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Abstract 

Background:   The Chemistry Development Kit (CDK) is a widely used open source cheminformatics toolkit, provid‑
ing data structures to represent chemical concepts along with methods to manipulate such structures and perform 
computations on them. The library implements a wide variety of cheminformatics algorithms ranging from chemical 
structure canonicalization to molecular descriptor calculations and pharmacophore perception. It is used in drug dis‑
covery, metabolomics, and toxicology. Over the last 10 years, the code base has grown significantly, however, result‑
ing in many complex interdependencies among components and poor performance of many algorithms.

Results:   We report improvements to the CDK v2.0 since the v1.2 release series, specifically addressing the increased 
functional complexity and poor performance. We first summarize the addition of new functionality, such atom typing 
and molecular formula handling, and improvement to existing functionality that has led to significantly better perfor‑
mance for substructure searching, molecular fingerprints, and rendering of molecules. Second, we outline how the 
CDK has evolved with respect to quality control and the approaches we have adopted to ensure stability, including a 
code review mechanism.

Conclusions:  This paper highlights our continued efforts to provide a community driven, open source cheminfor‑
matics library, and shows that such collaborative projects can thrive over extended periods of time, resulting in a 
high-quality and performant library. By taking advantage of community support and contributions, we show that 
an open source cheminformatics project can act as a peer reviewed publishing platform for scientific computing 
software.
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Background
The open source cheminformatics community has made 
significant steps forward recently  [1] as evidenced by the 
growing number of tools and underlying toolkits, along 
with the usage of these software components in a variety 
of applications. The Chemistry Development Kit (CDK) 
is one of the tools developed under the aegis of the Blue 

Obelisk, a movement promoting Open Data, Open Source, 
and Open Standards in chemistry [1, 2]. The CDK provid-
ing data structures to represent chemical concepts along 
with methods to manipulate such structures and perform 
computations on them. Previously documented CDK ver-
sions have been widely adopted  [3, 4]. Use of the CDK 
ranges from inclusion of CDK functionality in wrapper 
platforms such as Cinfony  [5], incorporation within the 
R environment (rcdk  [6]), and as plugins for Taverna  [7], 
KNIME [8], Cytoscape (ChemViz2 [9]), and for Microsoft 
Excel (LICSS [10]). In contrast to scenarios that have made 
CDK functionality available in larger systems, a number of 
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projects have employed the CDK as a general cheminfor-
matics toolkit. Examples include jCompoundMapper [11], 
ScaffoldHunter  [12, 13], OMG  [14], PaDEL  [15], Chem-
Des [16], ReactPRED [17], SMSD [18–20], WhichCyp [21], 
MetaPrint2D  [22], MetFrag  [23], and the IUPHAR/BPS 
Guide to Pharmacology  [24], BRENDA  [25] and QSAR 
DataBank [26] databases. A number of such tools were ini-
tially developed using older versions of the CDK and are 
updated to new releases as they are made available. Exam-
ples include Bioclipse  [27, 28] and AMBIT  [29–31]. The 
CDK has also played a role in a number of chemical stud-
ies, such as finding the maximally bridging rings in chemi-
cal structures  [32], prediction of organic reactions  [33], 
and bioactivities of compounds [34].

While the CDK has purported to be a general purpose 
cheminformatics toolkit, older versions were designed by 
a community with specific applications in mind, primary 
among them being structure elucidation. In addition, an 
implicit goal of previous versions was to have the CDK serve 
as an educational resource to enable students of chemin-
formatics to understand the underlying algorithms. This 
resulted in certain functionalities, such as molecular finger-
printing [35, 36], receiving more attention than others, such 
as stereochemistry. The outcome was significant variance in 
performance and features throughout the toolkit.

The growth of open source software over the last 10 
years is evidence of the ability of communities of devel-
opers to develop systems and processes that lead to high 
quality software systems for long term use. The CDK is 
no different. The adoption of automatic build systems 
and quality control methodologies such as unit test-
ing, automated source code validation, and peer review 
by fellow developers have greatly improved the stability 
of the library. While it has slowed development some-
what, it has allowed for cleaning up interdependencies 
between modules of functionality, and importantly, has 
improved the scalability of the development model. This 
has resulted in significant new functionality in core appli-
cation programming interfaces (APIs) while maintaining 
the quality of code depending on those core APIs.

Examples of new features supported by the improved 
development model include InChI functionality  [37], 
greatly improved ring detection algorithms [38], improve-
ments to the core atom type perception module that 
now covers a much more comprehensive set of elements, 
charge states and radical species than previous versions, 
a more comprehensive fingerprinting API, new depiction 
functionality, and many speed and stability improvements.

Implementation and results
This section describes the specifics of new APIs and 
improvements to pre-existing methods that are avail-
able in the latest CDK. We then discuss how we have 

improved and formalized the development model for the 
project using unit testing, code review and guidelines for 
handling version control. Finally we report on the availa-
bility of binary distributions of the library, allowing users 
to include specific modules (and their dependencies) of 
the CDK in their own projects (as opposed to developers 
who work on the CDK library itself ).

New APIs and improved implementations
We here outline various new and improved APIs in the 
CDK library since the two previous publications in 2003 
and 2006 [3, 4].

Atom typing
Atom type perception is core cheminformatics function-
ality: the atom types describe chemical features of atoms, 
such as the number of neighbors, possible formal charges, 
(approximate) hybridization, electron distribution over 
orbitals and so on. However, previous versions of the CDK 
implemented atom type perception as part of different 
algorithms, resulting in duplicated and sometimes diver-
gent typing schemes. As a result it was cumbersome to add 
new atom types and implement support for new charged 
and radical species in a consistent manner.

This CDK version has a new, centralized atom typ-
ing framework, removing the perception of atom types 
from various algorithms. This allows for a consistent and 
extensive typing scheme, that can be also be tested inde-
pendently of other code. The new code defines the atom 
types using a list that specifies for each type the element 
symbol, hybridization, formal charge, number of lone 
pairs, and an enumeration of the bond orders (see Fig. 1). 
This list of properties captures the information needed 
for the various algorithms in the CDK. For example, 
hybridization information can be used in certain aroma-
ticity models (see later), and the lone pair information is 
needed for resonance structure calculation needed, for 
example, for Gasteiger π-charges.

Fig. 1  Atom type information specified for a sp3-hybridized carbon
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A reference implementation, CDKAtomType-
Matcher, has been written in such a way that per-
ceives these atom types, and validates the perception 
automatically against the properties defined by the 
ontology. This class handles a variety of types of miss-
ing information, as commonly resulting from various 
(file) formats; for example, it can handle undefined 
hydrogen counts and undefined double bond positions 
if hybridization information is provided instead. That 
makes the perception code flexible but also more com-
plex. Alternative algorithms for atom typing have not 
been explored. This reference implementation can be 
used on a single atom:

And on a full molecule, in which case the list of types 
is ordered in the same order as the atoms in the molecule 
object:

Stereochemistry
Previous versions of the API represented stereochemistry 
in different ways. This hindered interconversion between 
and within file formats. CDK v2.0 standardizes upon 
a new core representation and procedures have been 
updated or added to enable duplicate checking, pattern 
matching, and interconversion.

