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As college campuses reopened in fall 2020, we saw a large-scale experiment unfold on the
efficacy of various strategies to contain the SARS-CoV-2 virus. Traditional individual sur-
veillance testing via nasal swabs and/or saliva is among the measures that colleges are
pursuing to reduce the spread of the virus on campus. Additionally, some colleges are
testing wastewater on their campuses for signs of infection, which can provide an early
warning signal for campuses to locate COVID-positive individuals. However, a represen-
tation of wastewater surveillance has not yet been incorporated into epidemiological
models for college campuses, nor has the efficacy of wastewater screening been evaluated
relative to traditional individual surveillance testing, within the structure of these models.
Here, we implement a new model component for wastewater surveillance within an
established epidemiological model for college campuses. We use a hypothetical residential
university to evaluate the efficacy of wastewater surveillance for maintaining low infection
rates. We find that wastewater sampling with a 1-day lag to initiate individual screening
tests, plus completing the subsequent tests within a 4-day period can keep overall in-
fections within 5% of the infection rates seen with traditional individual surveillance
testing. Our results also indicate that wastewater surveillance can effectively reduce the
number of false positive cases by identifying subpopulations for surveillance testing where
infectious individuals are more likely to be found. Through a Monte Carlo risk analysis, we
find that surveillance testing that relies solely on wastewater sampling can be fragile
against scenarios with high viral reproductive numbers and high rates of infection of
campus community members by outside sources. These results point to the practical
importance of additional surveillance measures to limit the spread of the virus on campus
and the necessity of a proactive response to the initial signs of outbreak.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications
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1. Introduction

As colleges enacted their reopening plans in the 2020e2021 academic year, a natural experiment in epidemic manage-
ment has unfolded. This experiment stress-tested colleges’ strategies for reducing the spread of SARS-CoV-2 on their cam-
puses. These strategies include reducing the capacities of classrooms and residence halls, mandating the use of face masks,
implementing extensive sanitization and cleaning protocols between classes, putting in place social distancing requirements,
contact tracing, and banning large gatherings. Additionally, many colleges are using traditional individual screenings to test
students for the virus (Booeshaghi et al., 2020; CDC, 2020e; New York Times, 2020b) at periodic intervals or by random
sampling throughout the term. Previous work has found that this type of surveillance testing is critical for controlling the
spread of virus on campus (Borowiak et al., 2020; Lopman et al., 2020; Paltiel et al., 2020), and that surveillance testing the
campus population every 2e10 days is a minimum requirement to keep the overall number of infections manageable.

Such frequent screenings of all of a university's students places a high financial and logistical burden on universities, as
well as an intrusion on the lives and comfort of students. As an alternative or supplementary form of viral surveillance, many
municipalities and universities are turning to collecting and testing wastewater from their campuses for signs of viral
ribonucleic acid (RNA) (New York Times, 2020c). Viral presence in wastewater can be a leading indicator for positive cases in
traditional individual screening tests (CDC, 2020c; Mandal et al., 2020; WHO, 2020). In this approach, wastewater is collected
at sewer locations around campus and tested in a laboratory, typically by a testing method that incorporates a polymerase-
chain reaction (PCR) assay (Jorgensen et al., 2020). If the wastewater sample from a particular sewer shows signs of viral
presence, then the individuals in the building(s) that the wastewater sampling location serves can be given individual
screening tests for SARS-CoV-2. In this way, wastewater surveillance can be an effective tool to reduce the overall number of
randomized screening tests required in order to maintain low infection rates. However, the epidemiological models used to
inform college campus reopening strategies do not yet include a representation of wastewater surveillance. In this work, we
present a wastewater module for the susceptible-exposed-infected-recovered (SEIR) model of Paltiel et al. (2020).

The SEIR modeling approach (Kermack & McKendrick, 1927) employs a type of compartment model, wherein all in-
dividuals are assumed to be in one of four general categories: susceptible to infection, exposed (but not yet infectious or
symptomatic), infected (either symptomatic or asymptomatic), and removed/recovered (recovered from the infection or
deceased) (Hethcote, 2000). These models do not track individual persons (i.e., are not agent-based), and as such SEIR models
are simple and stylized in their representation of persons and processes. However, this simplicity leads to high computational
efficiency, making SEIR models ideal for the large numbers of model simulations required for uncertainty and sensitivity
analyses, and for informing decision-making tomanage campus community health under uncertain conditions. Such decision
support is critical when campus officials must manipulate decision levers including the rate at which to administer screening
tests to the campus population andwhat share of courses should be held on-campus versus online. Previous efforts to account
for the sensitivity of projected infection rates have focused on simple Monte Carlo sensitivity analyses, wherein each
parameter is sampled from a probability distribution and the effects of these changes on the infection rates is compared (e.g.,
Lopman et al., 2020). These foundational approaches assess the sensitivity of infection counts to uncertainties in model
parameters, which represent real, on-the-ground uncertainties. However, previous work provides a largely qualitative viewof
these sensitivities; a formal global sensitivity analysis is still needed. Such a global analysis would quantify how the variation
in infection rates is attributable to each uncertain model parameter and potential decision lever, including, for example, the
viral reproduction rate and the rate at which screening tests are administered to the campus population.

Here, we address these issues by assigning marginal prior probability distributions to each uncertain model input
parameter. We sample from these prior distributions to examine the sensitivity of infection rate to uncertainty in the model
parameters. By considering changes in these parameters in combination, we conduct a formal global sensitivity analysis to
attribute the variance in the total number of infections to variation in each of the input parameters (including decision levers)
and interactions among the parameters. We use a previously published SEIR model to incorporate a model component to
represent wastewater surveillance testing. We use our newmodel to assess the ability of a wastewater surveillance system to
prevent numbers of infections from exceeding a prescribed maximum. We examine the vulnerability of a wastewater sur-
veillance system to failures in underlying assumptions, including increases in the viral reproductive number, larger numbers
of new infections of campus members from outside sources, and higher rates of noncompliance with quarantine procedures.
The model used here does not account for the deployment of vaccines to control the spread of virus. This is done to avoid the
uncertainty associated with the durability of vaccine immune response and to isolate the impacts and sensitivities related to
the wastewater surveillance scheme alone.

