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Degenerative fibrotic diseases encompass numerous systemic and organ-specific disorders. Despite their associated significant
morbidity and mortality, there is currently no effective antifibrotic treatment. Fibrosis is characterized by the development and
persistence of myofibroblasts, whose unregulated deposition of extracellular matrix components disrupts signaling cascades and
normal tissue architecture leading to organ failure and death. The profibrotic cytokine transforming growth factor beta (TGF𝛽)
is considered the foremost inducer of fibrosis, driving myofibroblast differentiation in diverse tissues. This review summarizes
recent in vitro and in vivo data demonstrating that TGF𝛽-induced myofibroblast differentiation is driven by a prooxidant shift in
redox homeostasis. Elevated NADPH oxidase 4 (NOX4)-derived hydrogen peroxide (H

2
O
2
) supported by concomitant decreases

in nitric oxide (NO) signaling and reactive oxygen species scavengers are central factors in the molecular pathogenesis of
fibrosis in numerous tissues and organs. Moreover, complex interplay between NOX4-derived H

2
O
2
and NO signaling regulates

myofibroblast differentiation. Restoring redox homeostasis via antioxidants or NOX4 inactivation as well as by enhancing NO
signaling via activation of soluble guanylyl cyclases or inhibition of phosphodiesterases can inhibit and reverse myofibroblast
differentiation. Thus, dysregulated redox signaling represents a potential therapeutic target for the treatment of wide variety of
different degenerative fibrotic disorders.

1. Introduction: Fibrosis and Degenerative
Fibrotic Diseases

Thewound healing response inwhich damaged/dead cells are
replaced following acute injury (such as infection, autoim-
mune reaction, or mechanical injury) is essential to main-
tain tissue architecture and function [1–4]. However, if the
healing process continues unchecked, for example, due to
repeated/chronic injury, fibrosis ensues as characterized by
substantial deposition and remodeling of the extracellular
matrix (ECM) and permanent scar tissue formation, which
destroys correct tissue architecture and may ultimately lead
to organ failure and death [1–4].

There are numerous degenerative fibrotic diseases,
including multisystemic disorders such as systemic sclerosis,

chronic graft versus host disease, and nephrogenic systemic
fibrosis as well as organ-specific diseases, for example, cardiac
fibrosis, idiopathic pulmonary fibrosis (IPF), intestinal fibro-
sis, liver cirrhosis, progressive kidney disease,macular degen-
eration, and benign prostatic hyperplasia (BPH) [1–3, 5–12].
In addition, a multitude of disorders with prominent tissue
remodeling also have a significant fibrotic component,
including asthma, atherosclerosis, and the reactive stromal
response to solid tumors, such as breast, liver, and prostate
cancer [13–16].Thus, it is perhaps not surprising that approx-
imately 45% of the mortality in Western nations is attributed
to fibrotic diseases, a figure that is certainly even higher in
less developed countries [12].

Despite the considerable morbidity and mortality caused
by fibrosis, there are currently no effective treatments for
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many of these diseases and no approved antifibrotic therapies.
In part, this is due to our current lack of knowledge regarding
(i) the precise etiology of the initiating injury/infection and
(ii) the mechanisms that drive fibrosis progression. Thus, a
better understanding of the molecular pathways underlying
fibrosis and the initiating signals/causes is urgently required
for the development of effective therapeutic strategies. This
review focuses on accumulating evidence that redox signaling
plays a fundamental and integral role in themolecular patho-
genesis of fibrosis in many different tissues and organs and as
such represents a potential therapeutic target for the treat-
ment of wide variety of different fibrotic disorders.

2. The Myofibroblast: Biology, Origin,
and Role in Fibrosis

Fibrotic diseases are clearly distinct in their etiology and clin-
ical manifestation. Nonetheless, fibrogenesis in most organs
and tissues progresses in a remarkably similar manner, char-
acterized in particular by the development and persistence
of large numbers of myofibroblasts [3, 7, 9, 12]. During the
normal wound healing response, myofibroblasts accumulate
to promote wound closure by virtue of their contractile
and ECM- and growth factor-secreting properties, with the
latter serving to attract epithelial cells, a process termed
“reepithelialization”. Normal tissue function and architecture
are restored upon completion of reepithelialization via poorly
understood mechanisms that result in massive apoptosis of
myofibroblasts and vascular cells, which are subsequently
cleared from thewound site [7, 17, 18]. Tissue and organ fibro-
sis are thought to arise from failure ofmyofibroblast apoptosis
during wound healing [3, 19]. Again, however, the mecha-
nisms underlying this apparent “apoptosis-resistant” myofi-
broblast phenotype remain ill-defined [20].The resulting per-
sistentmyofibroblast activation leads to excessive ECMdepo-
sition, altered growth factor signaling and consequently cel-
lular proliferation, progressive remodeling and destruction
of normal tissue architecture, organ dysfunction, and failure
[3, 19, 21]. Thus, the myofibroblast is widely considered the
main effector cell of fibrosis and thereby a major therapeutic
target.

