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Abstract: In order to solve the problem that the built-in parallel bond model in the discrete element
software cannot adequately simulate the post-peak fracture behavior of quasi-brittle materials, a linear
cohesive model was established. First, two particles are used to simulate the interface constitutive
behavior in different modes. The results show that the new model can better simulate the behavior of
Mode-I fracture, Mode-II fracture, and Mixed-mode fracture. Then, the influence of micro-parameters
on the newly constructed constitutive model is analyzed, which provides a basis for the determination
of micro-parameter values. Finally, the proposed softening model is applied to a three-point bending
test of mortar, and the fracture behavior obtained is compared to the acoustic emission results. The
simulation results also show that the constitutive model we built can be used to simulate the fracture
behavior of quasi-brittle materials such as mortar and concrete.

Keywords: discrete element method; quasi-brittle material; constitutive model; mortar; fracture
behavior; acoustic emission

1. Introduction

Quasi-brittle materials such as concrete, mortar, rock, or wood are widely used in vari-
ous engineering fields [1]. For quasi-brittle materials, fracture is a common phenomenon
that affects structural safety and durability [2,3]. The failure cracking mechanism of these
materials is usually complex (microcracks, crack bridging, crack rest, etc.), characterized
by the formation of a large microcrack fracture process zone (FPZ) before the main crack.
Due to the damage development in the process zone, the quasi-brittle materials have
some special fracture characteristics, such as R curve and size effect [4]. The stress–strain
relationship of quasi-brittle materials exhibits nonlinear characteristics before reaching the
peak value, and a ‘strain softening’ phenomenon after the peak value. Therefore, research
on the properties of quasi-brittle materials should start with their mesostructure, focus on
their heterogeneous composition, and appropriately investigate the damage and fracture
mechanism of quasi-brittle materials according to their meso-mechanical properties.

The numerical simulation method can effectively solve the limitations of fracture
tests and crack measurements, which is beneficial to systematically estimate the related
performance of the structure, and save the resources required for experimental research.
Simulation of nonlinear problems in quasi-brittle materials, especially damage and degra-
dation, is one of the popular research tasks in current civil engineering [5]. However, due to
the existence of the fracture process zone in quasi-brittle materials, the classical linear elastic
fracture mechanics (LEFM) theory cannot be directly applied to quasi-brittle materials [6],
and the propagation of cracks in quasi-brittle materials is a discrete problem, which should
be studied locally. Compared to the finite element method (FEM), the discrete element

Materials 2022, 15, 1964. https://doi.org/10.3390/ma15051964 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15051964
https://doi.org/10.3390/ma15051964
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-1925-4073
https://doi.org/10.3390/ma15051964
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15051964?type=check_update&version=2


Materials 2022, 15, 1964 2 of 16

method (DEM) focuses on meso-mechanical problems, which can be controlled at the
particle level, and can effectively solve discontinuous problems mentioned previously. The
discrete element method was originally developed by Cundall [7] to solve rock mechanics
problems. Although some studies [8–10] have successfully used the DEM to simulate the
fracture behavior of concrete, how to choose a suitable contact model remains a key issue
of the DEM while simulating the fracture behavior of quasi-brittle materials.

To perform DEM simulations, several computer codes have been implemented, such as
PFC (Particle Flow Code), UDEC (Universal Distinct Element Code), LIGGGHTS (LAMMPS
Improved for General Granular and Granular Heat Transfer Simulations), etc., among which
PFC has been extensively used. In PFC, the parallel bond model [11–13] is one of the most
frequently used built-in contact models. The previous studies usually focus on some specific
mechanical behaviors of quasi-brittle materials and focus only on the mechanical response
at peak load, but pay little attention to the post-peak behavior. Zhou et al. [11] successfully
simulated the pre-peak rupture mechanism of concrete using a parallel bond model. Murali
et al. [14] have studied the strength and size effects of tensile concrete using the parallel
bond model, which can be used to describe the pre-peak fracture behavior of concrete
and its peak value. However, Jiang et al. [15] pointed out that the parallel bond model
cannot satisfy both compressive and tensile behavior when using the same microscopic
parameters. The results of Diederichs [16] showed that the tensile strength of rocks was
remarkably overestimated when the parameters were calibrated using compression tests.
Prior to Diederichs, Potyondy [17] and Schopfer [18] obtained similar results in their
simulations of brittle rocks, because the macroscopic tensile and compressive strength
increased simultaneously with the increase in the bond tensile strength in the microscopic
model [13]. In fact, compressive strength is usually one order of magnitude greater than
tensile strength in rock, concrete, and other similar quasi-brittle materials. As a result, the
parallel bond model can no longer be used to simulate quasi-brittle materials with low
tensile/compressive strength ratios, such as rock and concrete.