2. Methods

2.1. SEIR model

Ourmodel is a modified version of the SEIRmodel of Paltiel et al. (2020). The interested reader is referred to that work for a
more detailed description of their original model, but we provide an overview here for convenience. The original model code
is based on the source code that accompanies the online dashboard for running simulations using the model of Paltiel et al.
(https://data-viz.it.wisc.edu/covid-19-screening/; Aravamuthan et al., 2020). The model parameters discussed below are
summarized in Table 1, and the equations of state are given in Appendix A.
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Table 1
Parameter names, symbols, units, default values for risk analysis, and prior distributions. “Tri” denotes a triangular distribution, which is defined by its range
parameters (a and b) and their mode parameter (c). “Bin” denotes a binomial distribution, which is defined by a number of Bernoulli trials (n) and the
probability of “success” of one of those trials (p). “NBin” denotes a negative binomial distribution, which is defined by a number of Bernoulli successes (r) and
the probability of success (p). “DUnif” and “Unif” denote discrete uniform and continuous uniform distributions, respectively.

Parameter name and symbol Default value Prior distribution Units

population_size 12,500 Fixed; 12,500 persons
initial_infected 10 Bin(n ¼ 12,500, p ¼ 10/12,500) persons
Effective reproductive number, Rt 1.1 Tri(a ¼ 3, b ¼ 12, c ¼ 5) e

Fraction of population noncompliant with quarantine procedures, fnc 0.01 Tri(a ¼ 0, b ¼ 0.1, c ¼ 0.01) e

New exposures per shock, Nexo 15 NBin(r ¼ 5, p ¼ 0.25) persons
Time between exogenous shocks, Texo 7 Bin(n ¼ 14, p ¼ 0.5) days
Incubation period (days to infectious), Tinc 5 Tri(a ¼ 3, b ¼ 12, c ¼ 5) days
Time to recovery, Trec 14 Tri(a ¼ 10, b ¼ 21, c ¼ 14) days
% advancing to symptoms, psymptoms 30 Tri(a ¼ 5, b ¼ 50, c ¼ 30) %
Symptomatic case fatality ratio, ffatal 0.0005 Tri(a ¼ 0, b ¼ 0.01, c ¼ 0.0005) e

Time for traditional individual screening tests, Ts e NBin(r ¼ 42, p ¼ 0.125) days
Time for wastewater sample result, Tww 3 DUnif(min ¼ 1, max ¼ 8) days
Fraction of population contributing to wastewater, fww 0.55 Tri(a ¼ 0.2, b ¼ 0.8, c ¼ 0.55) e

Lag time to initiate wastewater-triggered individual screenings, Tlag 1 DUnif(min ¼ 1, max ¼ 5) days
Time for wastewater-triggered individual screening tests, Ts,ww 4 DUnif(min ¼ 1, max ¼ 7) days
Wastewater positive detection threshold, W 2 Tri(a ¼ 1, b ¼ 5, c ¼ 2) persons
Building size for wastewater screenings, Nbuilding 750 NBin(r ¼ 5, p ¼ 0.01) persons
Screening test sensitivity, Se 0.7 Tri(a ¼ 0.7, b ¼ 0.9, c ¼ 0.8) e

Screening test specificity, Sp 0.98 Tri(a ¼ 0.95, b ¼ 1, c ¼ 0.98) e

Time to return false positive 1 Fixed; 1 day days
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The overall campus population is divided into three groups. The first group contains individuals who are circulating on
campus and are capable of becoming infected by others, or capable of infecting others. This includes individuals who are
uninfected and susceptible (U), those who have been exposed to an infectious individual but are not symptomatic and not
infectious (E), and those who have been infected and are asymptomatic but infectious (A). The second group contains in-
dividuals who are in quarantine/isolation, including those who have been tested and received either a false or true positive
result (FP and TP, respectively) and those who are symptomatic (S). The third group contains individuals who have been
removed from the pool of potentially infected/infectious persons, including those who have been infected but have since
recovered (R) and those who were infected and later died (D). The model tracks the total number of individuals in each of
these model compartments, but not the individuals themselves. Fig. 1 provides a schematic of these model components and
the exchanges of individuals between them. We assume that the overall size of the campus population is 12,500 individuals,
and that initially A(0) ¼ 10 of them are asymptomatic and infectious.

Susceptible individuals (U) become exposed (E) at a rate determined by the effective viral reproduction number (Rt) and
the overall prevalence of asymptomatic infectious individuals (A) in the circulating group. We take Rt as an uncertain input
parameter, with a default value of 1.1, which (as of this writing) is appropriate for Upstate New York where our home
institution is located (Abbott et al., 2020; Systrom et al., 2020). We consider uncertainty in Rt and the impacts of incorrect
assumptions about the value of this key parameter in the sensitivity and risk analyses described in Sections 2.3 and 2.4. While
our model does not explicitly parameterize contact tracing, previous work in the context of Ebola epidemics has found that a
suitable scaling of the reproduction number may capture the primary effects of contact tracing (Browne et al., 2015). Thus,
effective contact tracing would be associated with lower values of Rt. Susceptible individuals (U) also become exposed due to
exogenous shocks, such as infections of campus community members by outside individuals or “superspreader” events. The
time between exogenous shocks (Texo) and number of new exposures from each shock (Nexo) are both taken as uncertain input
parameters (see Table 1). Exposed individuals (E) become infectious and transition into the asymptomatic and infectious (but
still circulating on campus) group (A) at a rate governed by the incubation period, Tinc. We take Tinc ¼ 5 days as a default value
(Paltiel et al., 2020; Petersen et al., 2020), but also consider uncertainty in this parameter in our subsequent analyses.

We assume that asymptomatic infectious individuals (A) develop symptoms at rate s (transition to S), and individuals who
are infectious recover at a rate r (transition to R), regardless of whether or not they exhibit symptoms. Following Paltiel et al.
(2020), we assume that the percentage of infected individuals that eventually develop symptoms (psymptoms) is 30%. Thus,
psymptoms ¼ 0.3 ¼ s/(sþr). Letting Trec be the recovery time from the infection, then r ¼ 1/Trec. We take Trec ¼ 14 days as a
default parameter value, which leads to s¼ 3/98 days�1 as a default. Individuals who are symptomatic perish at rate d, which
depends on the recovery rate (r) and the symptomatic case fatality ratio, ffatal. We take ffatal¼ 0.05% as a default value.We note
that values for this parameter are likely to be higher for certain subpopulations of the campus population (for example,
groups designated as high-risk by the United States Centers for Disease Control and Prevention (CDC) (CDC, 2020d; 2020a).
We assume that recovered individuals (R) are no longer susceptible to infection. As our model simulations are for a single
semester (about 14 weeks), this is in line with the current thinking on the length of protection offered by SARS-CoV-2 an-
tibodies (CDC, 2020b; Edridge et al., 2020).
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Traditional individual surveillance testing is carried out with period Ts so that the entire circulating campus population is
screening once every Ts days. Note that the Ts parameter represents how long it would take to test the entire campus pop-
ulation, but this testing is divided up so that some portion occurs in each model time step. The screening test sensitivity (Se,
true positive rate) and specificity (Sp, true negative rate) are taken as uncertain input parameters. We take Se ¼ 70% and
Sp ¼ 98% (false negative and false positive rates of 30% and 2%, respectively) as default values, together with the prior dis-
tributions described below. Following the original work of Paltiel et al. (2020), we assume that false positives are detected via
a confirmatory test afterward with 100% specificity. The time to return a false positive to the susceptible circulating group is
an input parameter that we take to be 1 day as a default. Also following Paltiel et al. (2020), testing of exposed, but not in-
fectious or symptomatic, individuals (E) is assumed to always lead to a negative screening result. This assumption is made in
light of the practical difficulty involved in tracking how long each member of the exposed group has spent in that model
compartment, as the proportions of false positives and false negatives are affected by the prevalence of viral RNA in the
affected individuals. Additionally, as screening tests are carried out, some of the exposed individuals will transition into the
asymptomatic (infectious) compartment, where they will potentially be screened as true positives.