The preferred representation of stereochemistry is now 
for it to be stored at the molecule level as a StereoE-
lement. In abstract terms a stereo element describes 
local geometry using a type, focus, carriers, and con-
figuration (Fig. 2). Currently the most common types of 
stereochemistry are supported: Tetrahedral, Cis-trans 
isomerism around a double bond, and Extended Tetra-
hedral. Rarer types of stereochemistry, such as: Square 
Planar, Trigonal Bipyramidal, Octahedral, could easily be 
incorporated into the chosen description given sufficient 
demand from the community.

Along with the new stereochemistry representation, 
algorithms were required in several areas. Generally, a 
user does not need to invoke these procedures explicitly 
as they are called as needed within existing APIs:

• • perception from 2D coordinates,
• • perception from 3D coordinates,
• • wedge assignment,
• • graph (sub)isomorphism matching,
• • SMARTS matching, and
• • canonicalization.

The perception from coordinates and wedge assignment 
algorithms are fundamental for conversion between for-
mats that store stereochemistry implicitly based on coor-
dinates (e.g. molfile,1 CML) and explicitly (e.g. SMILES, 
CML, InChI). Perception from 2D coordinates can 
optionally identify perspective projections, specifically: 
Fischer, Haworth, and Chair projections. With the per-
ception of perspective projections enabled, database 
entries currently considered distinct can be merged 
(Fig. 3).

Pattern matching of stereochemistry with the described 
representation is straight forward. Given the atom–atom 
mapping from a query structure to a target molecule, 
the focus and carriers of the query stereochemistry 
are mapped to the target. Using the permutation par-
ity of this mapping the configurations were compared. 
SMARTS matching requires some special handling for 
complex cases [39]. For canonicalization, a partial canon-
ical ordering is used to assign an absolute label which can 
then be integrated into the ordering. The algorithms used 
for stereochemistry are thoroughly detailed in Chapter 6 
of  [40]. The perception from projections is based on an 
algorithm briefly described by [41].

Atomic and molecular signatures
An implementation has been provided of the Signature 
structure descriptor for molecules  [42]. These act as a 
linear notation—like the SMILES format—for the whole 

1  Molfiles can also store tetrahedral stereochemistry as a parity value, this 
is read if no coordinates are specified. In general there is no guarantee the 
parity value is read and the only portable way to store stereochemistry in a 
molfile is with coordinates.

Fig. 2  Relative storage of stereochemistry, the type and focus of 
stereochemistry are fixed for a given stereocenter description but 
the carriers and configuration are relative. The multiple rows for each 
stereochemistry type are different internal representation that would 
be considered equivalent. In the tetrahedral types, hydrogens may be 
suppressed in a molecular graph so the focus is reused in the carriers 
list as a placeholder
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molecule as well as for connected substructures rooted at 
a single atom. The descriptor can also be canonicalized to 
provide isomorphism-independent representations  [43]. 
Signatures of depth two can be calculated for atoms with:

But they can also can be calculated for full molecules:

Finally, a signature fingerprint can be calculated for 
molecules, to allow similarity calculations. This can then 
be used in QSAR modeling [34, 44–49].

Rendering API
A new rendering API has been introduced to make the 
rendering code independent from Java widget toolkits. 
The previous code was tightly linked to the Swing toolkit, 
but other tools use different widget toolkits. For exam-
ple, Bioclipse is based on Eclipse which uses the Standard 
Widget Toolkit (SWT) [27].

A second new design goal was introduced to balance 
between size restrictions of some use cases, such as Java 

applets, and the rendering functionality. In particular, 
some functionality, even after modularization, needed 
considerable parts of the CDK library, making creation of 
a small-sized applet unfeasible. Therefore, the rendering 
API was modularized to allow splitting up rendering func-
tionality into modules, with varying CDK dependencies.

Rendering is split up into several generation steps: 
previous versions split up bond from atom rendering. 
Heteroatom symbols were simply drawn over lines rep-
resenting bonds using a white rectangle to mask. A new 
StandardGenerator has been introduced that does 
bond and atom rendering at the same time. It incorpo-
rates many ideas described by Alex Clark  [50, 51]. The 
depictions generated are of much higher quality and suit-
able for publication.

Moreover, a simplified high-level API has been intro-
duced that addresses most of the common rendering 
needs, with the DepictionGenerator class. To depict a 
molecule loaded into a variable ‘benzene’ the following 
code can be used:

Many of the rendering options are available as param-
eters in the core API and as methods on the Depiction-
Generator class. This includes substructure coloring, 
exemplified with an example reaction shown in Fig.  4. 
When missing, 2D coordinates are generated on the fly 
with the new structure diagram layout functionality.

Structure diagram layout
The structure diagram layout has been improved and the 
new code solves a number of long standing issues. In par-
ticular, collision avoidance has been greatly improved. 
Figure  5 shows a difference in output between the old 
code base, with and without overlap resolving, and with 
the new refinement based implementation [52]. Genera-
tion of 2D coordinates is done as shown below:

While the API itself has not been significantly changed, 
the internals have been revamped. In addition to improved 
overlap resolution noted above, the engine appropriately 
handles large ring systems, maintains input stereochemistry, 

CHEMBL23970 CHEMBL444314

CID 5280 CID 65119

Projection Perception

Fig. 3  The raw input files of CHEMBL23970 and CHEMBL444314 
are displayed (ChEMBL 21). Without perceiving the stereochemistry 
indicated by Haworth projection in CHEMBL23970, the database 
entries are incorrectly considered distinct. Down stream aggregation 
databases mirror this separation (PubChem CID 5280, CID 65119)
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and makes use of a large template library. Templates are use-
ful for laying out substructure. While previous CDK ver-
sions partially supported double bond stereochemistry the 
new engine is more efficient in using this information when 
generating 2D layouts. Furthermore, the engine assigns 
wedge bond information based on tetrahedral stereochem-
istry. These features are exemplified by the following code 
and the resulting layout depiction in Fig. 6:

Molecular formula
A chemical formula is the simplest chemical representa-
tion of a compound. It defines the number of isotopes or 
elements that compose a compound without describing 

how atoms are bonded. With the rise of metabolomics it 
has become increasingly relevant to have full support for 
these in cheminformatics libraries [23, 53–56].

The CDK interfaces can handle several concepts related 
to chemical formulas: the formula itself, sets of formulas, 
chemical formula ranges, adducts, isotope containers and 
patterns, and rules to filter formula sets. These new tools 
can be used for a number of tasks, including calculat-
ing the isotopic pattern from a given chemical formula, 
determining the possible elemental compositions for a 
given mass (mass decomposition), and calculating the 
exact mass from a given chemical formula.