Myofibroblasts are a specialized cell type that combines
the ECM-producing characteristics of fibroblasts with the
cytoskeletal and contractile properties of smoothmuscle cells
(SMCs) as reviewed recently [2]. Myofibroblasts are defined
by (i) their de novo expression of alpha-smooth muscle cell
actin (𝛼-SMA, encoded by the gene ACTA2) in stress fibers
and (ii) contractile force.The cellular origin ofmyofibroblasts
remains somewhat controversial but may differ depending
on the organ and/or the initiating stimulus (reviewed [2,
22]). Myofibroblasts have been described to originate from
differentiation of vascular SMCs, bonemarrow-derived fibro-
cytes, hepatic stellate cells, resident epithelial cells via
epithelial-to-mesenchymal transition, and endothelial cells
via endothelial-to-mesenchymal transition [3, 23]. However,
although these cell types undergo differentiation into myofi-
broblasts in vitro, the extent of their contribution to

the myofibroblast pool in vivo is the subject of considerable
debate. Rather, it is widely accepted that myofibroblasts pre-
dominantly originate from the differentiation of local tissue
fibroblasts [23].

Fibroblast-to-myofibroblast differentiation occurs via a
two-step process. Following injury or during chronic inflam-
mation, changes in mechanical tension of the ECM are trans-
mitted to the fibroblast cytoskeleton via RhoA/ROCK signal-
ing [24]. Consequently, fibroblasts adopt an “activated” phe-
notype (termed “protomyofibroblast”) and deposit new ECM
components [25]. Soluble factors and cytokines, in particular
the splice variant ED-A of cellular fibronectin and profibrotic
cytokine TGF𝛽, which are produced initially by platelets and
infiltrating leukocytes at the wound site, are major induc-
ers of fibroblast-to-myofibroblast differentiation [25]. How-
ever, protomyofibroblasts andmyofibroblasts themselves also
secrete and activate TGF𝛽 thus generating an autocrine
feed-forward loop driving continued myofibroblast differen-
tiation [26, 27] (Figure 1). It may be noted, however, that,
although inflammation frequently occurs prior to fibrosis,
fibrogenesis can also occur independently of inflammatory
mechanisms indicating that inflammation is not always the
driving initiator [28].

Although several TGF𝛽-independent mechanisms of
fibrosis have been described, such as interleukins 4 and 13 and
platelet-derived growth factor (reviewed [34, 35]), TGF𝛽1 is
widely considered the foremost inducer of fibrosis and drives
myofibroblast differentiation in cells of diverse histological
origin, including breast, skin, prostate, kidney, heart, lung,
and liver [36–42]. Consistently, elevated TGF𝛽1 levels and
signaling are observed in many fibrotic disorders [19, 43–
50]. TGF𝛽1 exerts its effects via downstream activation of
canonical Smad2/3 signaling or via noncanonical Smad-
independent activation of mitogen-activated protein kinase
(MAPK) andPI3 kinase/Akt pathways [2, 26, 51]. Collectively,
signaling via these pathways leads to ECM deposition and
secretion of paracrine- and autocrine-acting growth factors
[26, 52]. Notably, the ECM can directly bind to and release
growth factors; for example, heparan sulfate can bind to and
release fibroblast growth factor 2 [53]. On the one hand,
such interactions sequester growth factors thereby protecting
them from degradation but can also enhance their bioactivity
due to increased half-life [54].Moreover, indirect interactions
are required for signal transduction of some growth factors;
for example, integrin binding is necessary for induction of
angiogenesis by vascular endothelial cell growth factor [55].
Thus, remodeling and enhanced deposition of ECM in fibro-
sis contributes to disease pathogenesis not only by disrupting
normal tissue architecture but also by modulating cellular
signaling cascades (Figure 1).

TGF𝛽 undoubtedly plays a pivotal role in pathogenic
fibrogenesis. Therapeutic approaches designed to interfere
with downstreamTGF𝛽 signaling processes that culminate in
myofibroblast activation may represent an alternative viable
strategy for the treatment of fibrotic disease. In this respect,
a convincing body of data implicates dysregulated redox sig-
naling byNADPHoxidase 4 (NOX4) andnitric oxide (NO) in
the pathophysiology of fibrosis.
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Figure 1: Feed-forward loop of TGF𝛽 activation and myofibroblast differentiation in fibrosis. Upon injury activated platelets, infiltrating
inflammatory and vascular cells secrete TGF𝛽, which acts on local fibroblasts and other precursor cells (e.g., hepatic stellate cells,
fibrocytes) inducing their production of NOX4-derived H

2
O
2
. Consequently, downstream MAPK signaling cascades are activated resulting

in differentiation into myofibroblasts, whose production of ECM components facilitates wound closure. Prolonged injury or inflammation
leads to persistentmyofibroblast activation via a feed-forward loop driven by several different factors. For example, myofibroblasts themselves
secrete and produce large amounts of active TGF𝛽 and thereby generate an autocrine feed-forward loop that is characteristic of persisting
myofibroblast activity (1) [27]. Activation of latent TGF𝛽 in ECMdeposits via dissociation of latency associated peptide (LAP) is promoted by
various mechanisms, including direct oxidative modification (2) [29–31].Thus, NOX4-derived H

