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Abstract

Buffaloes are raised by small farm holders primarily as source of draft power owing

to its resistance to hot climate, disease, and stress conditions. Over the years, trans-

formation of these animals from draft to dairy was deliberately carried out through

genetic improvement program leading to the development of buffalo-based enter-

prises. Buffalo production is now getting more attention and interest from buffalo

raisers due to its socioeconomic impact as well as its contribution to propelling the

livestock industry in many developing countries. Reproduction of buffaloes, however,

is confronted with huge challenge and concern as being generally less efficient to

reproduce compared with cattle due to both intrinsic and extrinsic factors such as

poor estrus manifestation, silent heat, marked seasonal infertility, postpartum anes-

trus, long calving interval, delayed puberty, inherently low number of primordial folli-

cles in their ovaries, high incidence of atresia, and apoptosis. Assisted reproductive

technologies (ARTs) are major interventions for the efficient utilization of follicle

reserve in buffaloes. The present review focuses on estrus and ovulation synchroni-

zation for fixed time artificial insemination, in vitro embryo production, intracytoplas-

mic sperm injection, cryopreservation of oocytes and embryos, somatic cell nuclear

transfer, the factors affecting utilization in various ARTs, and future perspectives in

buffaloes.
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1 | ESTRUS AND OVULATION
SYNCHRONIZATION FOR FIXED-TIME
ARTIFICIAL INSEMINATION

Artificial insemination (AI) is considered one of the major and widely

used biotechnologies in disseminating superior genetic material of

paternal origin in domestic animals. However, buffaloes are generally

known to exhibit “silent heat” phenomenon, causing difficulties in

estrus detection due to poor expression of estrus resulting in the less

precise timing of AI, low conception rate, and ultimately to low calf

production (Zicarelli, 1997). Consequently, tremendous research

efforts have been exerted to improve pregnancy in buffaloes, focusing

on induction of ovulation to achieve more precise timing of AI and

increase pregnancy rate. For almost three decades, extensive work

and improvement in the efficiencies have been achieved following the

development of the original ovulation synchronization protocol:

Ovsynch in dairy cattle (Pursely et al., 1995).

1.1 | Estrus synchronization (ES) in buffaloes

Hormonal synchronization of estrus and AI technologies are indis-

pensable reproductive technology tandem for buffalo propagation.

Manipulation of luteal phase by hormonal treatment has been applied

for shortening or extending this stage of estrous cycle by administra-

tion of prostaglandin (PG) and progesterone (P4), respectively.

The major hormone involved in the synchronization of estrus in

luteal phase buffaloes is the PG. Earlier insemination using prostaglan-

din F2 alpha (PGF2α) and its synthetic analogs in buffaloes have been

reported (Brito et al., 2002; Chantaraprateep, 1987; Kamonpatana

et al., 1987). PG causes lysis of the corpus luteum (CL) during the

responsive phase, especially between 5 days after ovulation and

5 days before the next estrus (Chantaraprateep, 1987), and a conse-

quent decrease in the levels of P4 within 24 h after administration

leading to the development of follicles of the next wave (De Rensis &

L�opez-Gatius, 2007; Galina & Orihuela, 2007). Table 1 shows various

ES protocols and results enhancing estrus manifestation and detec-

tion, thereby facilitating the use of AI for genetic improvement pro-

grams. The conception or pregnancy rates vary from 21 to 86% with

the highest pregnancy rate achieved in PG double dose 11–12 days

apart + hCG protocol (Situmorang & Siregar, 1997).