Nguyen et al. [19] employed the DEM approach to simulate the three-point bending
test using notched soft rock beams, and found that the parallel bond model could match
the load–crack opening displacement (P-CMOD) curve, but could not capture its softening
behavior. Therefore, Nguyen et al. [19] established an improved DEM damage–plastic
cohesion model and verified its reliability. Ma and Huang [20] extended the normal
equation of the built-in parallel bond model with a softening segment. The simulation
results showed that the softening coefficient could reproduce the tension–compression ratio
of quasi-brittle materials. Sinaie et al. [21] successfully developed a cohesive force model to
simulate the behavior of concrete under cyclic loading, where the microscopic parameters
of the material were calibrated only by a monotonic stress–strain test.

The previous studies of DEM simulation mainly focus on geotechnical materials, while
the study on mortar, concrete, and other quasi-brittle materials is relatively inadequate,
particularly with regards to fracture behavior. Due to of the influence of coarse aggregate
inclusion and interface transition zone (ITZ), the fracture behavior of concrete is complex.
It is easy to determine the basic fracture characteristics of mortar, as an important bonding
material in concrete, through the study and simulation of its fracture behavior, because
of the elimination of inclusion effect [22]. Therefore, in this study, the limitation of the
parallel bond model for simulating the three-point bending fracture behavior of notched
mortar beams is verified first, and then a linear cohesion model for the DEM to simulate
the post-peak fracture behavior of mortar is developed.

2. Simulation of Fracture Behavior of Three-Point Bending Beams by Parallel
Bond Model

The parallel bond model is a built-in constitutive model commonly used in the discrete
element software PFC. This model consists of a linear sub-model and a sub-model for the
bonding behavior (Figure 1). A two-dimensional parallel bond model shows that the
two particles are cemented by a rectangular material with a certain strength, and can resist
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tension and torque. When bonds exist, the force on the model is mainly carried by the bond
material. When bond failure occurs, the model degenerates into a linear contact model.

Materials 2022, 15, x FOR PEER REVIEW 3 of 17 
 

 

2. Simulation of Fracture Behavior of Three-Point Bending Beams by Parallel Bond 

Model 

The parallel bond model is a built-in constitutive model commonly used in the dis-

crete element software PFC. This model consists of a linear sub-model and a sub-model 

for the bonding behavior (Figure 1). A two-dimensional parallel bond model shows that 

the two particles are cemented by a rectangular material with a certain strength, and can 

resist tension and torque. When bonds exist, the force on the model is mainly carried by 

the bond material. When bond failure occurs, the model degenerates into a linear contact 

model. 

 

Figure 1. Mechanical behavior of parallel bond model based on [23]. 

Figure 2 shows the constitutive relation of the parallel bond model, which reflects the 

relation between force and failure threshold. When the tensile stress between particles is 

greater than the tensile strength, the parallel bond exhibits tensile failure; when the shear 

stress between particles is greater than the shear strength, the parallel bond indicates shear 

failure. 

 

Figure 2. Strength curve of parallel bond model. 

To see if the parallel bond model is adequate for modeling the fracture behavior of 

quasi-brittle materials, it was put to the test. The 2D notched mortar beam (100 mm × 100 

Figure 1. Mechanical behavior of parallel bond model based on [23].

Figure 2 shows the constitutive relation of the parallel bond model, which reflects
the relation between force and failure threshold. When the tensile stress between particles
is greater than the tensile strength, the parallel bond exhibits tensile failure; when the
shear stress between particles is greater than the shear strength, the parallel bond indicates
shear failure.
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Figure 2. Strength curve of parallel bond model.