2
O
2
may drive myofibroblast differentiation

not only by oxidative modulation of MAPK signaling cascades that culminate in downstream transcriptional programs of differentiation
[26], but also via its ability to freely diffuse across biological membranes and oxidatively modulate components in the extracellular space.
Myofibroblasts also secrete high levels of ECM components. The resulting increase in mechanical tension and tissue stiffness can activate
ECM-bound latent TGF𝛽 due to mechanical pulling of LAP by specific integrins at the myofibroblast cell surface (3) [32]. Thereby, TGF𝛽 is
released and activated from the latent complex, which in turn drives further myofibroblast contraction and differentiation as well as ECM
deposition [25]. In addition to this physical mechanism of TGF𝛽 activation by the remodeled ECM, components of the remodeled ECM
can modulate TGF𝛽 signaling in a biochemical manner (4), for example, latent TGF𝛽 binding proteins, fibrillins, fibulins, fibronectin, and
proteoglycans (reviewed [33]).Moreover, a number of targets downstream of TGF𝛽 signaling provide feedbackmodulation of the ECM either
directly or indirectly, for example, thrombospondin-1 (TSP-1), collagens/ECM components themselves, and ECM remodeling components
such as matrix metalloproteinases (5) (MMP2, -9), plasminogen activator inhibitor (PAI-1), and tissue inhibitors of metalloproteinases
(TIMPs) [26].Thus, the stiffened/remodeled ECM together with autocrine production of TGF𝛽 andNOX4-derived H

2
O
2
actively perpetuate

TGF𝛽 signaling and myofibroblast differentiation leading to fibrosis.

3. Signaling by NOX4-Derived
Reactive Oxygen Species in the Regulation
of Myofibroblast Differentiation

High levels of free radicals can result in nonspecific oxidative
damage to cell structures and biomolecules. However, when
produced in a regulated manner, reactive oxygen species
(ROS), NO, and reactive nitrogen species play a critical
role as biological second messengers in a variety of cellu-
lar processes, including myofibroblast differentiation [56].
NADPH oxidase (NOX) enzymes are unique in that ROS
production is their primary and sole function [57]. This is in
contrast to ROS-producing enzyme systems such as xanthine
oxidase or uncoupled endothelial NO synthase, whose pro-
duction of ROS occurs secondary to their primary function.

The seven members of the NOX family catalyze the transfer
of electrons across biological membranes from NADPH to
oxygen thereby generating superoxide (O

2

∙−) [58]. However,
the major detected product and primary effector ROS of
the constitutively active NOX4 is hydrogen peroxide (H

2
O
2
),

although this most likely is a result of rapid superoxide
dismutation [59–61]. It is thought that a highly conserved
histidine residue within the E-loop of NOX4 promotes rapid
dismutation of superoxide before it leaves the enzyme [61],
although this aspect of NOX4 biology requires further clar-
ification. Irrespectively, the greater stability but lower reac-
tivity of H

2
O
2
compared to superoxide is consistent with a

signaling function of NOX4-derived ROS [26, 62, 63]. NOX-
derived ROS exert their signaling functions by modulating
biological activity of target proteins such as transcription
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Figure 2: Signaling pathways that activate NOX4 and downstream targets of NOX4-derived ROS in myofibroblasts. NOX4 activity is
predominantly regulated at the transcriptional level [59, 65]. TGF𝛽 is one of the main inducers of NOX4 during myofibroblast activation.
Additionally, hypoxia, angiotensin II, and platelet-derived growth factor (PDGF) have also been shown to activate NOX4 expression leading
tomyofibroblast activation; however, this most likely occurs as a result of their indirect activation of TGF𝛽 signaling [75–77]. Upon binding of
TGF𝛽 ligand, heteromeric complexes of TGF𝛽 receptor type I and type II recruit and activate the canonical signal transducers Smad2/3 as well
as less well understood noncanonical signal transducers, such as mitogen-activated protein kinases (MAPKs) and protein kinase C (PKC).
TGF𝛽 signal transducers subsequently activate the transcription of target genes that include NOX4. TGF𝛽-mediated induction of NOX4
expression has largely shown to be Smad2/3-dependent [39, 40]; however, PKC has also been implicated in TGF𝛽-dependent upregulation of
NOX4 [78]. The subcellular localization of NOX4 appears to be cell-, tissue-, and perhaps even context-specific with its reported localization
to the plasma membrane (PM), endoplasmic reticulum (ER), nucleus, focal adhesions, and mitochondria [62]. NOX4 requires the cofactor
p22phox for production of ROS, of which predominantly H

2
O
2
is detected [59–61]. NOX4-derived H

2
O
2
activates signaling intermediates

such as Smad2/3, ERK1/2, JNK and Src [26, 39, 40, 77, 79–81], which subsequently induce the transcription of downstream target genes, such
as 𝛼-smooth muscle cell actin (𝛼-SMA), collagens, and fibronectin leading to ECM deposition and myofibroblast differentiation/activation.

factors, MAPKs, protein tyrosine phosphatases (PTPs),
and protein tyrosine kinases via reversible oxidation of thiol
groups of low pKa cysteine residues [63, 64].

Unlike other NOX isoforms, NOX4 is constitutively
active with primary regulation occurring at the transcrip-
tional level [59, 65]. NOX4 expression is activated in vascular
SMCs and fibroblasts by several cytokines implicated in the
pathogenesis of fibrosis, including TGF𝛽, angiotensin II,
and platelet-derived growth factor [5] and elevated NOX4
levels are observed in tissues bearing hallmarks of fibrosis
(Figure 2). For example, NOX4 mRNA levels specifically
correlated with the myofibroblast phenotype in benign pro-
static tissue [26]. Similarly, NOX4 expression was higher in
pulmonary fibroblasts from patients with IPF compared with
controls and correlatedwithmyofibroblastmarker expression
[66]. In addition, NOX4 was found to be expressed in fibrob-
lastic foci in the lung of IPF patients and two mouse models
of pulmonary fibrosis [67]. Recently, high levels of NOX4,
which colocalized with 𝛼-SMA, were observed in liver biopsy
samples from patients with autoimmune hepatitis [42].These
observations together with findings from functional studies

indicate that elevated NOX4-derived ROS play a critical
role in the pathophysiology of numerous fibrotic disorders
(Figures 1–3) [26, 40, 67–71]. For example, we demonstrated
that NOX4-derived ROS drive myofibroblast differentiation
of prostatic fibroblasts in response to TGF𝛽1 [26]. Similar
findings were observed for cardiac, pulmonary, renal, and
adventitial fibroblasts and hepatic stellate cells [39, 40, 42,
66, 67, 72]. In vascular endothelial cells, NOX4 also mediates
TGF𝛽1-induced cytoskeletal remodeling and maintains the
differentiated phenotype of vascular SMCs [73, 74].

