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Abstract

Background: The plumage of birds is important for flying, insulation and social communication. Contour feathers cover
most of the avian body and among other functions they provide a critical insulation layer against heat loss. Feather
structure and composition are known to vary among individuals, which in turn determines variation in the insulation
properties of the feather. However, the extent and the proximate mechanisms underlying this variation remain unexplored.

Methodology/Principal Findings: We analyzed contour feather structure from two different great tit populations adapted
to different winter regimes, one northern population in Oulu (Finland) and one southern population in Lund (Sweden).
Great tits from the two populations differed significantly in feather structure. Birds from the northern population had a
denser plumage but consisting of shorter feathers with a smaller proportion containing plumulaceous barbs, compared
with conspecifics from the southern population. However, differences disappeared when birds originating from the two
populations were raised and moulted in identical conditions in a common-garden experiment located in Oulu, under ad
libitum nutritional conditions. All birds raised in the aviaries, including adult foster parents moulting in the same captive
conditions, developed a similar feather structure. These feathers were different from that of wild birds in Oulu but similar to
wild birds in Lund, the latter moulting in more benign conditions than those of Oulu.

Conclusions/Significance: Wild populations exposed to different conditions develop contour feather differences either due
to plastic responses or constraints. Environmental conditions, such as nutrient availability during feather growth play a
crucial role in determining such differences in plumage structure among populations.
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Introduction

Plumage is the most diagnostic trait in birds and plays an

essential role in flying, insulation and social communication. As

plumage deteriorates, each individual periodically sheds and grows

a variety of feathers with different structures and functions.

Variation in feather quality has been widely studied, as it is well

known that environmental and physiological conditions affect their

structure, and therefore it can be used as an indicator of body

condition [1–3]. Most studies have focused on the variation in

growth bars of flight (pennaceous) feathers as these are crucial in

flight performance (e.g. [4]), and easily identified and measured

[5]. Since production of feathers is costly in terms of time, energy

and nutrients, an individual producing a high-quality plumage

may have to trade-off such costs against other costly processes like

feather growth rate [6], reproductive effort [7–10] or migration

[11,12].

Contour feathers cover most of the avian body providing

insulation from the environment. They are composed of a shaft

with regularly spaced branches (barbs) on each side, which are in

turn equally branched with barbules. The number of barbs and

barbules, and the way they are attached to each other largely

determines how much air they can trap, and thus the insulating

properties of the feathers [13]. Furthermore, contour feathers also

play a key role in social communication as the number, position

and growth dynamics of barbs and barbules also influence the

deposition of pigments and the ultrastructure of the feather. Such

properties ultimately determine the feather’s visual characteristics,

and thereby their signaling properties [14,15]. Despite knowledge

on how differences in feather structure originate [16], information

on how feather composition and structure vary between

individuals or populations is scant.

Birds lose heat mostly by conduction and convection to the

surroundings as long as they maintain a bodily surface

temperature that is higher than the ambient temperature

[17,18]. Feather structure, quality and quantity are crucial in

regulating such heat transfer processes, providing a critical buffer

against this thermal gradient [18,19]. Plumage characteristics are

defined and fixed at the time of moulting, and subsequent

modulations of the plumage insulation capacity are limited (but see

[20]). Thus the number and structure of feathers sets an upper

limit to insulation capacity. Some studies have found that within

species, populations differing in winter conditions vary in their

thermal conductance [21]. Likewise, the mass of contour feathers
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has been found to vary between populations from different origins,

and also within populations as part of a seasonal acclimatization

process [22–27]. Furthermore, it has been suggested that

reductions in thermal conductance would not only depend on

increased number of feathers, but probably also on changes in

feather structure [22,24,28,29].

However, as moult is costly [30,31], energy and time constraints

may preclude the production of a plumage that is optimal with

respect to insulation properties. Moult rate has been shown to

affect plumage structure, which in turn may affect future survival

and reproductive performance [32,6]. Furthermore, several studies

have shown that investment in moult may be traded–off against

reproductive effort [7–10], especially in northern populations were

these activities may overlap extensively [33]. Hence, both the time

for moult and the resource availability during moult probably

decreases with latitude, potentially constraining individuals from

northern populations to grow an optimal plumage.

The great tit (Parus major L.) is a year-round resident passerine

species widespread over Europe. Populations across such an

extensive latitudinal gradient are faced with marked seasonal

differences in conditions such as food availability and climate.

Thus, great tit populations in northern Europe experience shorter

and delayed breeding seasons that in turn may shorten their

moulting period compared with their southern counterparts [33].

This may result in the production of a plumage with reduced

insulating quality [32]. On the other hand, as northern

populations are faced with harsher winters, plumage structure

potentially plays a more important role and should thereby be

predicted to be of higher insulating quality when compared with

southern populations.