To see if the parallel bond model is adequate for modeling the fracture behavior of quasi-
brittle materials, it was put to the test. The 2D notched mortar beam (100 mm× 100 mm× 400 mm,
the mixture shown in Table 1) was tested by three-point bending load. In the mortar, ordinary
Portland cement (CEM I 52.5N) was used. The compressive strength was 48 MPa and 59 MPa
on the 7th and 28th days, respectively, and the fineness modulus of natural sand was 2.16. The
acoustic emission (AE) technique was also used to study the fracture process in this experiment.
The acoustic emission transducers were attached to the opposite sides of the specimen through
a coupling agent, organized to reduce inaccuracy in finding the AE occurrences around the
projected position of the fracture process zone (FPZ). Thus, the sensor forms a parallelogram
grid position on one side of the mortar specimen (60 mm× 150 mm), as shown in Figure 3.
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Table 1. Mix design of mortar (kg/m3).

Cement Sand Water Superplasticizer Compressive
Strength

Flexural
Strength

645 1134 258 7.5 74.5 ± 2.84 MPa 5.8 ± 0.08 MPa
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Figure 3. Schematics of AE instrumentation and positions of AE transducers.

According to previous research [24], the mechanical properties of the simulated specimen
will be affected by the particle size when the particle size is larger than 1/80 times of the
specimen size. Therefore, the range of particle radius, particle density, and local damping coef-
ficient are set to be 0.5 mm ~ 0.75 mm, 2100 kg/m3, and 0.7 [25], respectively. The microscopic
parameters are determined by the compressive strength of the 40 mm× 40 mm× 40 mm spec-
imen and the flexural strength of the 40 mm× 40 mm× 160 mm specimen. In most cases, the
calibration process is performed using the so-called “trial-and-error” method based on a stan-
dard test, although this method is time-intensive and results in a non-unique combination of
micro-parameters. In this paper, a Levenberg–Marquardt (LM) algorithm-based calibration
scheme is adopted; more detailed information can be found in the author’s previous work [26].
Many micro-parameters have to be determined for DEM modeling, and it is not trivial to
obtain the values of these parameters. Nevertheless, the initial values of normal stiffness and
shear stiffness for calibration can generally be calculated from engineering properties such as
Young’s modulus and Poisson’s ratio using Equations (1) and (2) [27].

kn =
E√

3(1− v)
(1)

ks =
E(1− 3v)√

3(1− v2)
(2)

where E is the Young’s modulus and v is the Poisson’s ratio.
The calibrated microscopic parameters are listed in Table 2.



Materials 2022, 15, 1964 5 of 16

Table 2. Micro-parameters determined for the parallel bond model.

Micro-Parameters Value Micro-Parameters Value

Minimum particle diameter
[dmin] (mm) 0.5 Radius multiplier [λ] 1.0

Ratio of maximum to
minimum particle diameter

[dmax/dmin]
1.5 Ratio of normal to shear bond

stiffness [kn/ks] 3.0

Effective modulus [Ec] (GPa) 31.4 Effective bond modulus [Ec] (GPa) 31.4
Ratio of normal to shear

stiffness [kn/ks] 3.0 Moment contribution factor [β] 1.0

Friction angle [φ] (◦) 26.6 Tensile strength [σc] (MPa) 32.7
Cohesion strength [c] (MPa) 32.7

The microscopic parameters obtained above were used to simulate the failure behavior
of a notched three-point bending beam with a size of 100 mm × 100 mm × 400 mm.
As shown in Figure 4, the simulated specimen was created by generating 80,821 particles
within a rectangular specimen area. Taking the computation time into account, and ensuring
that the specimen maintains quasi-static equilibrium during the test, based on previous
studies [25,28–30], a constant vertical velocity of 0.002 m/s was applied at the top of middle
span [31]. Figure 5 depicts the results obtained using the built-in parallel bond model and
the experimental results.
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Figure 5. Comparison of parallel bond model results and test results.

The simulation results using the built-in parallel bond model agree well with the
experimental results in the linear elastic ascending stage, according to the load–crack
opening displacement curve in Figure 5. The simulation result is still in the linear growth
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stage, while the experimental result enters the nonlinear stage; therefore, the simulation and
test results diverge gradually. When the loading reaches the post-peak stage, the parallel
bond model degenerates into a linear model and no longer bears tensile load. This results
in a rapidly descending curve, indicating a significant brittle fracture phenomenon. As
a result, while the parallel bond model can simulate the peak value that corresponds to the
test results, it can hardly replicate the nonlinear ascending stage and post-peak softening
stage during the test process. Hence, the fracture behavior of quasi-brittle materials cannot
be simulated by the built-in model.