The CDK contains two algorithms for the decomposi-
tion of mass ranges into possible elemental formulas. For 
most inputs, a Round Robin algorithm, originally devel-
oped for the SIRIUS metabolite identification tool  [57], 
is used. The algorithm discretizes the real-value mass 
decomposition problem into an integer-value knapsack 
problem [58]. It first computes a dynamic programming 
table and then backtracks within it to generate matching 
formulas  [59, 60]. Data for the Round Robin algorithm 
is stored in an extended residue table  [61], resulting in 
a low memory footprint of several kilobytes. For cer-
tain problem instances, such as very large mass values 
(above 400,000 Da) or mass range span larger than 1 Da, 
the Round Robin algorithm is not suitable and CDK falls 

Fig. 4  Integrated example showing the rendering and SMILES parsing functionality. Example from U.S. Patent US 2014 231770 A1 para 287

Fig. 5  The improved structure diagram generation has improved code to solve overlap. The original SDG code used general heuristics (left) and the 
OverlapResolver would fine tune the layout to ensure atoms would not be placed at the same location (middle). The new SDG algorithm is able to 
make more rigorous changes, making the final output must more pleasing (right)

Fig. 6  Structure diagram generation for structures with double bond 
and tetrahedral stereochemistry
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back to an optimized full enumeration search method, 
originally developed as part of the MZmine 2 framework 
for mass spectrometry data processing [54, 55].

The following code calculates all possible chemical for-
mulas for a given accurate mass, within allowed counts 
for each element:

This gives the following output:

To evaluate the performance of the CDK molecular 
formula generator, we compared its runtimes to those of 

the classic, full enumeration-based HR2 formula genera-
tor  [62] and those of a recently developed Parallel For-
mula Generator (PFG) [63] (Table 1). As inputs, we used 
two sets of 10,000 small (<500  Da) and 20 large (>1500 
and <3500 Da) molecular mass values downloaded from 
the Global Natural Products Social Molecular Network-
ing database [64]. The mass tolerance was set to 0.001 or 
0.01 Da. The CDK v2.0’s Round-Robin formula genera-
tor outperformed the other methods in all cases, despite 
running in a single thread (PFG utilizes multiple threads). 
The performance gain of the Round Robin algorithm was 
particularly apparent when narrow mass ranges were 
queried (e.g. ±0.001 Da), thus showing its suitability for 
applications in high-resolution mass spectrometry.

SMILES parser and generator
The SMILES  [65] parsing has been replaced by code 
from the external Beam project  [66]. This BSD-licensed 
SMILES parser is a complete implementation of the 
SMILES and OpenSMILES (http://opensmiles.org/) 
specifications by one of the authors (including stereo-
chemistry), and is independent of the CDK library. The 
SmilesParser API uses this library underneath, and 
the Beam API is hidden by this class. Basic usage is as 
follows:

The most significant functional change here is that the 
SMILES parser automatically locates the positions of 
double bonds in de-localised aromatic systems (Kekuli-
sation). If this invariant cannot be met the SMILES is 
rejected as invalid. It is possible to override this check but 
this is strongly discouraged as rejected molecules do not 
have a fixed formula or tautomer [40].

Table 1  Evaluation of molecular formula generators

The resulting formula counts and runtimes of the HR2, PFG, and CDK chemical formula generators on two different inputs with two different mass tolerance settings. 
For the set of small masses, 10,000 mass values in the range of 0–500 Da were randomly selected from the Global Natural Products Social Molecular Networking 
database [64]. For the set of large masses, 20 mass values in the range of 1500–3500 Da were randomly selected from the same database. Formulas were generated 
using chemical elements C, H, N, O, P, S without bounds (the allowed atom count was set to 0–10,000 for each element). All heuristic filtering rules were disabled for 
the purpose of the evaluation. The slight differences in the number of generated formulas were caused by different isotope masses embedded in each software and/
or by rounding errors during calculation. The runtimes are average values from three independent runs performed on three different 16-core Intel Xeon 2.9 GHz CPU 
workstations equipped with 189 GB RAM, running Ubuntu Linux version 12.04.5 LTS and OpenJDK Java runtime version 1.7.0_101

Input Mass tolerance (±Da) # of generated formulas Runtime (s)

HR2 PFG CDK HR2 PFG CDK

10,000 small masses 0.001 616,846 616,846 616,843 669 168 41

10,000 small masses 0.01 6,163,303 6,163,302 6,163,326 689 501 212

20 large masses 0.001 4,912,939 4,912,939 4,912,904 26,370 1292 177

20 large masses 0.01 49,128,811 49,128,810 49,128,815 26,587 3406 1580

http://opensmiles.org/
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The SMILES generation API has also been simplified 
and made more flexible able to produce several differ-
ent flavours. The SmiFlavor flags are used to control 
the type of SMILES generated. Historically the terms: 
generic, isomeric, unique, absolute have been used in 
other toolkits and are also supported.

Support for ChemAxon Extended SMILES 
(CXSMILES) [67] layers has been added to CDK v2.0. 
CXSMILES provides a powerful means of including 
auxiliary information in a SMILES string such as 2D/3D 
coordinates, atom values, generic labels, repeat units, 
and positional variation. CXSMILES is achieving by 
placing additional information between pipe characters 
(‘|’) in the SMILES title field. Information is annotated 
based on the order of the atoms in the SMILES string. 
An example CXSMILES for a generic structure is shown 
below.

Substructure and SMARTS matching
Substructure matching is fundamental cheminformatics 
operation and plays a key role in many other functions 
such as fingerprint and descriptor generation, and atom 
typing. Since CDK v1.2, functionality has been added to 
handle the SMARTS query language. The SMARTS lan-
guage is supported well including features such as ste-
reochemistry, component grouping, and atom maps (to 
match reaction transformations). A new Pattern API has 
been added to CDK v2.0, which simplifies finding, filter-
ing, and transforming search results. The API is immu-
table allowing a pattern to be initialized once and then 
matched against several molecules or reactions across 
multiple threads. During initialization the pattern is 
inspected so as to determine what invariants will be 
needed (e.g. ring size) and only required invariants are 
calculated. The internal matching algorithms provide a 
lazy iterator, such that the next match is only computed 
when it is needed. The API handles reactions in addition 
to molecules, and both can be specified as either queries 
or targets.

CDK v2.0 includes large improvements to algorithm 
efficiency. This is emphasised in the systematic bench-
mark of MACCS-like 166 key generation (Table  5). The 
efficiency improvements are a combination of optimis-
ing data structures and key molecule processing algo-
rithms (e.g. kekulisation and aromaticity) needed before 
a SMARTS match can be run [40, 68, 69].

Ring finding
Ring finding is another key functionality in a chemin-
formatics library, and the CDK knows a long history of 
ring finding [38, 70]. Specifically, non-redundant ring sets 
have seen particular interest, such as the smallest set of 
smallest rings, for which the CDK implements two clas-
sical algorithms  [70, 71]. Recent work has implemented 
a new, faster algorithm, allowing searching for various 
types of (non-redundant) ring sets  [38]. These are avail-
able via the new Cycles API:

Aromaticity
Aromaticity has seen many definitions in the past and for 
cheminformatics it frequently is algorithmically defined. 
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The outcome of an aromaticity calculation depends on a 
number of atom type features and heuristics, which are 
often ambiguously defined in the published literature. 
Based on the information used, several different algorith-
mic definitions of aromaticity can be defined. Older CDK 
versions had various aromaticity models implemented 
but the code was scattered throughout the library, result-
ing in an inconsistent API to compute aromaticity and a 
significant maintenance burden. The API was unified in 
the current version, resulting in three models, of which 
two are based on the CDK atom typer. The difference 
between these two models is how contributions from 
exocyclic double bonds are handled.