In buffalo reproduction, difficulty in estrus detection hindered the

accurate timing of AI, thus, leading to a low conception rate. Enhanc-

ing PG-based ES with either gonadotropin-releasing hormone (GnRH)

or human chorionic gonadotropin (hCG) at the time of AI increases

the pregnancy rate from 20% to 37% (Atabay et al., 2020). The use of

T AB L E 1 Estrus synchronization protocols and results in swamp and riverine buffaloes using luteolytic and luteotropic agents or in
combination with other hormones

Breed
type Hormone used

Observed
estrus, %

Conception/
pregnancy after AI, % References

Swamp PG single dose 43.33–79.10 33.21–41.68 Jiang et al., 2003; He et al., 2005; Liang et al., 2007

PG single dose + CIDR 86.13–100 37.00–46.03 Jiang et al., 2003; Gabriel et al., 2019

PG single dose + PMSG 73.01–84.5 43.48–45.6 Jiang et al., 2003

PG single dose + GnRH or

hCG

97.37–100 21.05–38.70 Atabay et al., 2020

PG double dose 11–12 days

apart

100 21.70–83.87 Chantaraprateep et al., 1981; Chirachaikitti et al., 1982;

Chantaraprateep et al., 1983; Capitan et al., 1992;

Yuan et al., 2008; Sianturi et al., 2012

PG double dose 11–12 days

apart + hCG

81.30–100 50.00–86.6 Situmorang & Siregar, 1997

PRID - 47.0 Chantaraprateep et al., 1983.

PRID + PMSG 6.30–45.60 47.16–50.00 Feng et al., 1990; Jiang et al., 2003

CIDR 57.5–78.02 56.52 Cai et al., 2011

CIDR + GnRH 75.0 55.00 Cai et al., 2011

Norgestomet 36.0 30.77 Virakal et al., 1988

Norgestomet + PMSG 45.5 39.13 Virakal et al., 1988

Riverine PG single dose 75.0–100.0 41.5–80.0 Pant & Singh, 1991; Khattab et al., 1996; Ribeiro et al., 1998;

Brito et al., 2002

PG double dose 11–12 days

apart

25.0–95.0 22.8–83.0 Chohan et al., 1993; Diaz et al., 1994; Singh & Dabas, 1998;

Misra et al., 2003; Srivastava, 2005.

Norgestomet + E2 60.0–100 30.0–70.0 Phadnis et al., 1994; Patel et al., 2003

Norgestomet + eCG 86.0–97.6 44.6–66.7 Luthra et al., 1994; Malik et al., 2011

Norgestomet + PG 100 45.0–66.7 Utage et al., 2010; Chaudhary et al., 2015

Abbreviations: CIDR, controlled internal drug release; E2, estradiol; eCG, equine chorionic gonadotropin; GnRH, gonadotropin releasing hormone; hCG,

human chorionic gonadotropin; PG, prostaglandin; PMSG, pregnant mare serum gonadotropin; PRID, progesterone releasing intravaginal device.
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GnRH and PGF2α was proven to be very successful in synchronizing

estrus in cattle and buffaloes (Amaya-Montoya et al., 2007) for timed

insemination.

1.2 | Ovulation synchronization (Ovsynch) and
fixed time artificial insemination (FTAI) in buffaloes

Several years after the successful outcome of Ovsynch in dairy cattle

(Pursely et al., 1995), FTAI technology has been successfully applied

in buffaloes (Baruselli et al., 2002; Baruselli, Madureira, Visintin,

et al., 1999). To date, synchronization of estrus and ovulation in tan-

dem with FTAI is widely practiced in buffaloes (Alyas et al., 2013;

Atabay et al., 2019; Campanile et al., 2005; Kalwar et al., 2015;

Ravikumar & Asokan, 2008). The ovarian activity is manipulated so

that the time of ovulation can be predicted. This is achieved by con-

trolling the luteal phase of the estrous cycle or controlling the follicu-

lar development and ovulation through hormonal interventions using

different combinations of PG, P4, GnRH, hCG, eCG, and estradiol (E2)

(De Rensis & L�opez-Gatius, 2007). The original Ovsynch protocol is

done by administration of GnRH at day 0, PGF2α at Day 7, second

GnRH on Day 9, and FTAI 16 h later (Pursely et al., 1995).