3. Establishment of a Linear Cohesion Model

Fortunately, users are allowed to define their own contact models with PFC. The
specific approach requires model coding in C++ language and compiling into a “.DLL”
file, which is later called by PFC’s command flow. This process is illustrated in Figure 6
and the detailed information can be found in the official documentation of PFC [32]. The
user-defined contact model is relatively independent of the PFC command flow, because it
has its own name, data structure, and parameter definition style.
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Based on a previous researcher’s work [33], a linear cohesion model was established,
as shown in Figure 7. Normal and shear stiffness (kn, ks), normal and shear bond force (Sn,
Ss), friction coefficient (µ), normal and shear relative displacement (un, us) are all used in
the model as control parameters. In addition, the damage parameters in the normal and
shear directions are assumed to have the same value in the model. This indicates that there
is just one scalar damage parameter (D f ), which is commonly accepted in quasi-brittle
material modeling [34–36].
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The linear cohesion constitutive model that has been established is as follows:

Fn =
(

1− D f

)
knun

Fs =
(

1− D f

)
ksus

(3)

Here, Fn is the normal force, Fs is the shear force; the equation of D f is:

D f = max(Dn
f , Ds

f ) =

 0

1− un,s
e

un,s

(
un,s

f −un,s

un,s
f −un,s

e

) un,s ≤ un,s
e

un,s > un,s
e

(4)

where un,s is the relative normal or shear displacement between two particles, un,s
e is the

displacement corresponding to the normal or shear elastic limit, un,s
f is the parameter

governing the slope of the normal or shear softening curve.
For in-plane loads, many failure envelopes have been proposed, including linear [37],

elliptic [38], and quadratic [39]. An elliptical envelope is employed in this model.(
Fn

Sn

)2
+

(
Fs

Ss

)2
= 1 (5)

4. Validation of the Linear Cohesion Model

In the discrete element program PFC5.0, the linear cohesion model created above
was implemented as a user-defined model. Two particles were used to check the load–
displacement curves under the conditions of Mode-I fracture, Mode-II fracture, and Mixed-
mode fracture in order to evaluate the reliability of the constructed model. Figure 8 depicts
simulations of the two particles under various loading scenarios. The two particles have a di-
ameter of 0.1 m, and the other microscopic properties are stated in Table 3. Until the contact
is broken, one particle remains motionless while the other maintains a steady velocity.
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Table 3. Micro-parameters used in the two-particle tests.

Micro-Parameters Value

Friction coefficient [µ] 0.5
Normal stiffness [kn] (GPa) 2.0

Shear stiffness [ks] (GPa) 1.0
Normal bond force [Ss] (kN) 1.0
Shear bond force [Ss] (kN) 0.5

Normal softening parameter [un
f ] (µm) 1.0

Shear softening parameter [us
f ] (µm) 1.0
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4.1. Validation of the Linear Cohesion Model under Mode-I Fracture and Mode-II Fracture

The load displacement curves of two particles under Mode-I fracture and Mode-II
fracture can be analytically determined from Equation (3)–(5) first, and then the simulation
results obtained by DEM simulation are compared with the analytical results, as shown
in Figure 9.
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Figure 9. Comparison between analytical and numerical results of force–displacement curves:
(a) Mode-I fracture; (b) Mode-II fracture.

The load–displacement curves obtained from the DEM simulation are in perfect
agreement with the analytical results, as shown in Figure 9. Therefore, the developed linear
cohesion model is ready for the simulation of Mode-I and Mode-II fractures.

4.2. Verification of the Linear Cohesion Model under Mixed-Mode Fracture

The normal and shear behavior during the Mixed-mode loading for the two particles
is shown in Figure 10A. Three loading states corresponding to different damage levels are
selected from Figure 10A to plot the corresponding yield surfaces, as shown in Figure 10B.
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Figure 10. (A) Force–displacement relationship in normal and shear direction; (B) the evolution of
force states as the yield surface shrinks.

Figure 10A shows that as the normal and shear displacements increase, the normal
and shear forces increase first and then decrease linearly, and the two trends are consistent.
The three selected points are all precisely located on their corresponding yield surfaces,
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as shown in Figure 10B. If the conditions of Equation (6) are satisfied while setting the
micro-parameters, the yield surfaces under different damage states are parallel.

knun
f

Sn
=

ksus
f

Ss
(6)

5. Parameter Analysis of Linear Cohesion Model

As described in the previous section, the linear cohesion model is controlled by six mi-
croscopic parameters, namely, stiffness (kn and ks), bond force (Sn and Ss), and softening
parameter (un and us). In this section, the effects of these microscopic parameters on the
simulation results of mortar specimens are studied successively. Note that the mortar mix-
ture, as listed in Table 4, is different when compared with the one in Section 2. In this study,
when one parameter changes, the other microscopic parameters remain the same. In order
to save the time of calibration and simulation, the influence of microscopic parameters is
studied by a notched mortar beam with a relatively small size of 40 mm× 40 mm× 160 mm,
as shown in Figure 11.