The current CDK version further generalizes the idea 
that aromaticity is a model, and provides an API that 
allows the user to select one of several aromaticity mod-
els, leading to greater interoperability with other toolkits. 
The new Aromaticity class allows to build a custom 
model by selecting and combining options. For example, 
to reproduce the functionality of the previous CDKAro-
maticity class:

Here, the CDK model for counting donated electrons is 
used, along with the rings systems that were identified by 
the older algorithm in previous versions that was limited 
in the number of fused rings systems that were consid-
ered. However, an alternative aromaticity calculator that 
considers all possible ring systems can now be easily cre-
ated with:

For SMARTS matching and SMILES generation a 
model based on Daylight [72] can be used and offers sig-
nificant speed improvements to the one based on CDK 
Atom Types. This model has recently been documented 
as part of the OpenSMILES specification (http://opens-
miles.org/):

The aromaticity algorithm is straight forward, the 
potential electron donation is calculated for each atom as 

−1 (not aromatic), 0, 1, 2. The set of cycles provided in 
the constructor is then generated and each is checked for 
Hückel’s rule (4n+ 2).

CTfile format improvements
The molfile format is still very popular and despite it 
being a proprietary format, it has become a de facto 
standard. The format forms the core of the larger 
CTfile family which was originally developed by MDL 
Information Systems  [73]. The current format speci-
fication is published by BIOVIA and available on 
request [74].

The CTAB block (connection table) of a molfile comes 
in two versions, V2000 and V3000. The V3000 provides 
several enhancements including but not limited to: 
removing atom and bond count limits, enhanced stereo-
chemistry, and link nodes. For backwards compatibility 
V2000 is often preferred resulting in limited usage of 
V3000.

CDK v2.0 adds support for V3000 and has optimized 
and extended support for V2000. Currently these are 
considered separate formats requiring a user to know 
what version is being read beforehand. Future APIs will 
aim to simplify this and provide a unified reader. An 
overview of currently supported CTfile formats is given 
in Table 2.

CTfile Sgroups capture and organise high level infor-
mation about sets of atoms and bonds  [75]. There are 
four types of Sgroup: Display Short-cuts, Polymers, Mix-
tures, and Data. The most familiar Sgroups from an end 
user perspective are structure repeat units (e.g. bracket-
ing) and abbreviations (Fig. 8). CDK  v2.0 adds supports 
for representation, reading, writing, and depiction of 
Sgroups.

New object builders
Originally, the CDK was developed as a shared library 
between JChemPaint [76] and Jmol [77, 78]. JChemPaint  
used a MVC approach with an event-passing mecha-
nism to update the view when the model was changed. 
This can cause a cascade of change events being passed 
around. This was not always a desirable feature, espe-
cially for non-UI code. To address this, interfaces were 

Table 2  CTfile format support

Format V2000 V3000

MOLfile Read and write Read and write

RXNfile Read and write Read

SDfile MOLfile Read and write Read

RGfile Read and write

RDfile

http://opensmiles.org/
http://opensmiles.org/
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introduced allowing multiple implementations of the 
core interfaces. With much code of the CDK library 
no longer based on the original data model, a builder 
is needed to create objects of that data model, such as 
an implementation of the IAtom. The new IChemOb-
jectBuilders allow implementations to be created, 
allowing implementations of the interfaces to be instan-
tiated without the need of explicitly referencing those 
implementations. This way, any algorithm implementa-
tion in the CDK can use any of the data model interface 
implementations.

The CDK v1.0 and v1.2 implementations of the 
IChemObjectBuilder had, however, one method 
for each data object constructor, resulting in a very large 
interface. Moreover, this interface API had to be updated 
each time a new class was introduced, and when exist-
ing methods changed and constructors were updated. To 
simplify the API, the new IChemObjectBuilder col-
lapses all methods into a single method, which takes as a 
first parameter the class of the interface that is to be con-
structed. All further parameters are passed as parameters 
to the class constructor.

For example, to construct a new atom from its element 
symbol, one would write previously:

With the new builder, the code looks like:

The CDK library is now mostly refactored and no 
longer depends on a specific implementation of the 
IChemObjectBuilder, allowing the user of the CDK 
to select a builder suitable to their software. There-
fore, if software depends on event passing, then the 
DefaultChemObjectBuilder can be used, in most 
cases this isn’t needed and the SilentChemObject-
Builder is preferred resulting in a typical speed up of 
10–20%:

The third builder is the DataDebugChemObject-
Builder which generates debug information for all 
changes to the content of the data classes. This can be 
useful for debugging and other forms of code inspection.

Molecular fingerprints
Molecular fingerprints have also seen significant devel-
opment in this CDK version. Previously, fingerprints 

were represented using the BitSet class from the Java 
library. While using this class allowed the use of pre-
existing methods to manipulate bit strings, it keeps a 
vector of bits in memory. The solution was excellent for 
hashed, relatively small fingerprints, e.g., 1024 bits, i.e. 
with a 210 indexing space (128 B). However, implement-
ing a fingerprint designed to avoid collisions with a 232 bit 
indexing space using this approach would be memory-
inefficient (512 MiB). To allow for multiple fingerprint 
representations, a bit fingerprint interface was intro-
duced: IBitFingerprint.

Also, although fingerprints traditionally are bit vectors 
a count fingerprint was also introduced making finger-
prints based on integer vectors supported in CDK as well. 
The counts in the fingerprint then represent how often 
this substructure is found in the molecule it represents.

The fingerprints currently provided by the CDK are 
listed in Table 3.

Improved coding standards
As the CDK library grew over the years, so did the com-
plexity of the maintenance. The main branch frequently 
failed to compile and bug fixes became more onerous 
due to unexpected side effects. Often fixing a bug in one 
part of the code, broke some other code which made the 
incorrect assumptions about the fixed code. With the 
increased size of the CDK developer community, such 
issues were inevitable in the absence of any formal coding 
and testing standards.

To address these issues, we have adopted a number 
of coding standards. While not a comprehensive imple-
mentation of software engineering best practices, they 
attempt to find a balance between increasing code main-
tainability and being flexible enough to allow efficient 
code development. We appreciate the subjective nature 
of this statement, and some adopted guidelines have been 
heavily discussed and debated in the CDK community.

Arguably, perhaps the biggest factor in improved code 
quality is a peer review process where any functionality 
changing patch is required to be reviewed by one inde-
pendent, senior CDK developer for the development 
branch, and by two reviewers for stable branches. This 
patch development system is supported by a number of 
automated validations steps as outlined below. The next 
sections describe some approaches the project have 
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adopted that allows us to maintain the CDK library as it 
is today.

Stability and version identifier
Prior to CDK v2.0, the parity of the version identifier’s 
second digit indicated stability. Even numbers (v1.2.x, 
v1.4.x) indicating API stability and odd numbers (v1.3.x, 
v1.5.x) indicating potential API instability. Versions v1.4.x 
and v1.5.x were developed in parallel, where possible 
patches were applied to both. As the APIs diverged the 
amount of effort to port patches from the development 
but more robust v1.5.x to v1.4.x became unmanageable 
for the core development team. This even-odd version 
scheme was adopted from old Linux kernel versioning 
that was subsequently abandoned in 2004 for time-based 
releases [79].