In the original formulation of Paltiel et al. (2020), it is assumed that individuals who develop symptoms or receive a
positive screening test result immediately are moved into isolation/quarantine. We have added a parameter to represent
noncompliance with isolation/quarantine procedures. This parameter, fnc, is a fraction between 0 and 1 that represents the
proportion of the asymptomatic and circulating population that does not go into quarantine even after either developing
symptoms or testing positive for SARS-CoV-2. fnc can also represent the event that an individual develops symptoms but those
symptoms are so mild that they do not realize they are infected. We take this parameter to be equal to 0.01 (1%) by default.
However, in light of news of student noncompliance with quarantine/isolation procedures (New York Times, 2020a; Orlando
Sentinel, 2020; Northern Illinois University, 2020), it is important to evaluate the impacts of student noncompliance on the
efficacy of campus strategies to manage the spread of SARS-CoV-2. We note that fnc only represents noncompliance with
quarantine/isolation rules, and does not represent noncompliance with limitations on large gatherings or mask-wearing, for
example. Restrictions on gathering sizes and mask mandates are represented in the effective reproductive rate, Rt.
2.2. Wastewater sampling

2.2.1. Overview
We begin with a brief overview of the wastewater module that we have added to the SEIR model of Paltiel et al. (2020).

Then, in Section 2.2.2, we provide specific details regarding the implementation in the model structure.
Wastewater from a handful of different sewer sites around campus is tested for signs of SARS-CoV-2 every few days. In the

real world, if there are signs that the virus is present in one or more of thesewastewater sampling locations, then the relevant
wastewater sample is considered to be “positive” and screening tests will be administered to the subpopulations on campus
that would have contributed to thosewastewater samples. The limit of detectionwill vary between campuses and the specific
wastewater collection and testing systems employed (Daughton, 2020). In our model, a positive wastewater sample is
triggered when the number of asymptomatic or exposed (but not yet infectious) individuals who contribute to the waste-
water samples exceeds a threshold parameter.

2.2.2. Specific implementation
We assume that a set of wastewater samples is drawn from sewer systems around campus and sent to a laboratory for

testing every at regular intervals, Tww. We assume that wastewater sample results return from the laboratory every Tww days
as well. Thus, at time t¼ nTww, the wastewater results from time t¼(n-1)Tww return from the laboratory, where n is a positive
integer. As a default parameter value, we take Tww ¼ 3 days. We assume that a proportion, fww, of the overall population is
contributing to wastewater samples, and that the population is well-mixed. This subpopulation consists of students who live
on campus, and students, faculty, and staff who work or study on campus. A positive wastewater sample result is returned in
the model if the number of asymptomatic and exposed individuals contributing to the wastewater samples at the time that
the wastewater sample is drawn exceeds a threshold parameter, W (i.e., wastewater sample is found to indicate the presence
of viral RNA). Based on results from University of Arizona (Arizona, 2020) and preliminary analyses at our home institution,
we take W ¼ 2 as a default value. We include uncertainty in W in the sensitivity and risk analyses described in Sections 2.3
and 2.4.

For every college campus that is implementing awastewater surveillance system, the building(s) that each sewage sample
represents will be different. Thus, if there is evidence of viral RNA found in the wastewater sample from a particular sewer
draw, it is unknown exactly howmany individuals contributed to that particular sample. In light of this uncertainty, we use a
parameter, Nbuilding, as a representative number of individuals that would contribute to an arbitrary wastewater sample. This
can represent a single large residence hall or a collection of several smaller buildings. Uncertainty in Nbuilding also arises from
the facts that different sewers from which a campus might sample will represent (collections of) buildings of different ca-
pacities, different sewers represent different collections of buildings, and multiple sewers can yield positive results simul-
taneously. We use a default value of Nbuilding¼ 750 persons. 750 is toward the upper end of the range of building capacities for
our home institution. If a positive wastewater signal leads to the testing of, on average, fewer than Nbuilding individuals, then
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choosing higher values for Nbuilding reflects the belief that sometimes multiple sewer systems will give positive wastewater
results simultaneously.

We assume that the wastewater-triggered individual screening tests begin some time, Tlag, after receiving the positive
wastewater result. By default, we take Tlag ¼ 1 day. There are practical reasons to potentially delay initiating screening tests
after a positive wastewater result. For example, a large portion of the exposed individuals who are not yet infectious might go
undetected if screening tests are administered before they have transitioned into the asymptomatic (and infectious) model
compartment.

Each time that a wastewater sample is returned from testing (i.e., at intervals of Tww), the model checks if the wastewater
result is positive. If a positive wastewater result occurs and screening tests begin, then we assume that all fww(E(t)þA(t))
exposed and asymptomatic individuals contributing to wastewater sampling reside within the same representative building
(or set of buildings) of size Nbuilding. It is important to note that this might represent a collection of actual buildings; hence, our
choice to use a value for Nbuilding that is toward the upper end of the set of values for our campus. Here, t represents the
current day in the simulated semester (Tww þ Tlag days since the wastewater sample in question was drawn), E(t) represents
the number of exposed individuals at time t, and A(t) represents the number of asymptomatic individuals at time t. We
assume that the remaining Nbuilding - fww(E(t)þA(t)) individuals are divided between the susceptible (U(t)) and recovered
(R(t)) groups. The relative proportions of this remaining building subpopulation that are susceptible and recovered are the
same as those proportions in the general campus population. Following the original implementation of Paltiel et al. (2020),
we assume that the exposed group (E(t)) will always yield a true negative result when tested for SARS-CoV-2, but they can
contribute to a positive wastewater signal (Daughton, 2020; Mandal et al., 2020).

