolving datasets— those that continue to grow with time as more records are added, errors fixed, and new data
structures are created. In this article, we describe a workflow for maintaining and distributing successive versions of an
evolving dataset, allowing users to retrieve and load different versions directly into the R platform. Our workflow utilizes
tools and platforms used for development and distribution of successive versions of an open source software program,
including version control, GitHub, and semantic versioning, and applies these to the analogous process of developing
successive versions of an open source dataset. Moreover, we argue that this model allows for individual research groups to
achieve a dynamic and versioned model of data delivery at no cost.
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Introduction

Sharing of a high-quality dataset—a collection of measure-
ments, stored in 1 or several files—is now considered a first-
class scientific output. Increasingly, funding bodies, publishers,
and scientific social norms are recognizing the value of shar-
ing datasets, including as stand-alone products without any ac-
companying analyses [1–5]. Evidence of this trend is seen in the
increasing numbers of stand-alone “data papers” appearing in
both standard domain-level journals and specialized data jour-
nals. Yet, while the last decade has witnessed a rapid and ex-
citing change in attitudes towards data sharing, the scientific
community is still grappling with how to effectively maintain
and distribute open source datasets [1, 4, 6, 7, 8, 9, 10, 11, 12].

In particular, in some areas, such as our own area of ecology
and evolution, we are only starting to support the fact that some
high-quality datasets may be evolving entities [12].

An evolving (or ”living”) dataset is one that is subject to occa-
sional or recurrent change. Typical changes may include improv-
ing the quality of existing data, adding new data, re-structuring
the dataset content, or integrating with other datasets. For ex-
ample, a dataset on biological organisms might be expanded
through the addition of new records or improved through the
correction of spelling mistakes in taxonomic names. In some
cases, datasets may be expected to continue to evolve over ex-
tended periods (e.g., [13]. Evolving datasets are never “finished,”
and as such there is no “master” or “canonical” version. Rather,
as research around a data product grows, there might be many
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valid versions produced. Even datasets that are not initially envi-
sioned as evolving may become so as minor errors are identified
and corrected during use. In either case, the most recent version
of the dataset will typically contain the best available informa-
tion, but there are still reasons to go back to previous versions:
to replicate previous analyses or to work on a stable version for
downstream analyses or visualization.

A common approach taken by those maintaining an evolv-
ing dataset is to release sequential versions of the dataset, each
containing a snapshot of the dataset at the time of release (e.g.,
[12, 14, 15, 16]. Ideally, the latest versions of an evolving dataset
would be immediately available to all users across the globe,
along with notes describing the changes when compared to pre-
vious versions. For the sake of reproducibility, previous versions
of the dataset should be archived and remain available. In the
recent past, small research groups have solved the issue of ver-
sioning data internally and informally, e.g., by e-mailing around
the latest version. However, as science grows and moves towards
more systematic sharing of data, scalable solutions are needed
to distribute dataset versions to a wider variety of users.

One approach taken by large research consortia has been
to create dedicated web servers for archiving and delivering of
data. Projects such as the Sloan Digital Sky Survey [17] have
sophisticated infrastructure and processes for distributing suc-
cessive versions of very large datasets [16]. The issue of updat-
ing data has also been addressed in some centralized repos-
itories, like genetic sequences (via GenBank), where new data
can be added and there exist abilities to correct errors in exist-
ing records. Yet these web databases require a level of funding
and technological infrastructure that is beyond most research
groups.

Almost all research projects are smaller, and these currently
rely on more generic data repositories for distributing data. A
common approach for distributing a dataset is to release it under
a Digital Object Identifier (DOI) in a stand-alone data repository,
such as DataDryad, Figshare, and Zenodo. While these platforms
did not all initially support versioning of datasets, they now sup-
port multiple versions of a dataset, either under a single or dif-
ferent DOIs [18]. Yet, while these new features in principle allow
users to access multiple versions of a dataset, the release, dis-
covery, and access to multiple versions of a dataset is not always
straightforward.

We believe that more can be done to streamline the distribu-
tion of a potentially large number of dataset versions to users,
especially for small research teams with limited budgets. There
are at least 3 challenges. First, dataset developers need a cheap—
ideally free—and reliable system to create and distribute ver-
sions of an evolving dataset with low technical overhead. Sec-
ond, users need an easy mechanism to discover the existence of
new (or all) versions of an evolving dataset. Third, users need a
mechanism to retrieve specific versions. For those using a com-
putational language such as R [19], all versions of an evolving
dataset would ideally be both accessible and discoverable di-
rectly from within R.