At the time of writing the development branch is more 
than 3000 commits ahead of v1.4.x. As the the v1.5.x API 
has become stable it became time to release v1.6.x. Due 
to significant API changes in 20112 it was felt a larger 
digit increment was needed. This provided the opportu-
nity to change to a more manageable and intuitive ver-
sion identifier.

From CDK v2.0 a new sequence based version scheme 
will be used. The version identifier indicates change sig-
nificance as follows:

2  https://github.com/cdk/cdk/commit/2fc6b61972af834c1fea7fcb64287363
ecbcb188.

Due to limited developer resources we envision that 
releases will primarily increment the minor version with 
the occasional patch release. As per Maven convention, 
development versions are suffixed with -SNAPSHOT. 
There are no API changes from v1.5.x and v2.0.

Modularization
One of the central approaches we have adopted, is to 
make the CDK more modular. The CDK assigns every 
class to a module, and defines dependencies between 
modules. For example, core modules are not allowed to 
depend on modules with data classes implementing the 
CDK interfaces; instead, they may only depend on the 
interfaces themselves. This ensures that dependencies 
are minimized. Furthermore, it also allows cherrypicking 
CDK functionality, reducing the number of third-party 
library dependencies that are needed. An overview of 
key modules with description, important changes, and 
dependencies on third-party libraries is given in Table 4 
and the dependencies between the CDK modules are 
depicted in Fig. 7.

Table 3  The molecular fingerprints in CDK

Listed are the currently available molecular fingerprint in CDK with information about whether they come as a bit and/or count version, what CDK version they were 
introduced in, their default size, and relevant references, where applicable

* For the CircularFingerprinter the bit version is folded to 1024 whereas the count version is unfolded
† The LingoFingerprinter does not have a default size

Bit version Count version CDK version Default Size

CircularFingerprinter [35, 86] � � v2.0 1024/232*

EStateFingerprinter [87] � v1.2.0 79

ExtendedFingerprinter � v1.0 1024

Fingerprinter � v1.0 1024

GraphOnlyFingerprinter � v1.0 1024

HybridizationFingerprinter � v1.4.0 1024

KlekotaRothFingerprinter [88] � v1.4.6 4860

LingoFingerprinter [89] � v2.0 NA†

MACCSFingerprinter � v1.2.0 166

PubchemFingerprinter [90] � v1.4.0 881

ShortestPathFingerprinter � v2.0 1024

SignatureFingerprinter [44] � � v2.0 2
32

SubstructureFingerprinter � v1.0 307

https://github.com/cdk/cdk/commit/2fc6b61972af834c1fea7fcb64287363ecbcb188
https://github.com/cdk/cdk/commit/2fc6b61972af834c1fea7fcb64287363ecbcb188
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Table 4  A selection of key CDK modules with major changes

An overview of a selection of often used CDK modules with description, dependencies on third-party libraries, and the major changes since version 1.2. Dependencies 
between modules are depicted in Fig. 7

Module Description Major changes Dependencies

interfaces Interfaces for the data models Vecmath 1.5.2

core Core functionality Google Guava 17.0

standard Common functionality

render Graphical rendering Redesigned to make it more modular and 
support Multiple widget toolkits, like AWT 
and SWT

isomorphism Isomorphism and substructure searching

atomtype Various non-core atom type schemes Unified approach where atom typing is sepa‑
rated from other algorithms

ioformats Definitions of (chemical) input/output 
formats

io Readers and writers for input/output formats The molfile reader has been rewritten and 
supports atom types defined in the speci‑
fication

XPP3 1.1.4c

iordf Stores data models as in the Resource 
Description Framework serialization formats

New Jena 2.7.4

inchi IUPAC International Chemical Identifier sup‑
port

JNI-InChI 0.8 [37]

libiocml Writer for the Chemical Markup Language 
format

XOM 1.2.5, CMLXOM 3.1 [91]

sdg Structure diagram generation. Much improved overlap resolution

smiles Reading and writing in the SMILES format SMILES support performance and coverage is 
greatly improved

Beam 0.9.1 [66]

smarts Substructure searching with the SMARTS 
format

Beam 0.9.1 [66]

hash Molecular hash codes [92]

formula Chemical formula support New

fingerprint Calculate fingerprints Many new fingerprint types (see text) Apache Commons Math 3.1.1

qsar and qsarmolecular Molecular descriptors XOM 1.2.5, JAMA 1.0.3 [93]

signatures Calculation of molecular and atomic signa‑
tures

Signatures 1.1

Fig. 7  Dependencies between CDK modules. Visualization of the dependencies between CDK modules. For example, the cdk-core depends on the 
cdk-interfaces module. A few higher level modules have been left out: cdk-builder3dtools, cdk-legacy, and cdk-depict



Page 12 of 19Willighagen et al. J Cheminform  (2017) 9:33 

Documentation
The quality of the JavaDocs was originally tested with 
DocCheck, and later replaced by a custom written tool 
called OpenJavaDocCheck. With the move to Maven 
(explained later), which does not have integration for this 
tool, we adopted CheckStyle (http://checkstyle.source-
forge.net/). This tool reports on missing documentation 
and on documentation which is not properly annotated in 
the Java source files. The new website lists a few resources 
to help starting CDK users, including a book [80] and the 
Chemistry Toolkit Rosetta Wiki (http://ctr.wikia.com/
wiki/Chemistry_Toolkit_Rosetta_Wiki).

Testing
Years of development of the CDK library has resulted in 
a large suite of tests of various kinds. This include unit 
tests, which test core APIs, and functional testing, which 
test higher level functionality of the CDK. The latter 
include tests if algorithm implementations calculate the 
expected values, but also contain integrated tests, which 
involve more than one algorithm, such as SMILES pars-
ing. The suite consists of more than 23 thousand tests.

Code quality
The project continues to use PMD (http://pmd.sf.net/) 
for code quality checking, but deviates from the default 
rules. For example, we are more liberal with variable 
name length. Moreover, a number of additional PMD 
tests have been developed specifically for the CDK, that, 
for example, test if a class uses the core interfaces instead 
of implementations of those interfaces. That is, that the 
code uses IAtom instead of Atom. However, these tests 
do generate a few false positives, as the tests check the 
class name only, and not the Java package the class is in.

Continuous integration
The CDK has had an automated build system for many 
years now. Originally, Nightly integrated various tools 
(building, testing, JavaDoc, etc)  [2]. After the move to 
Maven, running various steps could be done with Maven, 
and Jenkins was used to execute the steps (one instance 
is still running at https://jenkins.bigcat.unimaas.nl/job/
cdk/. The online Travis-CI service is used to build all 
branches, including pull requests, to ensure everything 
properly compiles: https://travis-ci.org/cdk/cdk.