The time required to administer tests and receive results for the size Nbuilding subpopulation that contributes to the
wastewater samples is Ts,ww. As a default, we assume that all individuals contributing to a positive wastewater result will be
screened within Ts,ww ¼ 4 days. Similarly to our modification of the traditional individual surveillance testing, the false and
true positive results from thewastewater-based screenings are modulated by a noncompliant proportion parameter, fnc. After
wastewater-triggered individual screening tests remove detected infections from the wastewater-contributing subpopula-
tion, the relative proportions of asymptomatic individuals in the wastewater-contributing subpopulation can be lower than
the proportion among the general campus population. Our assumption of a well-mixed general population means that
asymptomatic cases from outside the wastewater-contributing populationwill redistribute into the wastewater-contributing
population. This may be viewed as the advent of a new outbreak in a different set of buildings than the set that was just
administered the screening tests. An agent-based model would offer an opportunity to investigate these dynamics further,
but is beyond the scope of the present work. Specifically, the compartment modeling approach is better suited for the risk and
sensitivity analyses conducted here because its computational efficiency enables the needed large ensembles of simulations.

2.3. Sensitivity analysis

We use the Sobol’method for global sensitivity analysis (Sobol’, 2001) to evaluate the sensitivity of our model to each of its
input parameters and their interactions with one another. Global sensitivity analyses are preferable to one-at-a-time
sensitivity analyses in the sense that a one-at-a-time analysis risks missing important interactions among uncertain pa-
rameters. However, global analyses are more computationally expensive due to the larger number of effects to explore. Here,
our simple SEIR model is sufficiently inexpensive that running hundreds of thousands of simulations is possible on a time-
scale of hours, so a global sensitivity analysis is feasible.

The Sobol’method examines how the variance in amodel output of interest changeswhen themodel input parameters are
all varied simultaneously. Via our Sobol’ analysis, we decompose the variance in the total cumulative number of infections
over a 100-day semester into portions attributable to each input parameter, and to each parameter interaction. The portion of
variance in the model output that is directly attributable to changes to an individual parameter is that parameter's first-order
sensitivity index. The second-order Sobol’ sensitivity indices are the proportions of variance in the model output that are
attributable to pairs of model input parameters that are varied together. Higher-order indices may be computed as well, but
are typically not presented due to challenges of visualization and the large number of possible three-parameter combinations
(for our model, there are over 800 such triplets). However, we also compute the total sensitivity index for each parameter,
which is the proportion of variance attributable to that parameter and all of its interactions with other parameters, including
these higher-order interactions.

We assign each model input parameter a marginal prior probability distribution (Table 1 and Appendix B). We sample
from these prior distributions to create two independent ensembles of 10,000 simulations using a Latin hypercube sampling
approach (McKay et al., 1979). The Sobol’ method computes the parameters’ sensitivity indices by constructing new simu-
lations by swapping values for each parameter, and combinations of parameters, from one ensemble to the other. For
example, the second-order sensitivity to Rt and Nexo would be computed by swapping all of the values for Rt and Nexo from the
second ensemble into the first, and observing the change in model output variance fromwhen all parameters were from the
first ensemble. To estimate all of the first-order, second-order, and total sensitivity indices, a grand total of 380,000 model
simulations are required. We use bootstrap resampling with 1000 replicates to compute 95% confidence intervals for each
sensitivity index. We diagnose convergence when the widest confidence interval has a width that is less than 10% of the
highest total sensitivity index (Wong & Keller, 2017). We report only sensitivities that constitute at least 1% of the total
variance in the modeled total cumulative number of infections, and whose 95% confidence interval excludes 0.
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In the sensitivity analysis, we assume our hypothetical campus pursues a testing strategy that relies primarily on
wastewater surveillance, but is complemented with a small amount of traditional individual surveillance testing.
2.4. Risk analysis

Campus decision-makers would seek to optimize obvious objectives such as minimizing the total number of infections or
minimizing the total number of screening tests needed. Public health mandates may also provide additional objectives that
decision-makers aim to satisfy. Here, we consider the ability of our university to maintain fewer than 100 new infections
across any 14-day period. This was the threshold beyond which universities in New York State in Fall 2020 were required to
switch to all-online classes for at least two weeks (New York State, 2020). We note that there are specific 14-day periods in
which infection counts are tabulated, but examine the objective of maintaining fewer than 100 new infections across any such
period, as this will ensure that the state requirement is met. Additionally, we note that smaller institutions would need to
close upon reaching a new infection count equal to 5% of their population, and that local health departments may elect to
keep the institution closed for in-person classes longer as the situation demands. For brevity's sake, for a given model
simulation, we denote the maximum number of new infections across any 14-day window as Imax,14. While a testing strategy
(wastewater and/or traditional individual surveillance) might satisfy the Imax,14<100 objective under nominal conditions
(default parameter values), incorporating uncertainty in themodel parameters by sampling from their prior distributions will
lead to a corresponding distribution of Ima�,14 values for the given testing strategy. We define the reliability of maintaining
Imax,14<100 as the probability Pr(Imax,14<100). This probability, of course, is conditioned on the testing strategy as well as the
underlying parameter prior distributions and other model structural assumptions. With these caveats in mind, we examine
which wastewater testing strategies provide the highest reliability of maintaining Imax,14<100 infections.

Guided by our hypothesis that uncertainty in model input parameters will diminish the ability of our hypothetical uni-
versity to satisfy its objectives for containment of the SARS-CoV-2 virus on campus, we conduct a Monte Carlo risk analysis.
We consider surveillance testing strategies that involve only wastewater surveillance, as traditional surveillance testing (e.g.,
nasal swabs and/or saliva tests) has been considered extensively elsewhere in the literature (Lopman et al., 2020; Paltiel et al.,
2020). We consider testing strategies with a time lag to begin wastewater screenings after finding a positive result in the
wastewater samples of Tlag ¼ 1 day. We consider times to complete all wastewater-triggered screening tests, which begin
after the 1-day lag, of Ts,ww ¼ 1, 2, …, 7, or 8 days. Preliminary experiments (see Appendix B) suggest that the lag time to
initiate wastewater screenings did not substantially (>1%) affect the resulting infection rates. This is because eventually,
infections are so prevalent on campus that the wastewater-triggered screenings become a nearly continuous process.