FTAI program provides an organized approach to the enhanced

use of AI, the genetic progress, and the improved reproductive effi-

ciency of dairy and beef cattle (Baruselli et al., 2004; Pursely

et al., 1995). In buffaloes, hormonal treatments have been designed to

control both luteal and follicular functions, providing exciting possibili-

ties for the synchronization of follicular growth and ovulation that

enabled the use of timed artificial insemination (TAI) during the breed-

ing and nonbreeding season (Baruselli, Madureira, Barnabe,

et al., 1999; De Rensis et al., 2005). Satisfactory pregnancy rates of

approximately 40–60% have been achieved with the Ovsynch proto-

col in cycling buffalo synchronized during the breeding season (Ali &

Fahmy, 2007; Baruselli, Madureira, Visintin, et al., 1999; Berber

et al., 2002; Neglia et al., 2003). However, anestrous buffaloes

respond poorly to the Ovsynch protocol and have lower pregnancy

rates after TAI during the nonbreeding season (Ali & Fahmy, 2007;

Baruselli et al., 2007; De Rensis et al., 2005). There are still various

factors that limit or reduce the effectiveness of these protocols such

as the presence of noncycling cows (seasonal anestrus), asynchronous

ovulation, incomplete luteal regression, and luteal sub-function. To

rescue acyclic animals, several hormonal protocols have been

employed. Previous studies have shown that P4 concentration during

the late luteal phase before insemination is positively associated with

conception rates in cattle. In some parts of the Mediterranean coun-

tries where riverine and swamp buffaloes are raised, the supplementa-

tion of P4 with Ovsynch protocol to improve the synchronization rate,

ovulation rate, and pregnancy rate has been employed with different

degrees of efficacy (Barile et al., 2001; Bartolomeu et al., 2002;

Chaikhun et al., 2012; Murugavel et al., 2009). One reason for variabil-

ity in the effectiveness of the Ovsynch protocol is related to asyn-

chrony between induced ovulation and insemination.

Treatment with intravaginal P4 devices followed by eCG at device

removal has been used to increase ovulation rate, CL growth rate, ini-

tial P4 concentration, and pregnancy rate after FTAI in buffalo during

the nonbreeding season (Carvalho et al., 2013). Hormonal interven-

tions have been developed to control ovarian dynamics and allow the

use of AI without heat detection. Table 2 shows the use and results

on percent estrus manifestation and pregnancy obtained in Ovsynch-

based protocol by several researchers.

Numerous strategies were developed to evaluate the efficiency

of the Ovsynch protocol in buffaloes (Atabay et al., 2019; Baruselli,

T AB L E 2 Estrus and conception rates following various Ovsynch-based FTAI protocols in buffaloes

Treatment protocol Observed estrus, % Conception after AI, % References

Ovsynch 46.3–100 28.0–66.6 Ali & Fahmy, 2007; Atabay et al., 2019; Bartolomeu

et al., 2002; Berber et al., 2001; Campanile

et al., 2005; De Araujo Berber et al., 2002;

Derar et al., 2012; Francillo et al., 2005; Hoque

et al., 2014; Liang et al., 2007; Neglia et al., 2003;

Presicce et al., 2004; Ravikumar et al., 2009;

Sathiamoorthy et al., 2007; Sianturi et al., 2012

Ovsynch + FTAI 12 and 24 h

after 2nd GnRH

- 18.0–59 Akhtar et al., 2013; Camelo et al., 2002; Chaikhun,

Tharasanit, & Rattanatep, 2010; Karen &

Darwish, 2010

Presynch + Ovsynch 83.3 - Chaikhun, Promdireg, & Suthikrai, 2010

Select synch 100 77.14–100 Sianturi et al., 2012; Yendraliza et al., 2011

GnRH+ PGF2α + LH - 64.2 De Araujo Berber et al., 2002

CIDR-Ovsynch 58.3–100 18.18–66.67 Atabay et al., 2019; Alyas et al., 2013; Campanile

et al., 2005; Chaikhun et al., 2012; Kalwar

et al., 2015; Murugavel et al., 2009

CIDR-Ovsynch + hCG on day 9 97.0–100 58.04–60.38 Atabay et al., 2019, Tilwani et al., 2019