In this article we outline how emerging technologies from
software development (Table 1) can be used to address these
challenges, enabling small research groups to create and main-
tain a stream of versions for small-to-medium sized datasets (≤2
Gb), and distribute these directly into the R computational en-
vironment for a potentially unlimited number of users at zero
financial cost and minimal technical overhead. To achieve this
we developed a new R package called datastorr, which together
with other technologies allows for easy and scalable delivery of
successive versions of an evolving dataset directly into R. At the

time of publishing this article, this workflow was being used to
distribute versions of datasets across a wide range of topics (Ta-
ble 2), suggesting a potentially wide domain of application.

A Lightweight, Cheap, and Scalable Workflow
for Delivering Versions of an Evolving Dataset
into R

In brief, the workflow we present here borrows best practices
for software development [20] and applies them to the challenge
of maintaining and distributing versions of an evolving dataset.
Our approach envisions multiple parties involved in the creation
and/or use of a versioned dataset, including developers, contrib-
utors, and users (Fig. 1). Each of these will likely have different
goals and requirements (see Table 3). When building a piece of
software, developers maintain a core set of code that produces
the binary executable file that is eventually installed on a user’s
local computer. Analogously, developers of an evolving dataset
maintain a core set of files (the “code”), which produces an or-
ganized dataset that can be “installed” (i.e., loaded) on a user’s
local computer. In the development of either software or data,
successive versions—called “releases”—are distributed as snap-
shots of the generated product at a particular point in time.

The similarity in workflow between software and data allows
us to re-purpose some of the same technological platforms that
are used to maintain and distribute versions of a software prod-
uct to maintain and distribute versions of an evolving dataset
(Table 1). Importantly, these tools are available free of charge
for open source projects and already well developed—ensuring
high-level performance and stability. Moreover, the combination
of technologies allows us to address the goals and requirements
of the different parties involved in the creation and use of a ver-
sioned dataset (see Table 3).

An overview of the proposed system is as follows.

� Raw data files are stored under version control in a git

repository—a free and leading version control system used
in software development—by the dataset developers. All the
files that go together to build a single dataset are stored in the
repository, together with any code used to manipulate these
files to create the dataset that is ultimately distributed.

� Changes to the raw data files and code are tracked by the
developers using git’s ability to make “commits”—granular
and annotated snapshots of the source files over time.

� The git repository is hosted on GitHub, a leading platform for
hosting, enabling multiple developers or other contributors
to work collaboratively on improving a dataset (Fig. 1).

� Developers use the files in the repository to make a release
of the dataset—a snapshot of the generated data product at a
particular commit—and upload these to GitHub, where they
are hosted alongside the raw files and (optionally) labelled
using “semantic versioning.” The version labels indicate both
the ordering of versions and the magnitude of change ex-
pected between different versions.

� Using the datastorr package, users can both retrieve a list of
all available versions of the dataset, and retrieve particular
versions of the dataset on demand, and load them directly
into R.

� Those not using R can also access versions from GitHub.

Below we elaborate on each of the different technologies.
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Table 1. Overview of technologies used to maintain, store, and distribute versions of an evolving dataset as described in this article

Technology Description

git Open source version control system used for tracking progressive changes in a set of text files, typically computer
code but also data

GitHub A commercial web platform [21] for sharing, visualizing, and managing git repositories. Includes ability to browse
the ”history,” ”issue” tracking, and ability to host ”releases.” Also has a well-developed API enabling programmatic
access to dataset releases

R Widely used and open source language for data processing and statistical analysis[19]
datastorr A package in R used to fetch releases of an evolving dataset hosted on GitHub[22]

Semantic

versioning

The process of assigning unique version numbers in a particular format to successive versions of a digital
product[23]; traditionally applied to software but here to an evolving dataset

API: application programming interface.

Table 2. Example datasets currently delivered using the datastorr package for R

GitHub repository Dataset description

traitecoevo/taxonlookup
[24]

Taxonomy of world’s land plants [15]

traitecoevo/growthform
[25]

Growth form of world’s land plants [26]

traitecoevo/baad.data [27] Size dimensions of plants for many species from across the world [14]
ecohealthalliance/cites
[28]

Trade details from Convention on International Trade in Endangered Species (CITES)

madams1/nbadata [29] Statistics from the National Basketball Association (NBA) seasons 1996-97 to 2016-17
madams1/floridainmates
[30]

Statistics on Florida state’s inmate population, from Florida Department of Corrections

traitecoevo/fungaltraits
[31]

Traits of world’s fungi species [32]

User
(using R)

Submit via Developers

Contributors
(do not use git)

Dataset developers 

(using git)

git repogit repo

git repo

Developer 1

Developer 2

doi minting

doi 
10.5281/... 