We evaluate the sensitivity of these eight testing strategies, corresponding to the eight values of Ts,ww above, to our as-
sumptions about three critical parameters: the effective reproductive number, Rt, the number of new infections from
exogenous sources each week, Nexo, and the fraction of individuals who are not compliant with quarantine/isolation pro-
cedures, fnc. Specifically, we consider a control scenario in which we assume that Rt ¼ 1.1, Nexo ¼ 15 on a weekly time-scale
(Texo ¼ 7 days), and fnc ¼ 0.01 (1%). In the risk analysis, we suppose that the hypothetical campus uses only wastewater-
triggered individual testing and does not conduct any additional traditional individual testing (e.g., nasal swab or saliva).
We let Ts,ww vary at its values stated above, we keep the parameters Tlag, Rt, Nexo, Texo, and fnc fixed, and we sample all of the
other model parameters from their prior distributions (Table 1). We assume that the total campus population is fixed (12,500
individuals), and do not consider uncertainty in the time to return false positive results (1 day). We estimate the reliability of
maintaining Imax,14<100, Pr(Imax,14<100), as the proportion of simulations in which the maximum number of new infections
across any 14-day window does not exceed 100. For each testing strategy and combination of Rt, Nexo, and fnc, we generate
3000 sets of the other parameters from their marginal prior distributions using a Latin Hypercube sampling approach (McKay
et al., 1979). We find that at least about 2000 samples are required in order to stabilize our estimates of Pr(Imax,14<100),
subject to the uncertainties in the other model parameters (see Appendix B).

We then consider how “breaking” our assumptions about the parameters Rt, Nexo, and fnc affects the reliability Pr(I-
max,14<100). We construct seven additional ensembles by increasing Rt to 1.5, increasing the number of new exposures for
each weekly shock to 30, and increasing the fraction of noncompliant individuals to fnc ¼ 0.1, as well as all combinations of
these increases. By observing the decrease in Pr(Imax,14<100), we quantify the fragility of each testing time-scale to broken
assumptions about the rate of viral transmission on campus, the influence of infections of campus community members by
outside sources, and noncompliance by students.

Importantly, in the simulations that we present here, there are two total infection counts. First, there is the number of true
infections, including asymptomatic cases (A(t)), symptomatic (S(t)), and true positive cases (TP(t)). The number of true in-
fections is generally unknown in real life. By contrast, our model also computes the number of perceived d or detected d

infections. The number of perceived infections includes symptomatic cases (S(t)), true positives (TP(t)) and false positives
(FP(t)), but misses asymptomatic cases. We thus present two sets of reliabilities: one using the true number of infections and
one using the perceived infections only. This distinction, and the fact that in the “model world” the true number of infections
is known, enables us to characterize how a lack of timely testing can obscure the true infection count. So, we hypothesize that
as the testing time Ts,ww increases, the perceived reliability will increase, while the true reliability will decrease. However, we
hypothesize that beyond a certain length of time for testing, the perceived reliability will begin to decrease because the
number of symptomatic cases becomes overwhelming.
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Fig. 1. Model schematic with “fluxes” of individuals between model compartments. This includes potential noncompliance with quarantine/isolation procedures and the new wastewater fluxes based on screenings
triggered by wastewater-positive results. Noncompliance reduces the flow of Asymptomatic individuals into the True Positive or Symptomatic compartments. Note that Recovered individuals are still circulating on
campus, but are assumed to have been removed from the set of individuals who can become infected or transmit the virus.
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Fig. 2. Wastewater surveillance (black lines) underestimates the true number of infections (solid lines), while traditional individual surveillance (green lines)
tends to overestimate it for low-risk scenarios, then underestimate it for high-risk scenarios. Shown are the numbers of current infections at each time
throughout the semester (A, C, and E) and the breakdown of those infections among the asymptomatic, symptomatic, true positive, and false positive model
compartments (B, D, and F) at 20-day intervals. In the right column, the middle bars in each group represent the actual numbers of infections and the outside bars
represent the perceived infections. The first 2 bars in each group represent traditional individual surveillance and the last 2 bars represent wastewater sur-
veillance. The nominal scenario (first row) uses the parameter values from Table 1, including Rt ¼ 1.1, Nexo ¼ 15, Texo ¼ 7 days, and fnc ¼ 0.01. The moderate risk
scenario (second row) increases Rt to 1.5, increases Nexo to 20, and fnc ¼ 0.05, while all other parameters are the same as in the control scenario. The severe risk
scenario (bottom row) uses Rt ¼ 2, Nexo ¼ 30, Texo ¼ 5 days, and fnc ¼ 0.1. The occurrences of exogenous infections (of size Nexo) are denoted with orange triangles
in the first column. All of the wastewater screening cases use Tlag ¼ 1 day and Ts,ww ¼ 4 days, and all of the traditional individual screening cases use Ts ¼ 7 days
(weekly screenings).
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Fig. 3. To what degree do the individual and combined parameter uncertainties and decision levers influence the overall cumulative number of infections over
the course of the simulated semester? This Sobol’ radial convergence diagram depicts the decomposition of variance in the total number of infections among the
uncertain input parameters. Input parameter prior distributions have been chosen to represent the conditions and characteristics of the authors' home insti-
tution, which corresponds to a relatively low value of Rt, about 10e20 exogenous infections per week, and low rates of noncompliance. Filled orange nodes
represent first-order sensitivity indices (direct parameter influences); the concentric gray nodes represent total sensitivity indices (the given parameter's in-
fluence in combination with all other parameters); and filled gray bars represent second-order sensitivity indices for the interaction between the given pair of
parameters. Parameters whose names or symbols are orange are the parameters to which the model is sensitive (in the upper hemisphere of the diagram);
parameters in black (lower hemisphere) are those to which the model does not display a significant sensitivity.
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3. Results

3.1. Comparison with traditional individual surveillance testing

Before embarking on our Monte Carlo sensitivity and risk analysis, we first examine individual simulations under the
control scenario as described in Sec. 2.4. We use the default parameter values from Table 1, including weekly 15-infection
shocks (Texo ¼ 7 days, Nexo ¼ 15), Rt ¼ 1.1, and fnc ¼ 0.01 noncompliance. Using wastewater surveillance with Tlag ¼ 1 day
and Ts,ww ¼ 4 days leads to true numbers of infections that are quite similar to the infection count under a traditional sur-
veillance testing regimen with Ts ¼ 7 days (Fig. 2A, solid lines). The total cumulative numbers of infections under the
wastewater and traditional surveillance approaches were 410 and 399 infections, respectively, at the end of the 100-day
model simulations. This difference constitutes an increase of 2.8% of the number of true infections under the traditional
screening approach. Under the control scenario, the projected numbers of deaths for the semester are 0.043 and 0.042 for the
wastewater and traditional screening cases, respectively. These differences increase slightly in the moderate (Rt ¼ 1.5,
Nexo¼ 20, and fnc¼ 0.05; Fig. 2C) and severe (Rt¼ 2, Nexo¼ 30, and fnc¼ 0.1; Fig. 2E) scenarios. In themoderate scenario, there
are 860 total infections (0.082 deaths) projected under the wastewater surveillance program and 828 infections (0.079
deaths) under the traditional surveillance testing program. In the severe scenario, there are 3825 infections (0.30 deaths) and
3655 infections (0.29 deaths) using thewastewater and traditional surveillance approaches, respectively. The numbers of true
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Fig. 4. Slower response times to complete screening tests based on wastewater sampling can lead to the perception of safety based on a high reliability of
maintaining Imax,14<100 (gray bars) in contrast to a lower true reliability based on the actual numbers of infections (orange bars). Shown on the vertical axis is the
reliability, Pr(Imax,14<100) and on the horizontal axis are the times required to complete subpopulation screening results after a one-day lag to initiate screening
tests. The left bars give the reliability using the actual infection counts and the right bars give the reliability using only the perceived infections, which would
hypothetically be known. The panel titles give the values for the reproductive rate (Rt), the noncompliant fraction (fnc), and the number of new exogenous
infections each week (Nexo). Bold-face parameters in the panel titles denote parameters that have taken on values corresponding to higher-risk scenarios. All
other parameters are sampled from their prior distributions given in Table 1.
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infections when using wastewater surveillance constitute increases of 3.9% and 4.7% over the 1-week traditional surveillance
plan in the moderate and severe risk cases, respectively.