Several in vivo studies have provided more definitive
evidence that NOX4-derived ROS play a direct role in the
pathogenesis of fibrosis. For example, inhibition of NOX4 via
genetic deletion, antisense oligonucleotides, siRNA, or NOX
inhibitors attenuated disease progression in rodent models of
pulmonary, renal, and liver fibrosis [42, 67, 82–84].

NOX4 induction appears to contribute to fibrogenesis
not via oxidative stress-induced damage [26, 62, 63], but
rather by chronic dysregulation of downstream signaling
pathways (Figure 2).The precise oxidative target(s) of NOX4-
derived ROS that culminate in myofibroblast differentiation
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and transcriptional events culminating in fibroblast-to-myofibroblast differentiation. The concomitant downregulation of selenium (Se)-
dependent ROS scavenging enzymes by TGF𝛽 further potentiates NOX4-derived ROS signaling. In parallel, TGF𝛽 and H

2
O
2
attenuate

NO signaling, which is associated with the fibroblast phenotype, via attenuation of NOS and sGC activities. Likewise, NOS inhibitors
(NOSi/L-NAME) attenuate NO signaling and aggravate fibrosis. Fibroblast-to-myofibroblast differentiation and subsequent tissue fibrosis
are reversible processes. Thus, targeting persistent NOX4-derived ROS levels in the diseased tissue by NOX4 inhibitors (NOX4i) or by ROS
scavenging with Se or antioxidants results in inhibition of myofibroblast differentiation and, moreover, in dedifferentiation/inactivation of
myofibroblasts to a quiescent fibroblast-like phenotype. Similarly, enhancement of NO signaling by administration of the NOS substrate
L-arginine, NO-donors (SNP/SNAC), sGC stimulators/activators, or PDE inhibitors (PDEi) maintains the fibroblast phenotype or induces
dedifferentiation/inactivation of preexisting myofibroblasts.

in response to TGF𝛽 remain(s) largely unknown. However,
TGF𝛽1-induced NOX4-derived ROS have been shown to
directly oxidatively inactivateMKP1, a dual specificityMAPK
phosphatase that targets JNK and p38 [79]. Consistently,
JNK phosphorylation by NOX4-derived ROS was essential
for TGF𝛽1-induced myofibroblast differentiation of prostatic
fibroblasts and cardiomyocyte differentiation of pluripotent
embryonal carcinoma cells [26, 80]. Other targets activated
by NOX4-derived ROS in fibrogenic signaling cascades
include ERK1/2 and Src [39, 81]. Thus, it appears that the
NOX4-dependent fibrotic response can bemediated via mul-
tiple oxidative targets (Figure 2). Interestingly, activation and
release of TGF𝛽 from its latency association peptide (LAP)
are also induced by oxidative modification of LAP with free
radicals capable of stimulating TGF𝛽 expression and secre-
tion in many cell types [29, 85] (Figure 1).

Although NOX4 induction by TGF𝛽1 does not typically
result in oxidative stress-induced damage in fibroblasts [26,
62, 63], primary alveolar epithelial cells exposed to TGF𝛽1
undergo apoptosis in a NOX4-dependent manner [86], an
event that can also be indirectly mediated via paracrine
release ofH

2
O
2
by activatedmyofibroblasts [87].Thus,NOX4

may promote fibrosis not only by driving cytokine-induced
fibroblast-to-myofibroblast differentiation but also by impair-
ing epithelial regenerative capacity during wound healing.

In summary, whilst acute induction of NOX4 may be
beneficial in inducing the myofibroblast phenotype during

wound healing, the persistence of myofibroblasts together
with autocrine TGF𝛽 signaling may result in chronic
NOX4 activation and ROS production resulting in a self-
perpetuating cycle of myofibroblast differentiation and accu-
mulation, fibrosis, and organ dysfunction (Figure 1). Thus,
targeting elevated NOX4-derived ROS either directly via
NOX4 inhibition or indirectly by increasing the activity of
ROS scavenging enzymes represents a promising therapeutic
strategy for the treatment of diverse fibrotic pathologies
(Figure 3).