Git, branching, and patches
Older versions of the CDK employed Subversion for ver-
sion control. A few years back, the project switched to 
the Git version control system. A key advantage of this 
shift is the ability to have distributed repositories, easier 
branching and provision for patches. GitHub (https://
cdk.github.io/) has replaced SourceForge as the main 

source code hosting service where we can use novel 
approaches for commenting on code (peer review), 
pull requests, etc. These new features simplify our code 
review process.

Support
Besides the aforementioned sources of documentation, 
the project has additional sources of support. First, the 
issue tracker welcomes questions and other types of sup-
port requests, available at https://github.com/cdk/cdk/
issues. The mailing list is another place where support 
can be requested, while the archives document many 
past user questions. The list and archives can be accessed 
from https://sourceforge.net/p/cdk/mailman/cdk-user/.

Binary distributions
Maven packages
The build system has been converted from Ant to Maven. 
The shift was motivated by the easier dependency han-
dling, cleaner separation of testing code from the main 
library and automated packaging. The move to modules 
necessitated splitting the original monolithic source code 
tree in to per-module source folders. While this makes 
the on-disk layout of the source code more complex, this 
is usually hidden by modern IDEs.

As a result for many modules, the test code is now 
more closely linked to the code being tested: both reside 
in the same folder, though we adhere to the Maven cus-
tom to have src/main/java and a src/test/java 
folders. For a few modules, however, this solution intro-
duces circular dependencies, in which case a separate 
Maven module is created for the tests.

The Maven packages for the CDK are available from 
Maven Central, which makes it easy for other projects 
to use. The full library can be included in other software 
by depending on the cdk artifact (http://search.maven.
org/#search|ga|1|org.openscience) but dependencies can 
also be defined on individual CDK modules.

OSGi bundles
OSGi bundles are available for the CDK too, which are 
used by e.g. Bioclipse  [27, 28] and KNIME  [8]. How-
ever, because CDK Java packages are occasionally split 
between CDK modules, the CDK currently needs to be 
bundled as a single OSGi jar. The bundle is available from 
http://pele.farmbio.uu.se/bioclipse/cdk/cdk-1.5.13/. This 
Java package and bundle incompatibilities are currently 
being explored and constitutes an area where improve-
ments can be done on modularization.

Systematic benchmark
A systematic benchmark was performed to evaluate and 
quantify performance improvements from v1.4.19 to 

http://checkstyle.sourceforge.net/
http://checkstyle.sourceforge.net/
http://ctr.wikia.com/wiki/Chemistry%5fToolkit%5fRosetta%5fWiki
http://ctr.wikia.com/wiki/Chemistry%5fToolkit%5fRosetta%5fWiki
http://pmd.sf.net/
https://jenkins.bigcat.unimaas.nl/job/cdk/
https://jenkins.bigcat.unimaas.nl/job/cdk/
https://travis-ci.org/cdk/cdk
https://cdk.github.io/
https://cdk.github.io/
https://github.com/cdk/cdk/issues
https://github.com/cdk/cdk/issues
https://sourceforge.net/p/cdk/mailman/cdk-user/
http://search.maven.org/%23search%7cga%7c1%7corg.openscience
http://search.maven.org/%23search%7cga%7c1%7corg.openscience
http://pele.farmbio.uu.se/bioclipse/cdk/cdk-1.5.13/
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v2.0. The benchmark is divided into several cheminfor-
matics tasks for common use cases. Each task was evalu-
ated on input from ChEBI 149 [81] and ChEMBL 22.1 
[82] as both SMILES and SDF.

The benchmark was run on Java SE 8, CentOS 7, Intel 
Core i7-4790 CPU @ 3.60GHz with 16 GB of RAM. The 
code to run the benchmark is available in Additional file 1 
allowing numbers to be recorded on the reader’s system.

The results of benchmark are summarised in Tables 5 
and 6. The total elapsed times are reported in Table  5, 
Table  6 subtracts the first tasks results (Count Heavy 
Atoms) to provide a comparable measure without the 
overhead of input read time. The throughput as mol-
ecules per minute is reported but is less accurate for very 
fast running tasks. 

Count heavy atoms
This task highlights improvements in raw read perfor-
mance. Each record is read in to a resident memory con-
nection table and the number of heavy (non-hydrogen) 
atoms counted by iterating over the atoms sequentially.

The improvement on this task is most noticeable 
for SMILES input, previously it would take more than 
8 min to read ChEMBL 22.1 but this is reduced to less 
than 11 s. On top of this improvement SMILES input 
is now validated and assigned a Kekulé structure. This 
identifies 9 invalid entries in ChEBI and another 9 in 
ChEMBL. Most of these rejected SMILES are due to the 
wrong encoding of Cis/Trans double bond stereochem-
istry at ring closures. The ChEBI 149 SMILES input has 
2107 empty records that v1.4.19 skip, v2.0 simply reads 
these as empty molecules. Input from SDF also improved 
from ~3 to ~1 min for ChEMBL. The SDF input in v2.0 
now includes perception of stereochemistry and reading 
CTfile Sgroups (Fig. 8). There are 9 entries from ChEBI’s 
SDF that are rejected because they contain CTfile query 
features (e.g. any bond order).

Rings
Ring perception is a fundamental step in many other 
algorithms. The rings task is divided as three subtasks: 
mark, sssr, and all.

-mark The first subtask measures the performance in 
marking ring membership and reporting the number of 
ring bonds in each record. This requires a linear algo-
rithm based on a depth first search. The original code 
used a weighted spanning tree to compute the member-
ship in linearithmic time. The run times are similar for 
these datasets (Table 6), larger differences are only seen 
for more complex cage molecules such fullerenes [38].

-sssr The second subtask computes the Smallest Set of 
Smallest Rings (SSSR) and reports the size of the SSSR 
(circuit rank) for each record. Although circuit rank 

can be computed more efficiently with a linear traversal 
(counting DFS back-edges) or with Euler’s polyhedron 
formula we are testing the time to enumerate the SSSR 
set. In general SSSR is considered unfavourable due to 
the non-uniqueness of the set and need for Gaussian 
matrix elimination (cubic runtime). With some book-
keeping the time spent in the matrix elimination has been 
reduced  [38]. For ChEMBL we see the time to generate 
the SSSR is now ~16 s when it previously took around 
~3.5 min (Table 6).

-all The third subtask counts the number of all rings up 
to or equal to size 12. This includes rings that encompass 
other smaller rings, for example, 1H-indole has rings of 
size 5, 6, and 9. In general this problem is exponential and 
so an adjustable threshold or timeout is used to avoid 
problematic molecules. CDK v1.4.19 used a timeout 
based threshold (default 5 s) whilst v2.0 uses a counter 
based on properties of algorithm [38]. In v2.0 there were 
15/173 records skipped from ChEBI that have complex 
cage-like ring systems (e.g. CHEBI:33611), no records in 
ChEMBL reached the threshold. By comparison in 
v1.4.19 there were 14/16 records skipped from ChEBI 
and 88/90 in ChEMBL due to reaching the time out.

The speed-up in v2.0 is slightly better than the SSSR 
task. ChEMBL previously spent 4–5 min and now 
takes only ~12–14 s (Table  6). In v2.0 finding all rings 
(≤12 bonds) runs faster than the non-unique SSSR 
computation.