Norgestomet + Ovsynch - 71.4 Malik et al., 2010

SRIRATTANA ET AL. 3 of 26



Madureira, Barnabe, et al., 1999; Baruselli, Madureira, Visintin,

et al., 1999; Berber et al., 2002; Chaikhun, Promdireg, &

Suthikrai, 2010). These works provided evidence that buffaloes

respond to hormonal treatment and that a new follicular wave emer-

gence occurs due to the ovulation of the dominant follicle present at

the time of the first GnRH injection. Purohit et al. (2019) emphasized

the importance of having a dominant follicle and CL at the start of the

treatment, achieving a pregnancy rate of 45–50% in cycling buffaloes

during the breeding season.

Carvalho, Vannucci, et al. (2007) documented an increase in preg-

nancy rates and birth rates with the administration of GnRH 6 days

after FTAI in buffaloes on the Ovsynch protocol. This GnRH adminis-

tration induced the formation of accessory CL to increase the plasmic

concentration of P4 and resulted to a positive effect on the pregnancy

rate and birth rate (Campanile et al., 2010; Ferrer et al., 2021). The

formation of an accessory CL and supplementation of P4 after insemi-

nation increased the plasma P4 concentration, which is very important

in the preparation of the uterine environment for subsequent

development of the embryos to term. When Ovsynch protocol is used

during spring and summer when a high incidence of anestrous was

observed, 5–35% pregnancy rates were obtained (Atabay et al., 2019;

Baruselli et al., 2002; Baruselli, Madureira, Visintin, et al., 1999;

Chaikhun, Tharasanit, & Rattanatep, 2010).

The protocol using controlled internal drug release synchroniza-

tion (CIDR-Synch) is basically the same with Ovsynch except that

CIDR is inserted at day 0 during the injection of the first GnRH, and

removed at the time of injection of PGF2α at day 7. Chaikhun et al.

(2012) reported that CIDR-Synch could induce estrus and ovulation in

anestrus swamp buffalo during the breeding season with an average

ovulation time after second GnRH injection of 10 � 5.6 h. Therefore,

AI should be applied at the same time as the second GnRH

injection in swamp buffalo cows. The P4 supplementation with

Ovsynch protocol produces synchronous follicular wave emergence,

large preovulatory follicles and synchronous ovulation and thus the

efficacy of timed-AI is improved. In cycling cows, this positive effect

of P4 supplementation can be related to the fact that CIDR acts to

maintain elevated blood P4 concentrations before FTAI (Chaikhun

et al., 2012).

A further modification of Ovsynch protocol in buffaloes, which

involves the use of exogenous P4, is the norgestomet implant and

intramuscular injection of estradiol benzoate (EB) on a random day of

the estrous cycle (Day 0). Five to 9 days later, the implant is removed

and intramuscular doses of PGF2α and eCG are administered. Forty-

eight hours after the removal (day 7–11), ovulation is induced by the

administration of GnRH or hCG. FTAI is performed 16 h after the

induction of ovulation, resulting in improved AI efficiencies (Atabay

et al., 2019; Baruselli et al., 2003; Carvalho, Nagasaku, et al., 2007).

Moreover, the combination of P4 and E2 at the beginning of the

protocol (day 0) is effective in inducing the emergence of a new follic-

ular wave due to the suppression of both FSH and LH, which promote

the atresia of all follicles present in the ovary in buffalo (reviewed by

Baruselli et al., 2007). Previous studies demonstrated that P4

treatment stimulates an increase in LH pulse frequency during and

following treatment period. Treatment of anestrous cows with P4

results in greater follicular fluid volume and circulating concentrations

of E2, increased pulsatile release of LH, and increased number of LH

receptors in granulosa and theca cells in preovulatory follicles (Rhodes

et al., 2002). Furthermore, a short period of elevated P4 concentra-

tions during the anestrous period is important for the expression of

estrus and subsequent normal luteal function (McDougall et al., 1992).