Long-term
archive
(e.g. Zenodo)

User
(point & click)

make a release

> library(taxonlookup) 
> plant_lookup_version_current_github() 

[1] "1.1.5"

> data <- lookup_table("1.1.5")

releases
1.0.0 
1.0.1 

...

� � Datastorr package

� � - fetches releases via API as needed
� � - caches release on local machine
��� - creates custom data packages 

� �Manual 
download

Git host
(GitHub)

Figure 1 Overview of the workflow, different parties, and technologies involved in maintaining and distributing versions of an evolving dataset via datastorr. Core
features of our approach are shown with black boxes and arrows. Optional extensions are shown in grey (see Discussion for details).

Version control

Version control, primarily an open source variety called git, has
become widespread in software development. In practice, ver-
sion control tracks line-by-line changes in text files and creates
and maintains a history of those changes. Increasingly version

control has been applied to scientific code and also data man-
agement, especially for small-to-medium sized datasets [8, 9,
33]. git is attractive for data management because it tracks all
changes in monitored files, provided these are saved in text for-
mat (e.g., “.csv”, “.tsv”, “.txt”; with some tricks git can also indi-

https://github.com/traitecoevo/baad.data
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Table 3. Goals and requirements of different parties involved in creating and using an evolving dataset

Group Primary goal Requirements

Developers Create and distribute versions of an
evolving dataset

Low technical overhead, low initial and ongoing cost and
maintenance, easy workflow for releasing new versions, enable
user feedback in error checking and contributions, long-term
preservation

Contributors Contribute to future versions of an
evolving dataset

Add new data, report errors in existing data

Users (all) Gain easy access to all versions of an
evolving dataset

Access metadata and background information, access to all
versions of a dataset, ability to provide feedback and contribute,
long-term stability

Users (programmatic) As above via machine access Programmatic access to all versions of an evolving dataset,
reproduce products using specific versions of an evolving dataset,
easy installation

cate changes in some other file types such as “.xlsx”). It allows
users to annotate commits with informative messages detailing
the rationale for those changes. The “history” of commits is also
visible to anyone interacting with the repository. In its present
form, git can handle individual data files at least up to 100 MB,
which includes a large fraction of scientific cases.

As a general strategy for tracking a dataset under version
control with git, we recommend the following:

� Developers establish a separate git repository for each
dataset to be distributed.

� Saving data in their rawest form. Some datasets might only
have a single file. Others may have many files that get manip-
ulated or combined in some way to produce a unified prod-
uct.

� Where possible, saving all files as plain text, so that git can
identify line-by-line changes. For example, one should save
tabular data as a “.csv”. While this approach works well for
small-to-intermediate sized files, those with larger files may
prefer to use a compressed format to reduce repository size
and bandwidth.

� Including in the git repository any code needed to manipu-
late or compile the raw data files into the final dataset. For ex-
ample, one might combine many independent datasets into
1 unified dataset.

� Documenting any changes in the dataset by making a com-
mit in the git repository, with an informative message out-
lining why the change was made.

Hosting and distributing versions of an evolving dataset

Datasets stored under version control via git reach their real
potential when hosted at a suitable internet hosting service [9,
33]. Here we focus on the platform GitHub (Table 1). Hosting of a
git repository enables dataset developers to connect with other
potential contributors and also users (Fig. 1). These platforms
are designed to work with git repositories and thus offer many
helpful features, such as the ability to record issues, host docu-
mentation, or review edits over time.

Another notable feature of GitHub is the ability to host a
stream of releases from the dataset, alongside the git reposi-
tory containing all the raw files. Each release is linked to a spe-
cific commit in the git repository history and occurs at points
where the dataset developer decided to generate a new version
of the data for distribution. While users could in principle down-
load the entire git repository, most of the time, what they want
are the releases.

Deciding when to make a new release is at the discretion
of the dataset developer. In practice, one makes fewer releases
than one does commits into the git repository, although there
is nothing stopping developers from releasing a new version for
every commit. The flexibility here allows developers to do in-
ternal work between releases and only release the data to users
when the revision represents a clear improvement on the previ-
ous release.