Canonical SMILES
This task measures the generation of a Unique SMILES 
string. These can be used to compare dataset intersec-
tion and exact lookup. From SMILES input v2.0 the total 
elapsed time is ~20 times faster for both ChEBI and 
ChEMBL. For ChEMBL it now takes just under 41 s to 
read, reorder, and write the SMILES compared to more 
than 14 min previously.

Convert
This tasks tests the non-canonical conversion between 
SDF and SMILES input.

-ofmt smi SMILES is a very compact means of storing 
connection tables, v1.4.19 could only write canonical 
SMILES, v2.0 allows different SMILES flavours to be gen-
erated including a non-canonical variant. This task out-
puts CXSMILES that includes additional fields such as 
repeat groups (used by some ChEBI entries). As expected 
the v1.4.19 execution time is the same as for the Canoni-
cal SMILES task but v2.0 can generate the non-canonical 
SMILES faster taking less than 30 s for SMILES from 
ChEMBL.

3  2 records from SDF use query bond features and are skipped when read.
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Table 5  Summary of systematic benchmark comparing v1.4.19 to v2.0

The total elapsed real time was measured with the unix time utility. The throughput is reported in molecules per minute (K = thousand, M = million) as a relatable 
metric. This throughput was calculated by taking the total elapsed time and dividing it by the number of molecule in the dataset (42704 for ChEBI 149, and 1678393 
for ChEMBL 22.1). The ChEBI SMILES input contains 2107 blank (but valid) inputs, this accounts for the majority skipped in v1.4.19. The throughput calculation was 
adjust to account for this

Benchmark Data set CDK v1.4.19 CDK v2.0 Improvement

Skip Time Per min Skip Time Per min

countheavy ChEBI 149 smi 2112 22.51s 108.2K 9 0.85s 2.9M 26.48

sdf 0 7.21s 355.4K 25 3s 854.1K 2.4

ChEMBL 22.1 smi 0 8m39.3s 193.9K 9 10.74s 9.4M 48.35

sdf 0 3m17.29s 510.4K 0 53.27s 1.9M 3.7

rings
-mark

ChEBI 149 smi 2112 22.91s 106.3K 9 1.06s 2.3M 21.61

sdf 0 8.71s 294.2K 25 3.11s 823.9K 2.8

ChEMBL 22.1 smi 0 8m45.78s 191.5K 9 17.09s 5.9M 30.77

sdf 0 4m12.01s 399.6K 0 1m6.54s 1.5M 3.79

rings
-sssr

ChEBI 149 smi 2112 27.4s 88.9K 9 1.43s 1.7M 19.16

sdf 0 11.84s 216.4K 25 3.78s 677.8K 3.13

ChEMBL 22.1 smi 0 12m4.62s 139K 9 27.16s 3.7M 26.68

sdf 0 7m9.58s 234.4K 0 1m8.17s 1.5M 6.3

rings
-all

ChEBI 149 smi 2126 45.28s 53.8K 26 1.26s 1.9M 35.94

sdf 16 36.56s 70.1K 40 3.51s 730K 10.42

ChEMBL 22.1 smi 88 12m40.2s 132.5K 9 24.97s 4M 30.44

sdf 90 8m5.64s 207.4K 0 1m5.68s 1.5M 7.39

cansmi ChEBI 149 smi 2112 36.58s 66.6K 9 1.91s 1.3M 19.15

sdf 35 21.15s 121.1K 26 4.37s 586.3K 4.84

ChEMBL 22.1 smi 14 14m33.86s 115.2K 9 40.84s 2.5M 21.4

sdf 0 8m59.82s 186.6K 0 1m29.33s 1.1M 6.04

convert
-ofmt smi

ChEBI 149 smi 2112 35.63s 68.4K 16 1.47s 1.7M 24.24

sdf 35 20.91s 122.5K 25 4.55s 563.1K 4.6

ChEMBL 22.1 smi 14 14m26.02s 116.3K 37 26.2s 3.8M 33.05

sdf 0 8m59.38s 186.7K 1 1m12.49s 1.4M 7.44

convert
-ofmt sdf

ChEBI 149 smi 2112 32.42s 75.1K 9 10.39s 234.4K 3.12

sdf 13 17s 150.7K 25 13.96s 183.5K 1.22

ChEMBL 22.1 smi 0 14m25.82s 116.3K 9 5m26.29s 308.6K 2.65

sdf 1 8m51.33s 189.5K 0 6m34.5s 255.3K 1.35

convert
-gen2d
-ofmt sdf

ChEBI 149 smi 2112 24m28.02s 1.7K 9 35.86s 67.9K 40.94

sdf 13 35m12.03s 1.2K 25 42.43s 60.4K 49.78

ChEMBL 22.1 smi 0 3h27m7s 8.1K 9 17m44.64s 94.6K 11.67

sdf 1 5h58m30s 4.7K 0 19m42.77s 85.1K 18.19

fpgen
-type path

ChEBI 149 smi 2112 1m38s 24.9K 9 10.28s 236.9K 9.53

sdf 0 2m11.03s 19.6K 25 13.03s 196.6K 10.06

ChEMBL 22.1 smi 0 42m56.15s 39.1K 9 6m34.67s 255.2K 6.53

sdf 0 47m5.58s 35.6K 0 7m52.32s 213.2K 5.98

fpgen
-type maccs

ChEBI 149 smi 2150 1h37m35s 416 9 19.51s 124.8K 300.1

sdf 48 1h44m17s 409 25 21.25s 120.6K 294.45

ChEMBL 22.1 smi 214 20h24m57s 1.4K 9 13m31.21s 124.1K 90.6

sdf 225 24h41m46s 1.1K 0 13m26.41s 124.9K 110.25

fpgen
-type circ

ChEBI 149 smi 0 – 9 4.37s 557.4K 0

sdf 0 – 25 6.81s 376.2K 0

ChEMBL 22.1 smi 0 – 9 2m43.45s 616.1K 0

sdf 0 – 0 3m42.01s 453.6K 0
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Assigning double-bond configurations in SMILES is 
non-trivial and v2.0 has some safety checks, since the 
SMILES output is Keklué but input was aromatic, when 
the bond orders are assigned an extra double-bond may 
be accidental encoded in the SMILES output, this is 
sometimes acceptable but will currently report an error.

-ofmt sdf For writing SDF output there is minimal 
improvement from v1.14.19, when discounting improve-
ments in read performance the SDF generation for 
ChEBI actually runs slightly slower than v1.4.19 (Table 6). 
This can be partially explained by the more comprehen-
sive SDF generation that now writes Sgroups as well as 
computing values for atom parity and valence columns.

-gen2d -ofmt sdf When writing SDF the only port-
able way to store stereochemistry is with the inclusion 
of coordinates, this is specified with the -gen2d option. 
The overhaul in layout generation discussed early pro-
vides better layouts but also included performance 
tweaks, in CDK v1.4.19 generating coordinates and writ-
ing an SDF for ChEMBL took almost 3.5 h but now only 
takes ~18 min.