There are numerous ROS-scavenging systems that main-
tain cellular redox homeostasis; however, of particular inter-
est are the selenium (Se)-dependent enzymes. We observed
downregulation of the Se transporter SEPP1 and Se-contain-
ing ROS scavengers glutathione peroxidase 3 (GPX3) and
thioredoxin reductase 1 (TXNRD1) during TGF𝛽1-mediated
prostatic myofibroblast differentiation [26]. Moreover, SEPP1
was specifically lost in tumor-associated stroma of prostate
cancer patients, indicating reduced activity of ROS scaveng-
ing enzymes in the diseases tissue [26]. Se is an essential
trace element that is incorporated as selenocysteine into the
active sites of GPX3 and TXNRD1 enzymes and required
for proper protein folding/function [88]. Consistent with
the role of SEPP1 in delivering Se to peripheral tissues for
selenoprotein biosynthesis [89, 90], exogenous Se restored
expression ofGPX3 andTXNRD1 aswell as TXNRD1 enzyme
activity, depleted TGF𝛽1-induced ROS downstream of NOX4
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induction, and inhibitedmyofibroblast differentiation of pro-
static fibroblasts [26]. Similarly, exogenous Se also inhibited
TGF𝛽-mediatedmyofibroblast transdifferentiation of hepatic
stellate cells [91]. Furthermore, we observed that exogenous
Se restores morphological and molecular characteristics typ-
ical of the fibroblast phenotype to in vitro differentiated
prostaticmyofibroblasts even in the continued presence of the
TGF𝛽 differentiation-inducing stimulus [4]. Similarly, stud-
ies employing myofibroblasts from IPF patients and a three-
dimensional coculture model of porcine skin fibrosis also
demonstrated the potential utility of ROS scavenging in pro-
motingmyofibroblast dedifferentiation [92, 93]. Consistently,
pharmacological inhibition of NOX4 after induction of liver
fibrosis in mice was shown to reduce ROS levels and signifi-
cantly attenuate fibrosis [42].

Collectively, a large body of in vitro and in vivo data indi-
cates that myofibroblast differentiation in fibrotic disorders
and tumor-reactive stroma is driven by a prooxidant shift in
intracellular redox signaling caused by elevated ROS and/or
reduced antioxidative potential. NOX4 appears to be the
major source of elevated ROS and central mediator of TGF𝛽-
inducedmyofibroblast differentiation in diverse tissues.Thus,
restoring cellular redox homeostasis by (i) targeting NOX4,
(ii) Se supplementation, and/or (iii) application of antiox-
idants may represent a promising therapeutic strategy for
fibrotic disease (Figure 3). Moreover, rather than simply
inhibiting myofibroblast differentiation to prevent disease
progression, clearing the myofibroblast pool in fibrotic dis-
orders by inducing their dedifferentiation to the nonactivated
fibroblast/progenitor phenotypemay be a feasible therapeutic
strategy that potentially represents a curative treatment.

4. Nitric Oxide Signaling in the Regulation of
Myofibroblast Differentiation

The free radical NO is an important signaling molecule in a
variety of biological processes that is biosynthesized in vivo
from L-arginine by nitric oxide synthases (NOS), involving
the oxidation of NADPH and the reduction of molecular
oxygen. NO signaling is mediated via activation of soluble
guanylyl cyclase (sGC). The second messenger cyclic guano-
sine monophosphate (cGMP) that is subsequently generated
by sGC regulates the activity of cGMP-dependent protein
kinases such as protein kinase G (PKG), cyclic nucleotide
phosphodiesterases (PDEs), and cation channels and may
have other unknown effects [94].

In terms of fibroblast-to-myofibroblast differentiation,
NO signaling appears to be a central pathway associated with
the fibroblast phenotype (Figure 3). Treatment of dermal
fibroblasts with TGF𝛽1 significantly reduced NOS activity
and NO levels, whereas the NOS inhibitor 𝑁

𝜔
-nitro-L-

arginine methyl ester (L-NAME) synergistically potentiated
TGF𝛽1-induced collagen production [95]. Consistently, NOS
inhibition or knockout attenuated fibrosis in several animal
models [96–99].We previously demonstrated that the soluble
NO donor sodium nitroprusside (SNP) dose-dependently
inhibited TGF𝛽1-induced myofibroblast differentiation of
human prostatic fibroblasts in vitro [100]. These findings
are in line with suppression of TGF𝛽1-induced collagen

production by SNP in dermal fibroblasts in vitro and atten-
uation of fibrosis in rodent model systems using the NOS
substate L-arginine or the NO donor S-Nitroso-N-acetyl-
cysteine (SNAC), respectively [95, 98, 101]. Moreover, par-
allel NO donation and cyclooxygenase inhibition prevented
bleomycin-induced lung fibrosis in mice [102].

Since NO activates sGC, increasing sGC activity via NO-
independent heme-dependent sGC stimulators represents an
alternative approach to enhance NO signaling (Figure 3).
Similarly to observations with NO donors, the sGC stimula-
tor BAY 41-2272 inhibited in vitro myofibroblast differentia-
tion of cardiac fibroblasts and dermal fibroblasts fromhealthy
subjects and patients with systemic sclerosis [103, 104]. In vivo
BAY 41-2272 limited disease progression in models of renal,
cardiac, and dermal fibrosis [103–106] and similar inhibitory
effects were documented for the sGC stimulator riociguat
(BAY 63-2521) in rat models [107, 108]. In contrast to sGC
stimulators that require the presence of a reduced heme
moiety in the prosthetic group of the enzyme, sGC activators
can bind to and activate oxidized or heme-deficient sGC
[109]. Under conditions of oxidative stress, the heme moiety
can be oxidized and lost, rendering sGC no longer responsive
to NO.Thus, these heme-independent activatorsmay be ben-
eficial in the treatment of a variety of diseases associated with
oxidative stress [109]. Of note, the sGC activator BAY60-2770
inhibited myofibroblast differentiation in prostatic and der-
mal fibroblasts (our unpublished observations) and attenu-
ated liver fibrosis in rat models [110], whilst the sGC activator
cinaciguat (BAY 58-2667) prevented disease progression in a
rat model of chronic renal failure [111].