Table 4. Mix design of mortar in the test for parameter analysis of the linear cohesion model (kg/m3).

Cement Sand Water Superplasticizer Compressive
Strength

Flexural
Strength

668 1175 301 0 54 MPa 4.92 MPa
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Figure 11. Specimen geometry and boundary condition for the notched mortar beam.

The micro-parameter calibration process of the notched mortar beam was performed
using the method proposed previously by the authors [26]. The obtained parameters are
listed in Table 5, and the simulation results are shown in Figure 12.

Table 5. Micro-parameters of the linear cohesive model obtained after calibration for small beam test.

Micro-Parameters Value Micro-Parameters Value

Minimum particle diameter
[dmin] (mm) 0.5 Normal stiffness [kn] (GPa) 6.2

Ratio of maximum to
minimum particle diameter

[dmax/dmin]
1.5 Ratio of normal to shear bond

stiffness [kn/ks] 1.77

Normal bond force [Sn] (kN) 1.0 Shear bond force [Ss] (kN) 1.0
Normal softening parameter

[un
f ] (µm) 18 Shear softening parameter

[us
f ] (µm) 18

Friction coefficient [µ] 0.5

5.1. Effect of Stiffness

Three different stiffness values (0.5kn,s, 1.0kn,s, and 2.0kn,s) were selected to study the
effect of normal and shear stiffness on the simulation results of notched mortar beams. The
simulation results are shown in Figure 13.
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Figure 13. Effect of stiffness: (a) normal stiffness; (b) shear stiffness.

Figure 13a shows that the ascending segment of the curve becomes steeper as the
normal stiffness increases. The peak value increases as the normal stiffness (kn) increases
as well. Figure 13b shows that raising the shear stiffness (ks) has the same tendency as
increasing the normal stiffness, but with a smaller impact on the peak and slope.

5.2. Effect of Bond Force

Three different bond force values (0.5Sn,s, 1.0Sn,s, and 2.0Sn,s) were selected to study
the effect of normal force and shear force on the simulation results. The simulation results
of notched mortar beams are shown in Figure 14.

As illustrated in Figure 14a, the peak value tends to rise obviously as the normal bond
force (Sn) rises. However, as shown in Figure 14b, increasing the shear bond force (Ss) does
not appear to have a significant effect on the load–crack opening displacement curve. The
reason is that the Mode-I fracture is dominant in the failure process of three-point bending
test; hence, the increase in normal bond force is much more effective than the increase in
shear bond force.
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5.3. Effect of Softening Parameters

Three different values of softening parameters (0.5un,s
f , 1.0un,s

f , and 2.0un,s
f ) were

selected to study the influence of normal softening parameters and shear softening parame-
ters on the failure behavior of notched mortar beams. The simulation results are shown
in Figure 15.
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The simulation results show that larger values of normal softening parameter un
f lead

to higher values of peak force (Figure 15a). The post-peak softening branch appears to decay
more slowly. The reason is that as the normal softening parameter increases, the normal
force between the particles that can be obtained according to Equation (1) consequently
increases. This will affect the bearing capacity of the beam at the macro level, characterized
by a smoother decline of the load–crack opening displacement curve. For comparison,
the effect of shear softening parameter us

f on the three-point bending test of the notched
mortar beam is insignificant (Figure 15b). This is because in the three-point bending test,
the influence of shear partial softening is limited.
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6. Simulation of Fracture Behavior of the Three-Point Bending Beam by the Linear
Cohesion Model

The newly developed linear cohesion model is now applied to the simulation of a three-
point bending test on the notched beam specimen with a size of 100 mm× 100 mm× 400 mm,
as mentioned in Section 2. The parameter calibration technique and accompanying simula-
tion settings remain the same as discussed before; Table 6 shows the acquired microscopic
parameters of the linear cohesion model.

Table 6. Micro-parameters of linear cohesive model applied in the structural simulation.