Gabriel et al. (2019) determined the effects of different PG analogs on

P4 level, follicular growth, estrus manifestation, and pregnancy in dairy

buffaloes under CIDR Synch Protocol. Their study revealed that estrus

manifestation, follicle size, and pregnancy rate were not significantly

different among the animals that received different PG analogs during

CIDR-based FTAI program.

Treatment with eCG at the time of device removal increases the

follicular diameter, ovulation rate, CL diameter, P4 concentrations, and

pregnancy rate (Carvalho et al., 2013). These results confirm the

necessity of eCG in Ovsynch protocols for FTAI during the nonbreed-

ing season. Similarly, replacing second GnRH with hCG as ovulatory

hormones resulted in satisfactory follicular response, ovulation rate,

and pregnancy rate during the nonbreeding season (Atabay

et al., 2019; Carvalho et al., 2012). In addition, the use of Ovsynch

protocol during the breeding season and P4 + EB, PGF2, and eCG pro-

tocol during the nonbreeding season resulted in a pregnancy rate of

approximately 50% in a single FTAI. Therefore, the FTAI program can

be used throughout the year to efficiently schedule conception and

the calving period in buffalo.

In a recent study, a third GnRH injection was given to swamp buf-

faloes during the normal AI time (AI must be done 24 h after the sec-

ond GnRH injection) as part of the Ovsynch protocol. The ovulation

rate and pregnancy rate were improved from 80 to 100% and 34%

(n = 50) to 50% (n = 45), respectively (Chaikhun-Marcou et al.,

unpublished data). This research is ongoing in generating more data.

In other research, kisspeptin-10 administration was compared with

GnRH administration to see which one produced higher LH levels dur-

ing luteal phase in swamp buffalo cows, and the result showed that

the LH concentration level with GnRH administration was greater

than kisspeptin-10 (Chaikhun-Marcou et al., 2019).

Lastly, the efficiency between pre-synch protocol and with

Ovsynch protocol was compared in Argentinean buffaloes; however,

no statistical differences were found between the treatment groups

(Konrad et al., 2010). Essentially, the success of the application of cer-

tain protocol is affected by various factors, and this must be seriously

taken into consideration in the implementation of timed AI in water

buffaloes.

2 | IN VITRO EMBRYO PRODUCTION

The multiple ovulation and embryo transfer (MOET) in buffaloes

resulted in very low recovery of embryos from the nonsurgical collec-

tion. The average number of embryos collected from a donor was 1.0

(Drost et al., 1988; Vlakhov et al., 1986), 2.0 (Cruz et al., 1991) 2.7

(Misra, 1993), 4.5 (Kasiraj et al., 1993), 1.6 (Kandil et al., 2012), 2.7
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(Qin et al., 2012), and 5.8 (Singh et al., 2015). These outputs cover the

trials made in Bulgaria, India, Philippines, Egypt, and China (Hufana-

Duran & Duran, 2015). This technology is one of the biotechnologies

of reproduction that is supposed to be most utilized in the world to

produce a high number of in vivo embryos. In the buffalo species,

however, the application meets several difficulties and the embryo

recovery rate is definitely lower than that recorded in cattle (Neglia &

Bifulco, 2017). The state of art of MOET in buffaloes and analysis of

the factors that limit and influence its efficiency were elaborated ear-

lier (Hufana-Duran & Duran, 2015; Neglia & Bifulco, 2017). Due to

the scarce results of in vivo embryo recovery in superovulated buffa-

loes, the association of ovum pick-up (OPU) with in vitro embryo pro-

duction (IVEP) represents an alternative method of exploiting the

genetics of high yield buffaloes (Baruselli et al., 2018). With the above

considerations, the production of buffalo embryos using IVEP tech-

nique become an alternative to MOET.