The fact that treatment with the cell-permeable cGMP
analog 8-bromo-cGMP is able to mimic the inhibitory effects
of enhanced NO/sGC signaling on myofibroblast differentia-
tion clearly indicates that inhibition is mediated downstream
via cGMP [95, 112]. Thus, inhibitors of certain phosphodi-
esterase isoforms (PDE) represent an additional approach to
enhance NO/cGMP signaling. PDEs comprise a superfamily
of phosphohydrolases that degrade cellular cGMP and cAMP.
PDE type 5 (PDE5), which specifically hydrolyzes cGMP, is
the major therapeutic target in erectile dysfunction, and is
additionally approved for the treatment of pulmonary arterial
hypertension and BPH [113–115]. Increased PDE5 expression
was observed in anti-Thy1-induced mesangial proliferative
glomerulonephritis in rats and PDE5 inhibition showed ben-
eficial antiproliferative and antifibrotic effects in vivo, indicat-
ing an active role of PDE5 in fibrogenesis [116].We previously
demonstrated that pharmacological inhibition or shRNA-
mediated silencing of PDE5 significantly attenuated TGF𝛽1-
induced myofibroblast differentiation of prostatic fibroblasts
in vitro [100]. Likewise, PDE5 inhibition prevented myofi-
broblast differentiation in fibroblasts form Peyronie’s disease
plaques in vitro and counteracted fibrosis in TGF𝛽1-induced
Peyronie’s disease-like plaques in rats [117, 118]. Moreover,
in lung fibroblasts PDE5 inhibition in combination with the
sGC activator cinaciguat attenuated myofibroblast differenti-
ation [41].

Similarly to exogenous Se, we recently reported that PDE5
inhibition in in vitro differentiated prostatic myofibroblasts
restored morphological and molecular characteristics typical
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of the fibroblast phenotype, indicating that enhancement of
NO signaling not only prevents but alsomight reverse fibrosis
[119]. Consistently, the NO donor SNAC induced dedifferen-
tiation of activated hepatic stellate cells in vitro [120] and in
vivo sGC stimulation by BAY 41-8543 decreased tubuloint-
erstitial fibrosis after relief of unilateral ureteral obstruction
in rats [121]. Similarly, BAY 41-2272 reduced established
fibrosis in modified mouse models of dermal fibrosis [34]
and PDE5 inhibition reduced myofibroblast numbers and
total size of preformed TGF𝛽1-induced Peyronie’s disease-
like plaques in rats [117]. Of note, various PDE5 inhibitors
selectively increased the apoptotic index in TGF𝛽1-induced
Peyronie’s disease-like plaques in rats [117, 118], indicating
clearance of myofibroblasts by apoptosis upon enhancement
of NO signaling.

Collectively, findings from in vitro and in vivomodel sys-
tems indicate that the fibroblast phenotype is maintained by
NO signaling and that myofibroblast differentiation is asso-
ciated with an attenuation/inhibition of the NO/sGC/cGMP
signaling cascade, while stimulation of NO signaling is
capable of even reverting myofibroblast differentiation.Thus,
enhancement of NO signaling by NO donors, stimulators,
and activators of sGC or inhibition of cGMP degradation via
PDE inhibitors might be of therapeutic benefit for patients
suffering from degenerative fibrotic disease (Figure 3).

5. Crosstalk between NOX4/H2O2 and NO
Signaling Networks in the Regulation of
Myofibroblast Differentiation

The fact that elevated NO signaling attenuates and reverses
myofibroblast differentiation while NOX4-derived ROS play
a key role in driving differentiation in response to TGF𝛽 indi-
cates that the fibroblast/myofibroblast phenotype is regulated
via crosstalk between both signaling pathways.ThemainROS
effector of NOX4 is H

2
O
2
[59–61]; however, by virtue of its

catalytic structure [122] its primary product like other NOX
isoforms is superoxide (see chapter 3) [59–61]. Even assuming
that NOX4-derived superoxide undergoes rapid dismutation,
residual superoxide could potentially cross-react with NO
signaling; for example, superoxide can react with NO gen-
erating peroxynitrite (ONOO−), thereby depleting NO levels
[123]. In addition, superoxide can oxidize the critical nitric
oxide synthase (NOS) cofactor tetrahydrobiopterin (BH

4
)

leading to NOS uncoupling and superoxide generation rather
than NO production [124]. Indeed, in some models, NOX4
has been implicated in the generation of peroxynitrite and
subsequent NOS uncoupling [125–128]. However, since
NOX4 is primarily associated with constitutive H

2
O
2
pro-

duction [60, 61], which unlike superoxide does not appear
to react directly with NO, any opposing regulation of TGF𝛽-
induced myofibroblast differentiation by NO and NOX4-
derived ROS signaling presumably predominantly occurs via
distinct mechanisms (summarized Figure 3).

There are several mechanisms by which NOX4-derived
H
2
O
2
may affect NO signaling. H

2
O
2
impaired NO produc-

tion in porcine aortic endothelial cells possibly via direct
oxidative inactivation of eNOS cofactors [129]. Moreover,

H
2
O
2
decreased sGC expression and consequently NO-

dependent cGMP generation in pulmonary arterial SMCs
from lambs with persistent pulmonary hypertension of the
newborn and in rat aortic SMCs or freshly isolated vessels
[130, 131]. H

2
O
2
or PTP inhibitors promoted tyrosine phos-

phorylation of the beta 1 subunit of sGC, presumably via
Src-like kinases. Since c-Src-dependent phosphorylation of
sGC has been shown to attenuate sGC activity and cGMP
formation [132, 133], these data suggest that elevated NOX4-
derived H

2
O
2
during myofibroblast differentiationmay inac-

tivate PTPs and/or activate Src kinase, leading to sGC phos-
phorylation and consequently reduced cGMP formation.