Another important consideration is that websites like GitHub
naturally cater to 2 types of data users accessing the data: those
who interact with the data via point-and-click downloading and
those who use programmatic interaction (Fig. 1, Table 3). Specif-
ically, GitHub releases can be downloaded directly by users or
accessed programmatically via the GitHub API.

Semantic versioning

To realize the full benefits of a versioned controlled dataset,
users should be able to easily intuit the types of changes that
have occurred among versions. Because software development
has effectively already dealt with a similar problem in the la-
belling of software releases, we suggest adopting the best prac-
tices from that field.

Specifically, we suggest adapting the process of semantic ver-
sioning, developed for labelling successive releases of software
(see semver.org [23]), to labelling of successive releases of an
evolving dataset (Fig 2). In semantic versioning of software, a tri-
digit label of the form “X.Y.Z” is applied to each version, where X,
Y, and Z are non-negative integers, e.g., version “2.1.2”. Although
everyday practice may differ, the guidelines at semver.org [23]
suggest labels are incremented in a particular way, determined
by changes in the public API for the software.

Although the analogy to software is not perfect, datasets can
also be thought of as having an “interface,” determined by the
structure of the dataset, which dictates how users interact with
the resource. For example, in tabular data the structure is deter-
mined by the names of different files, the column labels within
each, and the presence of different subgroups within the table
(as indicated by labels in particular columns). Successive ver-
sions of a dataset can then be labelled in a manner analogous
to that of software, determined by the structure of the dataset
and changes in that structure.

There are 2 natural advantages of adapting the process of se-
mantic versioning for dataset development. The first is that it
enables natural ordering of releases. The second is that it en-
ables developers to signal the type and magnitude of change that
occurred in the product between successive versions. Seeing a
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Git repository

Major re-structure

Data addition

Bug fix

Data addition

Releases

v1.0.1

v1.1.0

v2.0.0

Major
version

Minor
version

Patch

v1.0.0

Time

Figure 2 Semantic versioning allows dataset developers to communicate to users the types of changes that have occurred between successive versions of an evolving
dataset, using a tri-digit label where increments in a number indicate major, minor, and patch-level changes, respectively. See text for further details.

series of version numbers, users of an evolving dataset know
the developer’s view on the type and/or magnitude of change
between versions.

Drawing inspiration from the guidelines for semantic ver-
sioning of software at semver.org [23], we suggest the following
guidelines for labelling of a dataset with semantic versioning:

� Clearly communicate the structure of the dataset in the
metadata or landing page. This includes file types, data type,
and element names.

� Use versions beginning with “0.Y.Z” to indicate products
where the structure is still in development.

� Version “1.0.0” defines the structure.
� Once defined, increment version numbers to communicate

any changes to the structure.
� Increment the ”major” version when you make changes to

the structure that are likely incompatible with any code writ-

ten to work with previous versions. Such changes may in-
clude revising the file names, the structure of the dataset, or
changing element names (e.g., column headers). Substantial
additions of data might also be considered a major change
to structure, especially where they add new subgroups to the
dataset.

� Increment the ”minor” version to communicate any changes
to the structure that are likely to be compatible with any code
written to work with the previous versions (i.e., allows code
to run without error). Such changes might involve adding
new data within the existing structure, so that the previous
dataset version exists as a subset of the new version. For tab-
ular data, this includes adding columns or rows. On the other
hand, removing data should constitute a major version be-
cause records previously relied on may no longer exist.

� Increment the ”patch” version to communicate correction of
errors in the actual data, without any changes to the struc-

http://semver.org/
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ture. Such changes are unlikely to break or change analyses
written with the previous version in a substantial way.

� Once a dataset version has been released, do not modify it.
Further modifications are released under a new version num-
ber.

While it is hoped that the aforementioned guidelines help
users in understanding the types of changes that have oc-
curred between successive versions of a dataset, any change in
a dataset may alter the results of a user’s analysis in non-trivial
ways. Unlike developers of software, developers of a dataset can-
not guarantee full backwards compatibility, i.e., that certain re-
sults will remain unchanged in updated versions. We suggest
that responsibility for verifying how different versions of an
evolving dataset influence their particular analysis or use thus
always remains with the user, even if the change is as small
as the simple application of a so-called “patch.” While further
work—and likely experience—is needed to refine the process of
semantic versioning for datasets to further develop understand-
ing between data developers and data users of what different
changes imply, semantic versioning still provides a more nu-
anced way to communicate from the developer to the user on
the types of change they could expect.