In previous studies, we have shown that great tits from Oulu,

northern Finland (north population) and Lund, southern Sweden

(south population), are locally adapted to respond metabolically to

the prevailing environmental conditions [34,35]. However,

whether plumage characteristics differ between populations and

to what extent feather structure is intrinsically determined remains

unknown. We studied the structure of the contour feathers of great

tits in order to find out whether there are differences between birds

from these two populations. We further employed a common-

garden design in order to reveal whether there is a genetic

component in the expected differences in contour-feather structure

or if these are due to a plastic response to the local conditions such

as nutrient availability.

Results

We summarized feather structure by the first factor of a

principal component analysis including all the feather variables

measured, the rest of the factors having eigenvalues ,1 (see

Figure 1). Density of both types of barbs and barbules (pennaceous

and plumulaceous) were positively related and varied accordingly,

opposite to feather length and the relative proportion of the two

types of barbs (Table 1). Overall, birds with a high value of the first

factor had feathers which were denser but shorter and with a lower

proportion of plumulaceous barbs.

Wild birds from Oulu had a denser plumage that consisted of

shorter feathers with a smaller proportion of plumulaceous barbs than

wild birds from Lund (Table 2). This was corroborated by a

significant difference in feather structure, as measured by the first

factor of the principal component analysis among the individuals

from the two populations (ANOVA: F1,35 = 52.7; P,0.001;

R2 = 0.60; Figure 2). Neither age (F1,33 = 0.109; P = 0.74) nor sex

(F1,33 = 0.008; P = 0.93) or their interactions with population of origin

(P.0.1) accounted for any significant variation in feather structure.

However, birds originating from the two populations, but raised

in Oulu under identical conditions did not differ in their feather

structure (F1,18 = 2.33; P = 0.145; R2 = 0.12; Figure 2). Further, the

four foster parents that moulted in an identical aviary setting, had

a similar feather structure as the foster juveniles (Tukey post-hoc

test: P = 0.99) but a significantly lower estimate of the first

principal component compared to wild birds from Oulu (Tukey

post-hoc test: P = 0.011; Figure 2). When all wild and foster birds

(except foster parents) were analyzed together, wild birds from

Oulu had on average a higher score of the first principal factor

than wild birds from Lund or foster birds (Table 3; Figure 2).

Further, the interaction between population and manipulation

(wild vs. foster) was highly significant due to a marked decrease in

the first principal factor for foster birds compared to wild birds in

Figure 1. Structure of a great tit contour feather. Illustration of
the different parts of a contour feather from the sternal tract of a great
tit. The pennaceous barbs on the upper portion and plumulaceous
barbs on the lower portion of the rachis are delimited by a white stripe.
Details of the pennaceous (A) and plumulaceous barbs (B) with their
corresponding barbules are shown as insets.
doi:10.1371/journal.pone.0024942.g001

Table 1. Interrelation among descriptive contour feather
variables.

Factor 1

Eigenvalue 3.97

Variance explained 66.1

Variables

Total_Length 20.866

Density of Pl. barbules 0.776

Density of Pn. barbules 0.884

Density of Pl. Barbs 0.764

Density of Pn. Barbs 0.855

Proportion of Pl. Barbs 20.720

Variables describing contour feather structure from the sternal tract of great
tits. Total feather length (without calamus); densities of pennaceous (Pn) and
plumulaceous (Pl) barbs and barbules; and proportion of each feather
composed by plumulaceous barbs. Eigenvalue and coefficient of determination
of the first factor obtained from a principal component analysis summarising
overall feather structure, together with the factor loadings of each variable.
doi:10.1371/journal.pone.0024942.t001

Variability in Contour Feather Structure
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Oulu which was not evident for Lund birds (Table 3; Figure 2).

Additionally, when looking at the different feather variables

separately, foster juveniles from Oulu had a significantly less dense

plumage except for density of plumulaceous barbs, a significantly

higher proportion of plumulaceous barbs, and longer feathers than

wild Oulu birds (Table 2).

In sum all birds that moulted inside the aviaries in Oulu, with ad

libitum access to food, developed similar kind of feathers,

approaching the values of wild birds from Lund. The feathers

grown by wild Oulu birds differed consistently from all the others

in being shorter, denser, and with a lower proportion of

plumulaceous barbs (Figure 2).