Additionally, NOX4-derived H
2
O
2
and NO signaling

may interact via common cofactors. Both NOS and NOX
require NADPH as an electron donor for enzyme activity.
Since NOX4 induction is an early event during TGF𝛽1-
mediated differentiation [26, 40], NADPH consumption/
depletion due to elevated NOX4 activity may attenuate
NOS activity and consequently NO signaling. Furthermore,
opposing interaction may occur via mutually exclusive mod-
ification of NOX/NO target proteins. For example, NO acti-
vates sarco/endoplasmic reticulum Ca2+ ATPase (SERCA)
via S-glutathiolation on cysteine 674, while induction of
NOX4 via TGF𝛽1, exposure toH

2
O
2
, or high glucose resulted

in SERCA oxidation of the same thiol group that inhibited
NO-mediated S-glutathiolation [134–136].

Taken together these findings clearly indicates that H
2
O
2

and NO appear to interact in a functionally opposing
manner during myofibroblast differentiation via multiple
mechanisms, whereby TGF𝛽1-mediated induction of NOX4-
derived H

2
O
2
leads to downregulation of NO signaling and

thereby promotes fibroblast-to-myofibroblast differentiation.
Consistently, TGF𝛽1 significantly decreased NO production
in dermal fibroblasts [95]. Thus, stimulating sGC generation
and/or inhibiting cGMP degradation potentially counteract
ROS-mediated inactivation of NO signaling to consequently
prevent and reverse myofibroblast differentiation. Of note,
enhancing cGMP levels inhibited and reversed differentiation
without impairing NOX4 mRNA induction by TGF𝛽1 (our
unpublished observations) [119], indicating that NO signal-
ing acts downstream of NOX4-derived H

2
O
2
production.

Since treatment with 8-bromo-cGMP is sufficient to inhibit
myofibroblast differentiation [95], the H

2
O
2
-counteracting

effects of elevated NO signaling appear to be mediated via
downstream cGMP-dependent mechanisms and not via the
NO radical per se.

6. Clinical Implications

In order to develop broadly effective antifibrotic therapies,
it will be necessary to identify common features of differ-
ent fibrotic disorders that affect distinct tissues and/or are
initiated by different stimuli (e.g., chronic scarring of the
liver due to hepatitis versus the tumor-associated reactive
stromal response to prostate cancer). However, in some cases
it may be necessary/advantageous to identify tissue-specific
signaling mechanisms/inducers whose specific targeting is
less likely to be associated with adverse side effects on healthy
tissues. The observation that fibroblasts and myofibroblasts
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are interconvertible phenotypes, with phenotypic switching
apparently regulated via crosstalk between NOX4/H

2
O
2
and

NO signaling, has significant clinical implications. Targeting
redox signaling, for example, via inhibitors of NOX4 or
PDE5, antioxidants such as Se or enhancers of NO signaling,
represents a promising therapeutic strategy to modulate the
fibroblast/myofibroblast ratio in pathological conditions such
as degenerative fibrotic diseases (Figure 3).

TGF𝛽 unequivocally plays a central role in fibrogenesis in
diverse tissues and organs. However, given its essential role
in a wide range of fundamental cellular functions, there are
concerns that systemic approaches directly targeting TGF𝛽
for the treatment of fibrotic conditions will potentially exert
undesirable toxic effects [51, 137]. Indeed, this was the case in
the CAT-192 clinical trial [138]. Nonetheless, several clinical
trials on fibrosis employing anti-TGF𝛽 agents have been
completed and several others are underway. Unfortunately,
to date, these trials have largely yielded disappointing results
despite promising in vitro observations (reviewed recently
[139, 140]).

Induction of NOX4-derived H
2
O
2
and reduced NO

signaling are apparently central downstream components
of TGF𝛽-mediated myofibroblast differentiation in diverse
tissues and organs. Thus, therapeutic targeting of redox
homeostasis in degenerative fibrotic diseases might also be
expected to elicit broad and undesirable effects. However, it
should be noted that, unlike TGF𝛽 that drives myofibrob-
last differentiation and fibrosis via Smad-dependent and -
independent pathways [51, 141], NOX4 does not modulate
noncanonical signaling by TGF𝛽1 in prostatic fibroblasts
[26, 40, 65]. Moreover, Nox4 knockout animals display no
obvious basal phenotype and a dual NOX1/NOX4 inhibitor
was well tolerated in animal models and in phase I clinical
trials [42, 57]. Furthermore, PDE(5) inhibitors are clinically
employed for a variety of conditions and have a history of safe
use with minimal side effects in humans [113–115].