Micro-Parameters Value Micro-Parameters Value

Minimum particle diameter
[dmin] (mm) 0.5 Normal stiffness [kn] (GPa) 24.5

Ratio of maximum to
minimum particle diameter

[dmax/dmin]
1.5 Ratio of normal to shear bond

stiffness [kn/ks] 1.77

Normal bond force [Sn] (kN) 1.8 Shear bond force [Ss] (kN) 1.8
Normal softening parameter

[un
f ] (µm) 35 Shear softening parameter

[us
f ] (µm) 35

Friction coefficient [µ] 0.5

The simulation results of the load–crack opening displacement curve are compared
to the experimental results, as shown in Figure 16. One may observe that the load–crack
opening displacement curve obtained from the simulation agrees very well with the experi-
mental results. Subsequently, four stages of the fracture process, i.e., 100%, 80%, 60%, and
40% of the peak load, were selected for comparison with the results of acoustic emission
(AE) during the experiment from the author’s previous work [40].

Previous studies [41,42] have shown that accumulative levels of acoustic emission
can provide relevant information on the fracture zone of mortar and concrete. Therefore,
four energy levels are defined by classifying a 2D AE localization map. From the present
study depicted in Figure 16, it can be noticed that the high energy level of the acoustic
emission event is mainly located in the vicinity of the middle span, which outlines the
fracture path in the specimen at different fracture levels. According to the definition from
Bažant [3], the tensile stress distribution in the fracture process zone gradually increases
from the initial crack tip and reaches tensile strength at the end of the fracture process
zone. In the DEM calculation, the simulated cracks are characterized by two groups of
contact–failure states: (1) the contact between two adjacent particles enters the displacement
softening section (labeled as ‘Softening’ in Figure 16), and (2) the contact–displacement
has reached or exceeded the softening parameters, indicating the full failure of contact
(labeled as ‘Crack’ in Figure 16). This concept is different from the virtual crack model
or the traditional crack model. It can be seen from Figure 15 that when the peak force
(point A) is reached, the ‘Crack’ can be found between the particles at the notch tip of the
beam. Afterwards, the ‘Crack’ propagates towards the top of the beam, accompanied with
an expansion of the ‘Softening’ area; consequently, the bearing force descends progressively
(as indicated by points B to D in the figure). The results show that the implemented linear
cohesion model successfully simulates the fracture process, and the simulation results are
in good agreement with the AE test results.
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7. Conclusions

In this study, an attempt was made to overcome the limitation of the built-in parallel bond
model in the DEM software, for simulating the fracture behavior of quasi-brittle materials.

(1) The built-in parallel bond model was reviewed. The results show that this model can
simulate the linear elastic stage and capture the maximum load during the fracture
failure of quasi-brittle materials, but it cannot reproduce the nonlinear ascending
and the post-peak softening stages. Therefore, the built-in parallel bond model is
considered inappropriate for simulating fracture behavior of quasi-brittle materials.

(2) A linear cohesion model for DEM simulation of quasi-brittle materials was con-
structed, and the reliability of the model verified by investigating the failure behavior
of two particles. In addition, the parametric study on the micro-parameters of the
newly built linear cohesion model was conducted based on a small-scale notched
beam. The results show that the model is able to simulate the fracture behavior
of quasi-brittle materials under different failure modes, and the impact of different
model parameters are indicated.

(3) The three-point bending test on a notched mortar beam of standard size is simulated
using the implemented linear cohesion model. The comparison of experimental and
simulation results, with respect to the structural behavior and the fracture process,
approves the feasibility of the newly built linear cohesion model.
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Nomenclature

kn Normal stiffness
ks Shear stiffness
Ec Young’s modulus of mortar
kn Bond normal stiffness
ks Bond shear stiffness
c Cohesion strength
σc Tensile strength
Ec Effective modulus
γ Maximum shear strength multiplier
R Bond radius
β Moment contribution factor
φ Friction angle
R1 Radius of the bonded particle 1
R2 Radius of the bonded particle 2
Fn Normal force
Fs Shear force
σn Normal contact stress
τmax Maximum shear stress
τs Shear contact stress
µ Friction coefficient
Sn Normal bond force
Ss Shear bond force
un

f Normal softening parameter
us

f Shear softening parameter
un Relative normal displacement
us Relative shear displacement
un

e Displacement corresponding to the normal elastic limit
us

e Displacement corresponding to the shear elastic limit
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