Discussion

Contour feather structure varied between the two wild

populations. Great tits from the northern population developed

denser but shorter feathers, and with a lower proportion of

plumulaceous barbs (Figure 1) compared to conspecifics from the

southern population. Such differences may be interpreted as local

adaptations to wintering conditions, although it is hard to predict

which of the two feather structures would provide the best thermal

insulation. If a denser plumage is more important than the

proportion of plumulaceus barbs or the length of the feathers,

northern birds would have better insulation than those at southern

locations. So far, the few studies exploring differences in feather

structure among individuals have focused on seasonal differences

among individuals. As a general trend, plumage weight was found

to increase together with insulation capacity in winter acclimatized

birds as compared to individuals during summer. These changes

were mostly ascribed to variation in the number of feathers

[36,27], but see [24,29]. In the only study analyzing feather

structure in relation to environmental conditions, winter acclima-

tized American goldfinches (Carduelis tristis) developed a plumage

with denser feathers and with a higher proportion of plumulaceous

barbules [24]. Although the present study focuses on interpopu-

lation differences rather than seasonal, the supposedly optimal

combination of traits (denser and more plumulaceous feathers) was

not found in the studied great tit populations.

However, the differences in feather structure disappeared when

birds from the two populations moulted inside the Oulu aviaries,

with ad libitum food in common-garden conditions (Figure 2).

Figure 2. Variation in contour feather structure among wild and ‘‘common-garden’’ great tits. Differences in structure of contour
feathers as estimated from the first principal component of six feather variables (see Table 1) from the sternal tract of wild (black bars), and foster
(white bars) great tits originating from Lund and Oulu, with the corresponding error bars. Foster parents from Oulu (white bars) spent the same time
as foster juveniles inside the aviaries.
doi:10.1371/journal.pone.0024942.g002

Table 2. Descriptive variables for the contour feathers.

Lund Wild Oulu Foster Oulu Wild

Density of pennaceous barbs (per mm) 1.3260.18a 1.4060.16a 1.6160.21b

Density of plumulaceous barbs (per mm) 2.7160.31a 3.0160.20b 3.1560.33b

Density of pennaceous barbules (per 0.1 mm) 1.9060.13a 2.1060.17b 2.3260.16c

Density of plumulaceous barbules (per 0.1 mm) 2.5260.23a 2.5860.22a 2.8960.21b

Proportion of plumulaceous barbs (%) 73.564.0a 74.763.4a 70.662.6b

Length of the feather (mm) 24.261.65a 21.262.46b 19.162.15c

Mean 6 SD density of four feather variables, proportion of plumulaceous barbs and length of feathers among wild caught birds from Lund (N = 12) and from Oulu
(N = 25) as well as foster juveniles originating from Oulu but moulting in aviaries (N = 12). Different superscript letters denote statistically significant (P,0.05) differences
as determined from ANOVAs with Tukey post-hoc tests.
doi:10.1371/journal.pone.0024942.t002
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Likewise, adult birds from Oulu that acted as foster parents, and

experienced the same conditions as their foster chicks, also

developed feathers of the same structure as those developed by

wild birds from Lund. Thus, feather structure seems to be a plastic

response to energy and nutrient availability with a small scope for

heritable variation as it has recently been suggested for growth rate

of feathers [37]. Furthermore, all individual feather variables

changed in consort. All of the foster juvenile estimates approached

those from wild Lund birds, indicating that such characters are

phenotypically integrated (Table 2). Thus, there seems to be a

negative relation between the density of barbs and barbules on one

hand, and the length as well as the proportion of the feather

consisting of plumulaceous barbs on the other. The constraints

responsible for this trade-off between feather characteristics are

intriguing but a more definite answer has to await further

experimentation.

Our results from the common garden experiment indicate that

the difference between the wild birds from Lund and Oulu

depends on time and energy constraints during the moulting

period. The benign conditions encountered in the aviaries at the

time of moult coincides with a period when wild birds experience

low energy availability compared to the need for growing feathers

of maximum quality [32,1]. The constraints of energy and nutrient

availability on feather production may be especially severe in

resident birds at high latitudes as breeding terminates later in

relation to the onset of winter, and females produce too large

clutches in relation to food availability [38] than birds at lower

latitudes. Thus, our results suggest that feathers grown by wild

birds in Lund i.e. long feathers with a large proportion of

plumulaceous barbs, would have better insulation properties than

the feathers grown by wild birds from Oulu. Furthermore, this

interpretation is in line with a previously unexplained result from

an earlier study in the two populations, in which great tits from

Oulu expended more energy on thermoregulation at 210uC than

did Lund birds [34]. Altogether, these results suggest that birds

from Oulu are unable to produce optimal feathers due to time

and/or nutrient constraints, which may result in the development

of a plumage with poorer insulation properties as compared to

their conspecifics from Lund. Further, this may partly explain the

low winter survival experienced at northern latitudes such as in

Oulu, as such populations seem to persist due to the influx of

immigrants from the south (Karvonen et al. in prep.).