Fingerprint generation
This task tests the generation of fingerprints for similar-
ity and substructure screening. Three different types of 
fingerprints were tested, a Daylight-like Hashed Path Fin-
gerprint, MACCS-like 166 Keys, and Pipeline Pilot-like 
Hashed Circular Fingerprint (ECFP4). The task generates 
a hexadecimal FPS file that can be used with chemfp [83].

-type path Path based fingerprints encode paths of 
length 0–7. Path based fingerprints can be used for both 
substructure and similarity screening. The algorithm was 
tweaked for v2.0 to hash the paths without pre-comput-
ing all paths upfront and without needing to generate 
character strings before hashing. The time to encode 
ChEMBL previously took 42–47 min now only takes 6–8 
min.

-type maccs The CDK MACCS fingerprint uses 166 
keys to encode features of a structure and can be used for 

similarity searching. This encoding uses different aspects 
of the library including ring perception and the new aro-
maticity perception but the speed is primarily dependent 
on SMARTS matching performance. Generating the fin-
gerprint previously took ~1 day for ChEMBL and ~1.75 
h for ChEBI. This has been reduced to less than 13.5 min 
for ChEMBL and ~20 s for ChEBI.

-type circ Circular fingerprints can only be used for 
similarity and could not be generated in v1.4.19. How-
ever, the fingerprints are known to perform well for 
retrieval performance  [84]. The times are included here 
to show they are faster to calculate than path or MACCS-
like keys and therefore recommended. CDK includes 
two implementations based on signatures or extended 
connectivity [35].

Benchmark summary
In all tasks, the total elapsed time is better in v2.0 com-
pared to v1.4.19. On many tasks the improvement is 
more than ten times faster. Not only is the execution time 
improved but improvements in robustness and correct-
ness means v2.0 is often doing much more work than the 
equivalent procedures in v1.4.19.

Conclusions
Since the second CDK publication, in 2006, the library 
has been improved in many aspects including architec-
ture, new functionality, improved code testing, manage-
ment, peer review, and deployment. These changes have 
led a more functionally rich cheminformatics library, 
with significant performance improvements. Updates 
on the common SMILES and molfile formats and the 
improved structure diagram generation are very visible 
and benefit many of the tools using the CDK. Further-
more, the stability of the development model has signifi-
cantly improved, providing greater stability of the library 
over time. With more than 90 contributors, a long list of 
tools based on the CDK, and hundreds of article cita-
tions, the CDK is alive and kicking.

a Abbreviations expanded

b Abbreviations contracted c Structure repeat unit

Fig. 8  Examples of Sgroups now captured by the CDK and encoded in molfiles and CXSMILES. a Ethyl esterification fully expanded reaction. b 
Using Sgroup abbreviations allows display short cuts and more compact depiction. c An example of a structure repeat unit in DNA 5′-phosphate 
(CHEBI:4294)
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Table 6  Summary of systematic benchmark comparing v1.4.19 to v2.0 without read times

The number of records skipped and time to run the countheavy benchmark (Table 5) has been subtracted. The remaining results provides a relative comparison 
without accounting for the overhead of reading the input

Benchmark Data set CDK v1.4.19 CDK v2.0 Improvement

Skip Time Per Min Skip Time Per min

countheavy ChEBI 149 smi 0 0s – 0 0s –

sdf 0 0s – 0 0s –

ChEMBL 22.1 smi 0 0s – 0 0s –

sdf 0 0s – 0 0s –

rings
-mark

ChEBI 149 smi 0 0.4s 6.1M 0 0.21s 11.6M 1.9

sdf 0 1.5s 1.7M 0 0.11s 23.3M 13.6

ChEMBL 22.1 smi 0 6.48s 15.5M 0 6.35s 15.9M 1

sdf 0 54.72s 1.8M 0 13.27s 7.6M 4.1

rings
-sssr

ChEBI 149 smi 0 4.89s 498.1K 0 0.58s 4.2M 8.4

sdf 0 4.63s 553.4K 0 0.78s 3.3M 5.9

ChEMBL 22.1 smi 0 3m25.32s 490.5K 0 16.42s 6.1M 12.5

sdf 0 3m52.29s 433.5K 0 14.9s 6.8M 15.6

rings
-all

ChEBI 149 smi 14 22.77s 107K 17 0.41s 5.9M 55.5

sdf 16 29.35s 87.3K 15 0.51s 5M 57.5

ChEMBL 22.1 smi 88 4m0.9s 418K 0 14.23s 7.1M 16.9

sdf 90 4m48.35s 349.2K 0 12.41s 8.1M 23.2

cansmi ChEBI 149 smi 0 14.07s 173.1K 0 1.06s 2.3M 13.3

sdf 35 13.94s 183.8K 1 1.37s 1.9M 10.2

ChEMBL 22.1 smi 14 5m54.56s 284K 0 30.1s 3.3M 11.8

sdf 0 5m42.53s 294K 0 36.06s 2.8M 9.5

convert
-ofmt smi

ChEBI 149 smi 0 13.12s 185.7K 7 0.62s 3.9M 21.2

sdf 35 13.7s 187K 0 1.55s 1.7M 8.8

ChEMBL 22.1 smi 14 5m46.72s 290.4K 28 15.46s 6.5M 22.4

sdf 0 5m42.09s 294.4K 1 19.22s 5.2M 17.8

convert
-ofmt sdf

ChEBI 149 smi 0 9.91s 245.8K 0 9.54s 255.3K 1

sdf 13 9.79s 261.7K 0 10.96s 233.8K 0.9

ChEMBL 22.1 smi 0 5m46.52s 290.6K 0 5m15.55s 319.1K 1.1

sdf 1 5m34.04s 301.5K 0 5m41.23s 295.1K 1

convert
-gen2d
-ofmt sdf

ChEBI 149 smi 0 24m5.51s 1.7K 0 35.01s 69.6K 41.3

sdf 13 35m4.82s 1.2K 0 39.43s 65K 53.4

ChEMBL 22.1 smi 0 3h18m28s 8.5K 0 17m33.9s 95.6K 11.3

sdf 1 5h55m13s 4.7K 0 18m49.5s 89.2K 18.9

fpgen
-type path

ChEBI 149 smi 0 1m15.49s 32.3K 0 9.43s 258.3K 8

sdf 0 2m3.82s 20.7K 0 10.03s 255.5K 12.3

ChEMBL 22.1 smi 0 34m16.85s 49K 0 6m23.93s 262.3K 5.4

sdf 0 43m48.29s 38.3K 0 6m59.05s 240.3K 6.3

fpgen
-type maccs

ChEBI 149 smi 38 1h37m12s 418 0 18.66s 130.5K 312.6

sdf 48 1h44m10s 410 0 18.25s 140.4K 342.5

ChEMBL 22.1 smi 214 20h16m18s 1.4K 0 13m20.47s 125.8K 91.2

sdf 225 24h38m29s 1.1K 0 12m33.14s 133.7K 117.8

fpgen
-type circ

ChEBI 149 smi 0 – 0 3.52s 692K

sdf 0 – 0 3.81s 672.5K

ChEMBL 22.1 smi 0 – 0 2m32.71s 659.4K

sdf 0 – 0 2m48.74s 596.8K
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