The pioneering works in the production of buffalo embryos from

follicular oocytes by in vitro maturation (IVM), in vitro fertilization

(IVF), and in vitro culture (IVC) have resulted in the birth of calves out

of embryo transfer (ET) using freshly produced river buffalo embryos

(Madan et al., 1994), crossbred 50:50 river: swamp embryos (Ocampo

et al., 2000), and vitrified in vitro produced river buffalo embryos both

in the river (Galli et al., 2012; Hufana-Duran et al., 2004) and swamp

(Hufana-Duran et al., 2007) buffalo recipients including twins

(Hufana-Duran et al., 2008).

2.1 | Laboratory and culture conditions

In carrying out the IVEP in buffalo, studies showed that a complete

aseptic condition is necessary and in vitro manipulation procedures

were found best at an appropriate temperature (35–37�C), pH (7.1 to

7.4), osmolarity (280–300 mOsmol), minimum exposure to UV light,

and IVC in a humidified CO2 incubator at 38–39�C (Hufana-

Duran, 2008; Ravindranatha et al., 2003). It was found that oocytes

from juvenile donors lack the developmental requirements while

those from adult donors have a high incidence of chromosome abnor-

malities. The sequential steps involved in IVEP are collection of

oocytes by retrieval from abattoir-derived ovaries or by ovum pick up

(OPU) from live donors, selection of developmentally competent

oocytes, and IVM to mature the oocyte, sperm capacitation and IVF,

and IVC for embryo development.

2.2 | Sources of oocytes

2.2.1 | Collection from abattoir ovaries

Collection of ovaries from the local abattoir is a requisite of IVEP

research and the common ovary storage used was physiological saline

with (Hufana-Duran et al., 2004) or without antibiotics (Abdoon

et al., 2001). Developmental competence of oocytes was found

affected by the ovary storage temperatures; within 6 h is best stored

at 25–33�C (Hufana-Duran, 2008) and beyond 6 h, 15�C is preferred

(Atabay, Atabay, Aquino, et al., 2010). Oocyte recovery from ovaries

is best done by follicular aspiration using an 18-gauge needle

(Mehmood et al., 2011) and to preserve oocyte viability Tissue Cul-

ture Medium-199 (TCM199) with 10% fetal calf serum (FCS) buffered

with 25-mM HEPES and 5-mM sodium bicarbonate

(Gasparrini, 2002), prewarmed modified phosphate-buffered saline

(m-PBS) with 3 mg/ml bovine serum albumin (BSA) (Hufana-Duran

et al., 2008) or 5% (v/v) heat-inactivated FCS (Hegab et al., 2009)

were used as holding and washing media.

2.2.2 | Collection by transvaginal ultrasound-guided
ovum pick up

To produce embryos in vitro from oocytes of live donors, OPU is

used. OPU involves ultrasound-guided follicle aspiration for the recov-

ery of oocytes that allows great use of genetically valuable females.

Studies showed that repeated OPU has no major impact on the health

of female donors (Boni et al., 1996) and can be applied to cycling and

lactating postpartum buffaloes (Promdireg et al., 2005), donors of all

ages from two-month-old calves to very old cows with exception of

pregnant animals after the third or fourth month of pregnancy (Duran

et al., 2013), and animals with severe ovarian hypoplasia or during the

immediate postpartum period (Galli et al., 2001).