Loading data versions directly into R using the
datastorr package

For efficient usage and to aid reproducibility, many users will
want access to all versions of any particular dataset program-
matically (Table 3). Code to access a stream of GitHub releases
could be written individually by each user, but this creates an
unnecessary technological hurdle. To make it easier for users to
access versioned data via code, we developed a new package for
the R platform, as one of the most prominent platforms for data
science [19].

Our package, called datastorr [22], facilitates access to re-
leases of any evolving dataset hosted on GitHub (Fig. 1). Specifi-
cally, the datastorr package (i) contains the main code needed
to interact with the GitHubAPI to retrieve versions of the dataset;
and (ii) enables users to construct the shell of a second, dataset-
specific R package, which can be distributed and used to ac-
cess releases for a specific repository stored on GitHub. Using
datastorr, a researcher can create and distribute a custom R

package that facilitates access to their data with (very) minimal
computational skills.

For example, datastorr has been used to build several pack-
ages (Table 2), including taxonlookup [24], which hosts data
on the taxonomy of the world’s land plants [15]. The R pack-
age taxonlookup consists of only a few simple functions and
associated help files that were automatically generated with
datastorr. For a user, accessing a version of the data is a sim-
ple as typing a single line of code (Fig. 1). Accessing a different
version of the data involves changing only the version number.
From the user’s perspective, the existence of the taxonlookup

and datastorr packages makes reproducing analyses using spe-
cific versions of the data [e.g., 15, 34] possible.

Using datastorr, dataset developers can set up their own R

package to deliver versions of an evolving dataset simply by pro-
viding the following:

(1) a GitHub repository name (e.g., “traitecoevo/taxonlookup”)
where releases are stored;

(2) the filename in the release that contains data;
(3) the function used to load the data file into R.

Then as the dataset grows over time, the developers update
the git repository and create a GitHub release with a new ver-
sion number. All the releases are simultaneously available to any
user, both point-and-click and programmatically.

The dataset-specific packages created by datastorr are de-
signed to be computationally efficient and also work offline.
Packages created by datastorr contain no actual data, only the
rules for fetching the data. As such, the basic package structure
is quick to install and takes up virtually no space on the user’s
hard drive. The package functions by fetching each data version
once (the first time it is requested) and then caching these files
locally for future reuse. Moreover, users can store several ver-
sions of an evolving dataset on their computer and unambigu-
ously access different versions with a single function.

Discussion

The key issue we are dealing with in this article may be famil-
iar to many readers: many datasets are constantly evolving and,
despite tremendous advances in data sharing and associated
technologies over the last decade, there is as yet little consen-
sus about how to maintain and distribute multiple versions of
an evolving dataset, especially for small research teams. While
such teams could in principle create their own dynamic web
interface, the technological hurdles, cost, and maintenance re-
quired are discouraging. Moreover, existing platforms for dis-
tributing data offer a limited set of features for the delivery of
successive versions of an evolving dataset. This suggests that
there is a need for an easy, cheap, and scalable solution for
maintaining and distributing successive versions of an evolving
dataset. By adopting open source and scalable practices from
software development, we believe a workable system already
largely exists. To aid this process, we created the datastorr

package to deliver dataset versions directly into the R environ-
ment. The approach and package are already being used to de-
liver versions of several evolving datasets spanning a wide range
of topics (Table 2). Moreover, because it builds off established and
open source software and data science platforms (Table 1), the
proposed system is already easy to deploy on a relatively large
scale.

Towards an ecosystem for evolving data

Our contribution here connects with a growing number of rec-
ommendations and technologies supporting the sharing and
reuse of evolving data. Such contributions include community
guidance on good practice in data curation [6, 8], data citation
[7], and the FAIR principles for making datasets findable, ac-
cessible, interoperable, and reusable by both machines and hu-
mans [11]. In our proposed system, information about appropri-
ate attribution for any dataset (whatever that is determined to
be) should be made readily available, either on the landing page
within GitHub or, even better, distributed as part of the versioned
dataset itself. Similarly, datasets can be structured to make them
follow the FAIR principles, to the extent possible. Notably, our
workflow with the datastorr package demands machine access
to datasets—a core focus for the FAIR principles. While our pro-
posed workflow does not currently enhance discoverability of
new datasets, this is a broad challenge faced by all data plat-
forms and researchers.