Despite intense research efforts, there currently remains
no NOX4-specific inhibitor and several attempts to generate
peptides that disrupt NOX4 function have been unsuccessful
with the authors concluding that, unlike otherNOX isoforms,
NOX4 exists in a tightly assembled and active conformation,
which cannot be disrupted by conventional means [142,
143]. Nonetheless, several studies have successfully employed
a dual NOX1/NOX4 inhibitor GKT137831, which showed
promising results in mouse models of liver fibrosis and
hypoxia-induced pulmonary hypertension [42, 57, 84, 144]
and is currently entering a phase II clinical trial for diabetic
nephropathy. Recently, attenuation of NOX4-dependent ROS
signaling and fibrosis by sodium hydrosulfide and nifedipine
(an L-type dihydropyridine calcium channel blocker) was
reported in rodent models of cardiac fibrosis [145, 146]. How-
ever, it remains to be determined whether these compounds
inhibit NOX4 in a specific and isoform-selective manner or
exert their effects via nonspecific and nonselective mecha-
nisms.

Given that the signaling potential of NOX4-derived ROS
is regulated by antioxidant systems, enhancing the activity
of ROS scavenging enzymes may represent an alternative
potential therapeutic strategy (Figure 3). Animal and human

clinical data clearly demonstrate that Se deficiency or supple-
mentation increases or reduces tumor incidence, respectively
[147–152]. In addition, however, serum Se levels have been
reported to be lower in patients with several different fibrotic
disorders, including systemic sclerosis, primary Raynaud’s
phenomenon, and oral submucous fibrosis [153, 154]. Unfor-
tunately, there are few studies investigating the potential
therapeutic benefit of Se supplementation in degenerative
fibrotic disease. Although proof-of-principle is provided by
reports that exogenous Se was shown to decrease hepatic
fibrosis in mice [155], Se deficiency promoted thyroid fibrosis
in a TGF𝛽-dependent manner in rats [156]. However, there
may be a potential increased risk of diabetes with Se supple-
mentation [157]; thus further studies are required to better
understand the biological effects of Se to allow its use in the
prevention and treatment of degenerative fibrotic disease.

Inhibitors of PDE5 are clinically approved for the treat-
ment of erectile dysfunction, pulmonary arterial hyperten-
sion, and BPH [113–115] and apparently have significant
efficacy in Raynaud’s phenomenon secondary to systemic
sclerosis [158, 159].The sGC stimulator riociguat significantly
improved primary and secondary endpoints in recently
presented phase III clinical trials in patients with pulmonary
arterial hypertension and chronic thromboembolic pul-
monary hypertension [160, 161]. Although the clinical devel-
opment of the heme-independent sGC activators cinaciguat
and ataciguat stopped in clinical phase II trials, the perspec-
tive to specifically activate oxidated, heme-free sGC gener-
ated by the influence of oxidative stress, seems very promising
of offering novel therapies for various disorders associated
with oxidative stress and several second-generation sGC
activators have been developed recently [162, 163].

Due to the presence of multiple NOX, PDE, and GC
isoforms, modulation of NOX4, PDE5, and/or sGC activities
may permit continued physiological H

2
O
2
andNO signaling.

In addition, the fact that these enzymes belong to multimem-
bered families may be clinically exploited to selectively target
tissue or disease-specific isoforms. For example, selective
targeting of PDE1A, that appears to play a critical role in
cardiac fibrosis, led to regression of cardiac remodeling in
rodents [164].

7. Conclusions

Fibrogenesis is widely considered the result of a dysregulated
wound healing response. In particular, failure of the wave
of myofibroblast apoptosis during wound healing combined
with an autocrine feed-forward loop of TGF𝛽 production
leads to the development and persistence of large numbers
of myofibroblasts, a hallmark of fibrotic disorders (Figure 1).
TGF𝛽 plays a key role in initiating myofibroblast differenti-
ation from diverse precursors, most importantly fibroblasts,
in a variety of organs and tissues. A large body of in vitro
and in vivo data indicates that TGF𝛽-induced myofibroblast
differentiation is driven via induction of NOX4-derived
ROS (Figure 2) and supported by the concomitant down-
regulation of Se-dependent ROS scavenging enzymes. The
resulting prooxidant shift in redox homeostasis modulates
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redox-sensitive signaling cascades leading to myofibroblast
differentiation (Figure 2). Interestingly, myofibroblast differ-
entiation appears to be subject to opposing regulation via
complex interplay between NOX4-derived H

2
O
2
and NO

signaling. Whilst TGF𝛽 and NOX4-derived H
2
O
2
attenuate

NO signaling by impairing NOS and sGC activities and
thus relieve inhibition of myofibroblast differentiation by
NO, enhancement of NO signaling prevents TGF𝛽-induced
myofibroblast differentiation (Figure 3). Moreover, targeting
NOX4 or enhancing NO signaling induces the dedifferen-
tiation/reversal of preexisting myofibroblasts to a quiescent
fibroblast phenotype and ameliorates fibrosis in vivo indicat-
ing that fibroblasts and myofibroblasts are interconvertible
phenotypes. Thus, pharmacological interference of these
redox signaling processes to restore the physiological fibrob-
last:myofibroblast ratio offers a promising strategy for the
treatment of fibrosis and degenerative fibrotic diseases. Ther-
apeutic intervention could be potentially achieved atmultiple
levels, for example, by (i) targeting NOX4 directly using spe-
cific inhibitors, (ii) indirectly inhibiting NOX4 using antiox-
idants or Se to scavenge ROS/H

2
O
2
, (iii) enhancing NO sig-

naling via NO-donors, stimulators/activators of sGC, and/or
(iv) preventing cGMP degradation using PDE inhibitors. It
is hoped that the recent findings summarized herein can be
applied and translated into effective therapeutic strategies for
the treatment of debilitating fibrotic disorders.
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