While the numbers of true infections are similar, the numbers of perceived infections are quite different. Under the control
scenario, our model predicts that using wastewater surveillance leads to a dramatic underestimation of the number of true
infections: at the end of the semester, there are about 45 perceived infections and 66 true infections. This is the result of
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wastewater surveillance testing a sicker subpopulation resulting in many fewer false positive individuals than traditional
surveillance testing (Fig. 2B). Traditional surveillance overestimates the number of true infections under the control scenario
(Fig. 2A, green lines), but this overestimation is the result of a larger portion of false positive individuals and not from
detecting more asymptomatic cases (Fig. 2B). The sizable number of false positive cases ensnared by the traditional individual
surveillance testing strategy can be understood by a quick heuristic calculation: out of a campus population of 12,500 in-
dividuals, 12,500/7 y 1786 of them are administered a test on the first day of the simulated semester. With a nominal false
positive rate of 2% (1-specificity), we expect to see about 17860.02 y 36 false positive cases. This roughly matches the false
positive census by day 20 seen in Fig. 2B. However, using traditional surveillance in the moderate scenario initially over-
estimates the number of true infections, then at day 37, the number of true infections becomes larger than the number of
perceived infections (Fig. 2C, green lines), which thus underestimate the number of true infections after day 37. For the severe
risk scenario, this switch occurs after only 15 days (Fig. 2E). One of the reasons a campus might pursue a traditional sur-
veillance testing approach is to err on the side of a Type 1 error (false positive), when the potential drawbacks to missing
positive COVID-19 cases are high (e.g., an outbreak). These results suggest that the utility of this traditional approach relies on
the testing strategy being sufficiently aggressive as to match the local viral prevalence and spread. These results are condi-
tioned on the number of infections initially present, however, our sensitivity analysis (Sec. 3.2) indicates that this dependency
is not as strong of a control on overall infections as the reproductive number or testing strategy.

The model prediction that wastewater surveillance does not result in a high portion of false positives is not surprising. The
structure of our model assumes only a certain fraction of the campus population contributes to the wastewater samples
(fww ¼ 0.55 is the nominal parameter value). Indeed, not all members of the campus community will be equally represented
inwastewater samples.Wastewater surveillance enables themodel to identify a subpopulation of sicker individuals and focus
screening tests on this subpopulation. Of course, this also means that many individuals will not be within the group that is
administered wastewater-triggered screening tests. In practice, wastewater sampling should be used in tandem with some
traditional individual surveillance testing to address this issue. However, even in the moderate and severe scenarios, the
number of overall infections is never more than 5% higher when using wastewater-based surveillance testing as opposed to
traditional individual surveillance testing (Fig. 2C and E). Thus, it appears that for the scenarios considered here, the infections
that wastewater sampling misses do not lead to large outbreaks of infections.

3.2. Sensitivity analysis

For the set of model input parameters and prior distributions chosen to reflect conditions with low rates of viral trans-
mission and exogenous exposures, we find that nine parameters, out of 18 total, contribute significantly to variance in the
overall number of infections (Fig. 3). The criteria for “significance” is for the sensitivity index to be at least 1% of the total
variance in estimated cumulative infections, and for the 95% confidence interval to exclude 0. The nine sensitive parameters,
in order of their first-order sensitivity indices, are: the effective reproductive number (Rt, 35%), the number of new exposures
per exogenous shock (Nexo, 12%), the frequency of exogenous shocks (Texo, 6%), the fraction of the population contributing to
wastewater samples (fww, 4%), the amount of time between wastewater sample results return (Tww, 4%), the amount of time
for an infected individual to recover (Trec, 4%), the fraction of infected individuals who exhibit symptoms (psymptoms, 3%), the
amount of time for an exposed individual to become infectious (Tinc, 3%), and the amount of time required to complete
screening tests after a positive wastewater result (Ts,ww, 2%). We find a total sensitivity to Rt and its interactions with other
parameters of 63%. This highlights the importance of practical measures to reduce Rt, including reduced classroom and
residence hall capacities, limits on large gatherings, and mask mandates, for example.

The fact that two out of the top three parameters to which the total infection count is most sensitive are related to in-
fections of campus community members through interactions with external individuals (e.g., social events and interactions
off-campus) highlights the importance of campus and municipal public health measures to limit the spread of the virus. This
result also illustrates the practical impacts of members of the campus community making (or not making) safe and
responsible choices. We emphasize that these results employ prior distributions for the model input parameters that have
been chosen to reflect the conditions and characteristics of our home institution in Upstate New York. We include analogous
sensitivity analyses for hypothetical scenarios at a larger university situated within a community with higher rates of
transmission and a smaller college with a much lower student population and less active interactions with its surrounding
community (see Appendix B).

3.3. Risk analysis

We now turn to the question: Howwell can different wastewater surveillance strategies be expected to help maintain low
rates of infection on campus? In light of the model's sensitivities to Rt and Nexo, we examine the fragility of different
wastewater surveillance strategies using hypothetical scenarios in which the values for those parameters, and the
noncompliance parameter, fnc, are more severe than the default values from Table 1. We use a set of eight ensembles to
examine the reliability of maintaining fewer than 100 infections during any 14-day period (Imax,14<100) under different
policies for wastewater-triggered surveillance testing (Fig. 4). All scenarios use a lag time to initiate screenings of Tlag ¼ 1 day.
Rt, Nexo, and fnc are held fixed at either their nominal values (Rt ¼ 1.1, Nexo ¼ 15 new infections per week, and fnc ¼ 0.01 (1%)
noncompliance) or their high-risk values (moderate/severe cases: Rt ¼ 1.5, Nexo ¼ 30, and fnc ¼ 0.1). We assume that no
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additional traditional individual screening tests beyond those triggered by wastewater sampling are performed, and all other
model parameters are sampled from their prior distributions.