While our package datastorr offers an easy way for users of
the R ecosystem to directly access dataset version, users of other
languages can also access the datasets. Moreover, packages sim-

https://github.com/ropenscilabs/datastorr
https://github.com/traitecoevo/taxonlookup
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ilar to datastorr would ideally be developed to make accessing
dataset versions as easy as it is with datastorr.

Within the R ecosystem, the datastorr package comple-
ments other approaches for creating and delivering datasets.
One common approach used within R is to embed data directly
within an R package, which can then be distributed via the Com-
prehensive R Archive Network [35]. Moreover, dedicated pack-
ages are being developed to assist dataset developers in creat-
ing data packages [36]. An advantage of this approach, compared
to ours, is that the data are immediately available in the pack-
age (whereas our packages only contain instructions for fetch-
ing the data). This advantage however also brings limitations.
Notably, datasets must be <5 MB, and only 1 version of a dataset
package can be installed on any given machine at any one time.
datastorr offers a viable approach for overcoming these limita-
tions.

There are also many emerging or alternative technologies
that offer other possible ways to implement a system for stor-
ing and distributing versions of an evolving dataset. Our solution
currently emphasizes the platform GitHub, but similar functions
could be achieved via other git hosts such as bitbucket.org [37]
and gitlab.com [38]. Git repositories can also be extended to ac-
commodate larger files using such features as Git-Large File Stor-
age [39] or Git-Annex [40]. More fundamentally, there are emerg-
ing alternatives for version control specifically designed for data,
such as the datproject.org [41], and other new platforms for dis-
tributing data, such as the Comprehensive Knowledge Archive
Network (CKAN) [42] and Open Knowledge International (OKFN)
[43].

The key here is not the specific technology but rather the
concept of creating, maintaining, and distributing versions of
an evolving dataset, which can be achieved with all of these ap-
proaches. Indeed, as with every technology the best available ap-
proach is certain to evolve, especially as emerging technologies
facilitate even better delivery of data in the future.

Further advantages and extensions

A central feature of the proposed system is that data are main-
tained on the web. This has 2 main benefits: first, it provides a
platform for multiple data contributors to sync their files and
correspond about changes in the dataset, and second, it allows
for hosting of a stream of data releases for distribution (Fig. 1).
Web platforms thus act as a central point for the collection, cura-
tion, and distribution of the data. Additionally, one of the great-
est benefits of using web platforms like GitHub for development
of both software and data has been the way they encourage con-
tributions from multiple individuals working simultaneously—
including from people outside the initial group of project par-
ticipants [9, 44]. Multiple developers can make changes to dif-
ferent parts of the code (or, in our case, data) and the git sys-
tem will integrate these together or, when needed, flag where
there are conflicts that need to be resolved. The proposed sys-
tem of data delivery thus has the added benefit of facilitating
seamless and transparent collaboration among research groups
in the construction and maintenance of datasets.

An important concern for any data delivery system is the sta-
bility and reliability of the system. In the short term, users want
minimal downtime, high speed, and seamless operation. As one
of the largest companies hosting computer source code, GitHub
provides exceptional performance in this regard—certainly as
good or better than nearly any system scientists might build
themselves. Thus, short-term concerns of reliable and fast per-
formance are almost guaranteed.

In the long term, scientists want their datasets, software, and
papers to preserved and remain accessible. While our proposed
system for data delivery does not guarantee long-term preser-
vation, users can also choose to automatically archive data ver-
sions released on GitHub version in one of several traditional
data archives, with a DOI minted for each release. Currently,
both Zenodo and FigShare each integrate with GitHub for archiv-
ing of material hosted there. Ideally, tools like datastorr would
also be developed to pull versions from these archives too.

Availability of supporting data and materials

Snapshots of the code and example file are archived in the Giga-
Science GigaDB repository [45].

� Project name: datastorr
� Project home page: github.com/ropenscilabs/datastorr
� Operating system(s): platform independent
� Programming language: R
� License: MIT

� Project name: datastorr example
� Project home page: github.com/richfitz/datastorr.example
� Operating system(s): platform independent
� Programming language: R
� License: MIT

� Project name: taxonlookup
� Project home page: github.com/traitecoevo/taxonlookup
� Operating system(s): platform independent
� Programming language: R
� License: MIT
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