Nevertheless, as our measured feather characters varied in

parallel we cannot exclude that some other co-varying character,

like the total number of feathers or variation in other feather tracts

may be relevant for the overall insulating properties of the

plumage. Certainly, more studies are required to understand what

factors trigger the development of different feather structures

among populations of the same species, and the fitness

consequences of such differences.

Materials and Methods

Ethics Statement
All procedures were approved by the ethical committee of the

University of Oulu, #097/04.

From January to March 2001, 12 great tits from Lund

(55u409N, 13u259E) and 25 from Oulu (65uN, 25u309E) were

captured and five contour feathers from the side of the breast, the

ventral-sternal tract (between the shoulder and the breast black

stripe), were plucked from each individual. Feathers were plucked

and handled with tweezers, and otherwise stored in dry paper

envelopes. Details on the respective study areas and capturing

procedure are provided elsewhere [34].

Common garden experiment
Thirty great tit eggs from Lund (55u409N, 13u259E) were

removed from different nests (two eggs per nest) soon after lying

and stored at +4uC and then brought to Oulu by plane. Another

30 eggs were gathered from nests in the study area in Oulu (65uN,

25u309E).

Two days after incubation started, we replaced the original

clutches of wild great tit nests located within the Oulu study area

by foster eggs. Thus, foster parents incubated homogeneous

clutches from either Oulu or Lund. Just before fledging, nestboxes

with the chicks were moved inside aviaries together with one of the

parents. Parents continued to feed the chicks during the first weeks

after fledging inside the aviaries, and after a few weeks chicks were

able to feed for themselves. At six weeks of age, fledglings were

individually ringed, separated from their foster parents and

reallocated to the aviaries so that each individual shared a cage

with no more than six other birds from the same origin. Roosting

nestboxes and feeders with ad libitum food were also installed

according to the number of birds per cage. Diet consisted of

vitamin-enriched mixture of diverse seeds, pork fat and live

protein to ensure birds were properly nourished. Details on the

precise methodology to maintain the caged birds are provided

elsewhere [35]. Feathers from all birds were plucked according to

the same methodology as described above during two weeks from

late October to early November 2003 when both foster young and

parents had completed their moult.

Feather structure
Feathers were investigated with the help of a stereoscopic

microscope with an ocular grid. To describe feather structure we

measured 6 different traits [24]. For each feather, the division

between the pennaceous (Figure 1A) and plumulaceous (Figure 1B)

sections of the feather was determined and both types of barbs

counted (206); the total length of the feather without calamus and

the length of the plumulaceous barb zone were measured at

66(see [13] for a detailed description of feather structural

components). The number of barbules from both plumulaceous

and pennaceous barbs was counted from a fixed portion

(0.43 mm) of barb, starting 0.43 mm from the rachis at 706(see

Figure 1 for detailed illustration). Thus, the variables measured

were the density of barbs and barbules from the plumulaceous and

pennaceous portions of the feather, the proportion of plumulac-

eous barbs with respect to all barbs, and the total feather length

(excluding calamus). These variables were estimated on two

feathers per individual in order to obtain repeatability estimates.

Repeatability was significant for all feather variables as judged by a

one-way ANOVA with individual as grouping factor (r = 0.38–

Table 3. The results of an ANOVA explaining the variation in
feather structure.

df F P

Population 1 29.9 ,0.001

Manipulation 1 5.36 0.025

Population x Manipulation 1 7.94 0.007

Error 52

Significant explanatory variables of the variation in the first factor obtained
from a principal component analysis (Table 1). Population denotes great tits
from Lund or Oulu and Manipulation denotes wild or foster birds. R2 = 0.55.
doi:10.1371/journal.pone.0024942.t003
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0.71; all P,0.001). Average values of the two measurements were

used for later analyses. Due to the level of intercorrelation among

variables, we used the first factor of a principal component analysis

(using a correlation matrix and without factor rotation) to describe

feather structure. All the feather measurements were done by the

same person (A.G.).

All variables fulfilled the requirements of normality (tested with

the Kolmogorov–Smirnov and Shapiro-Wilk one sample test) and

thus parametric statistics were used in all analysis.
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37. Gienapp P, Merilä J (2010) Genetic and environmental effects on a condition-

dependent trait: feather growth in Siberian jays. J Evol Biol 23: 715–723.

38. Rytkönen S, Orell M (2001) Great tits, Parus major, lay too many eggs:

experimental evidence in mid-boreal habitats. Oikos 93: 439–450.

Variability in Contour Feather Structure

PLoS ONE | www.plosone.org 5 September 2011 | Volume 6 | Issue 9 | e24942