Under nominal conditions, the reliability is about 89% when screenings are completed within 1 day (Ts,ww ¼ 1), excluding
the 1-day lag time to initiate the screenings (Fig. 4A). As the time to complete the screening tests increases, the perceived
reliability increases to 100% (Fig. 4A, gray shading) while the actual reliability decreases to about 65% with a screening time of
8 days (orange shading). That this discrepancy between the perceived and actual reliability as screening time increases can be
seen in all of the higher-risk scenarios aswell (Fig. 4BeH). This demonstrates how failing to react in a timely fashion to signs of
viral RNA can lead to the perception of safety, while in reality the infection count is growing. Additionally, even though both
the control scenario and the high-noncompliance scenario yield perceived reliabilities of 100% for screening times longer than
3 days (Fig. 4A, C), higher rates of noncompliance lead to about 20e30 additional infections beyond the control scenario (see
Appendix B).

When Rt or Nexo are increased to their high-risk values, the actual reliability of maintaining Imax,14<100 is never greater
than 50% (Fig. 4B, D-H); the perceived reliability can be up to 76%, with a screening time of 5 days. This reveals the fragility of a
surveillance testing strategy that relies on wastewater sampling. Scenarios in which both Rt ¼ 1.5 and Nexo ¼ 30 lead to
outcomes in which even the perceived reliabilities do not exceed 20% (Fig. 4F, H). For these scenarios, the actual reliability is
0% if the time to receive screening results is longer than 2 days. This highlights the compound hazard associatedwithmultiple
drivers of risk on college campuses. Holiday parties, reuniting with friends after winter break, spending more time indoors
during winter, and (at some universities) spring break can all serve to increase both Rt and Nexo. This means that these high-
risk scenarios must be considered as possible, if not probable, real-world cases as colleges plan for their spring semesters.

We find that across all scenarios, completing the wastewater-triggered screening tests within 1 day of initiating the tests
maximizes the actual reliability of maintaining Imax,14<100. However, in addition to improving student health conditions by
maximizing the actual reliability for Imax,14<100, campus decision-makers in our hypothetical situation would want to also
maximize the perceived reliability (based on the perceived number of infections). We emphasize that in practice, the
perceived number of infections is the only information known to decision-makers; the actual number of infections is in-
formation only known to us here in our model experimental setting. In all scenarios except those with higher Rt combined
with higher Nexo, the perceived reliability is maximized by using a screening time of 4e5 days (Fig. 4AeE, G). In the two
scenarios with both higher Rt and higher Nexo, the perceived reliability is maximized by using a screening time of 2 days
(Fig. 4F, H). A time to receive screening results of 2 days appears to be a suitable compromise between (i) guarding against
high-risk scenarios (i.e., higher Rt and Nexo simultaneously) and (ii) balancing minimizing true infections against the practical
concern of minimizing the number of perceived (detected) infections.

4. Discussion

We have tuned an SEIR compartment model to represent scenarios of wastewater screening for SARS-CoV-2 at a hypo-
thetical university of 12,500 students during a time period inwhich the area is experiencing relatively low viral presence and
transmission, as well as low exposure of campus community members from the surrounding community. By developing and
implementing a model component for wastewater surveillance, we find that wastewater surveillance testing can be an
effective strategy to maintain a similar number of overall infections on campus to traditional individual surveillance testing
(Fig. 2). This result is conditioned on the assumed values and prior distributions for our parameters, which have been selected
to represent situations that might plausibly face our home institution, and is conditioned on campus health decision-makers
responding to signs of infection in a timely manner. These results are also meant to isolate and explore the impacts of
wastewater and traditional surveillance testing. As such, these results are also conditioned on an unvaccinated campus
population. In practice, campus populations will have members with both infection-driven and vaccine-driven immunity,
thereby increasing the efficacy of these surveillance testing approaches. However, the focus of this work is on comparing the
surveillance testing methods and exploring the sensitivities of the wastewater surveillance testing approach.

The discrepancy between the true infection count and the number of infections that campus health officials would know
about (the perceived number of infections) is striking (Figs. 2 and 4). Guarding against the worst-case scenarios that include
higher viral reproductive number, Rt, simultaneous with higher exogenous infections, Nexo, suggests that a time to screening
results of Ts,ww � 2 days (plus a 1-day lag to initiate the screenings) is critical for retaining any appreciable reliability of
keeping Imax,14<100 (Fig. 4F, H). However, in the other higher-risk scenarios, the perceived reliability is maximized by taking
Ts,ww ¼ 4 or 5 days (Fig. 4AeE, G). Across all scenarios, the actual reliability is maximized by taking Ts,ww ¼ 1 day, the fastest
time-to-results considered here. Thus, we suggest that a time of Ts,ww ¼ 2 days to complete wastewater-triggered screening
tests balances decision-makers’ desire to avoid a strategy that is fragile against higher-than-nominal risk factors, to minimize
the overall number of infections, and the practical importance of maintaining fewer than 100 perceived infections across any
14-day period (Fig. 4).

Exogenous infections and Rt are the parameters with the highest direct influence on overall number of infections (Fig. 3).
These results reflect the importance of taking practical steps to mitigate viral spread on campus and within the local com-
munity. For example, physical distancing, wearing masks, and vaccinations are all effective measures to reduce both of these
hazards. Additionally, the fact that Rt and the frequency and rate of exogenous infections have a stronger influence on overall
infection count than the characteristics of the surveillance testing protocol (wastewater or traditional) is likely attributable to
the relatively low prevalence and spread of virus in our main test case. In a supplementary experiment, we change the
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parameters’ prior distributions to represent the case of a large university (20,000 individuals) in an area with higher rates of
transmission and exogenous shocks and a small college (3000 individuals) in an area with low transmission and exogenous
shocks (see Appendix B). In the large university case, we find that the characteristics of the surveillance testing protocol
become more important than the frequency and rate of exogenous infections. The results for the small college case more
closely resemble our results for the hypothetical campus of Sec 3.2, with the exception that exogenous infections contribute a
relatively smaller portion to the variability in overall numbers of infections.

While our sensitivity analysis and preliminary risk analysis (see Appendix B) may appear to indicate that the lag time to
initiate screening tests based on a positive wastewater return is inconsequential for improving the reliability, the total
number of infections suffers with greater lag times. Furthermore, in many simulations, the prevalence of the virus is high
enough that once wastewater-based screening tests are initiated, they continue until the end of the semester (Fig. 1). Thus,
initiating screening tests within one day, in response to a positive wastewater signal, appears to be the best option tomitigate
higher numbers of subsequent infections.

We find that wastewater sampling leads to 410 infections over the course of the entire 100-day semester in the control
(low) forcing scenario, inwhich Rt¼ 1.1, Nexo¼ 15 newexogenous exposures eachweek, and fnc¼ 0.01. In the control scenario,
the traditional individual surveillance testing approach leads to 399 total infections. Thus, the 11 additional infections under
the wastewater surveillance plan represents an increase of about 2.8%. This difference is larger in the moderate (3.9%) and
severe (4.7%) forcing scenarios, but remains within 5%. In practice, deploying a blend of wastewater and traditional individual
screening approaches would mitigate the effects of this potential issue. Given these general similarities in outcomes, our
results suggest that, under nominal or moderate risk conditions, wastewater surveillance is a viable and noninvasive option to
monitor the campus population for signs of infection.

Our risk analysis results (Sec 3.3) suggest that perceived reliability - which is the only reliability that will be known in
practice - will generally be higher than the actual reliability of maintaining Imax,14<100. This is driven by the result that
wastewater sampling is targeted to a portion of asymptomatic cases (Fig. 2). Thus, in practice, we expect that a wastewater
sampling plan may appear to keep the overall infection count low, but asymptomatic cases will go unnoticed. By contrast,
traditional individual screening tests appear to overestimate the actual number of infections for low- or moderate-risk
scenarios (Fig. 2A, C). These results have profound practical implications. This result implies that universities that exceed
the 100-infection limit and were using a traditional individual surveillance testing approach may not have actually exceeded
the 100-infection threshold due to a prevalence of false positive results. On the other hand, universities that employ a
wastewater surveillance approachmay exceed the 100-infection threshold even if they have an apparent 14-day running total
infection count below 100 infections.

Consistent with the results of Paltiel et al. (2020), through our global sensitivity analysis, we find that the sensitivity and
specificity of the screening tests do not play a central role in contributing to the uncertainty in the overall number of in-
fections. This is, of course, conditioned on the prior distributions that we have chosen for the sensitivity and specificity
parameters, which exclude sensitivities less than 70% and specificities less than 95%. As new testing methods become
available, it may be necessary to update these prior distributions. Uncertainties in the testing sensitivity and specificity are
dwarfed by the uncertainties in on-the-ground conditions and campus health response, including the effective reproductive
number (Rt) and the frequency and rate of infections of campus community members from off-campus interactions (Fig. 3).
Additionally, we have chosen the prior distributions for all of the model parameters in order to best represent the conditions
facing our home institution in New York State. The choices for the specific forms and parameterizations of these distributions
involve many subjective choices, which offer opportunities for further exploration. For example, the times required to carry
out surveillance tests (Ts and Ts,ww) could be reparameterized as rate parameters and assigned gamma distributions as their
conjugate priors. Here, we retain the time lengths as parameters to reflect the fact that these time-scales are the decision
levers that would be directly manipulated by campus decision-makers by prescribing, for example, weekly surveillance
testing.

There are, of course, practical steps that a university may take to enhance the efficacy of a wastewater screening protocol
beyond what we have illustrated here in our stylized model university. For example, after a wastewater sample result shows
signs of infection, our model assumes that all asymptomatic and exposed individuals who triggered the positive result are
within an identifiable group of size Nbuilding, but this group still interacts with other members of the campus community as
wastewater-triggered screening tests are administered. Spread of virus may be further mitigated by quarantining the affected
building(s). Additionally, our risk analysis focuses on examining howwastewater testing alone can be an effective tool to keep
overall infection numbers low. Our results from Sec 3.1 indicate that the reliability of maintaining Imax,14<100 infections can
likely be improved by complementing wastewater screening with traditional individual surveillance testing.

As with any model, the coarse nature of our model and the original model of Paltiel et al. (2020) means that the results
should not be taken as a prediction of specific future behavior or infection rates. Rather, these models serve as a tool to
evaluate the efficacy of various policy decisions to mitigate the spread of COVID-19 on college campuses, and the impacts of
uncertainties on infection rates. Our model for wastewater surveillance assumes that some constant fraction, fww, of in-
dividuals in the exposed and asymptomatic compartments can contribute to a positive wastewater signal. However, this is an
approximation of the reality that the levels of viral shedding inwastewater contributions varies with time during an infection.
Using an agent-based model might offer a pathway to represent the specific infected individuals on campus and track the
time-varying dynamics of their infectiousness, however the additional parameters required to represent these individuals are
not without their own uncertainties. Further, the sensitivity and risk analyses presented here require large ensembles of
1156



T.E. Wong, G.M. Thurston, N. Barlow et al. Infectious Disease Modelling 6 (2021) 1144e1158
model simulations, for which the computational efficiency of the compartmentmodel is critical. Additionally, time-variability
in the reproductive number, Rt, may become important as seasons change and, in cold and rainy areas, peoplewill spendmore
time indoors. Specifically, previous work has estimated awinter Rt of about 2.2, in contrast to a summer Rt of 1.3 (Kissler et al.,
2020). Our risk analysis indicates that such an increase of Rt would dramatically diminish the ability of universities to
maintain low infection rates (Fig. 4B). While the model does not explicitly represent contact tracing, a reduced value for Rt
would capture the broad effects on the spread of virus by stymieing the number of secondary infections. Thus, the lack of
explicit inclusion of contact tracing in the model does not detract for the risk analysis and sensitivity analysis results pre-
sented here. Taken together, these findings underscore the importance of mask and physical distancing mandates, morato-
riums on large gatherings, reduced classroom capacities, and striking a balance between in-person and online learning
modalities.

5. Conclusions

We have presented a model to represent wastewater screening and incorporated it into an existing SEIR compartment
model (Paltiel et al., 2020) to track the spread of an infection within a college campus community. We find that wastewater
surveillance is an effective approach to detect and remove infected individuals from circulating among the campus com-
munity. Under nominal or moderate-risk conditions, the model predicts that wastewater surveillance canmaintain an overall
number of infections similar to the performance of weekly traditional surveillance testing, while also dramatically reducing
the number of false positive cases (Fig. 2). A period of one day to receive a positivewastewater result, interpret it, and initiate a
plan for screening tests, combined with a period of 2 days to complete the screening tests, appears to form the most robust
strategy to maintain low infection rates. However, complementing a wastewater surveillance program with conventional
surveillance testing via nasal swabs would offer improvements. These results have practical importance for evaluating
sensitivities and vulnerabilities of strategies to mitigate the spread of COVID-19 on college campuses.
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