The technique of OPU in buffaloes is the same in cattle with the

step-by-step procedure described earlier (Hufana-Duran &

Duran, 2015). Antral follicles ≥2 mm in diameter are aspirated from

each ovary using stainless steel needle of 50 cm (Aquino et al., 2013)

to 55 cm (Manjunatha, Ravindra, et al., 2008) long with a 0.1-cm diam-

eter or 18-gauge to minimize mechanical damage to the oocyte. The

ultrasound echo tip is 5-MHz (Manjunatha, Ravindra, et al., 2008) to

9-MHz (Sakaguchi et al., 2019) micro-convex transvaginal transducer

to aspirate the oocytes from the follicles using a negative pressure of

40 mmHg (Liang et al., 2008; Neglia et al., 2011), 68 (Ferraz

et al., 2015), 55–70 mmHg (Sakaguchi et al., 2019), or 110 mmHg

(Manjunatha, Gupta, et al., 2008) depending on the machine. Studies

showed that checking the quality of the cumulus cells surrounding the

oocytes is needed for each machine.

The efficiency of OPU is affected by various factors such as the

frequency and length of the collection. Females submitted to OPU

every 14 to 15 days had a larger (P < 0.001) number of ovarian folli-

cles suitable for puncture (15.6 � 0.7 vs. 12.8 � 0.4) and an increased

(P = 0.004) number of cumulus-oocyte complexes (COCs) recovered

(10.0 � 0.5 vs. 8.5 � 0.3) compared with 7-day interval (Konrad

et al., 2017). From the retrieved COCs, average of 5.2 � 3.9 are

selected to continue the in vitro maturation process with 3.1 � 2.6

COCs/animal/aspiration session considered viable according to the

morphological characteristics of the COCs (Di Francesco et al., 2012).

A twice-a-week collection allows for the maximum recovery of

oocytes of suitable quality for embryo production (Yindee et al., 2011)

while a once-a-week collection results in the recovery of a smaller

number of oocytes (of lower quality) that have already undergone

SRIRATTANA ET AL. 5 of 26



cumulus expansion and atresia (Duran et al., 2013). Gupta et al. (2006)

found that OPU has no side effects even after twice-a-week collec-

tions for over a year. In some cases, though, hardening of the surface

of the ovaries occurred after several months of repeated collections, a

decline in the follicle recruitment, and oocytes collection with a drop

in developmental competence after the first 2 months of recovery

(Neglia et al., 2011). It was reported that a combination of superovula-

tion with OPU to recover the oocytes before the onset of estrus can

be repeated at best every 2 weeks (Galli et al., 2001). Prior stimulation

in buffaloes with gonadotrophins (Promdireg et al., 2005) or bovine

somatotropin (Ferraz et al., 2015) or pharmacologically synchronized

follicular waves (Gimenes et al., 2015) before OPU is known to

increase the number of medium and large-sized follicles. OPU during

the breeding season yielded a better oocyte recovery and better-

quality embryos after IVEP (Abdoon et al., 2014) and has its own ther-

apeutic effect on infertile donors, especially those affected by ovarian

cysts (Duran et al., 2013). In vitro produced embryos from OPU

resulted in births of live calves after embryo transfer (Aquino

et al., 2013; Galli et al., 2012; Prasad et al., 2013) demonstrating the

potential of the in vitro embryo production as a tool in the production

of genetically valued water buffaloes and in overcoming the various

reproductive problems that affect the reproduction of this animal

species.

The mean number of good oocytes collected from a buffalo ovary

ranges from 0.43 to 3.3 oocytes/ovary (Sharma et al., 2013). Compe-

tence and efficiency of the person doing the aspiration, breed and

health condition of donor, size of the ovary, number of follicles pre-

sent in the ovary, presence or absence of CL, the season of the year

(Manjunatha, Ravindra, et al., 2008), and the inherent low follicular

reserve in buffaloes (Smith, 1990) affect the number of oocyte

retrieval.

2.3 | Oocyte selection and in vitro maturation

Oocyte selection is critical for IVEP in water buffalo and the selection

is based on the compaction of the cumulus-corona investment and

homogeneity of the ooplasm (Hufana-Duran, 2008). The time required

for complete nuclear maturation of oocytes in vitro is from 18 to 24 h

(Gasparrini et al., 2008) and the length can be determined by the

appearance of the surrounding cumulus cells where oocytes with a

compact cumulus cell mass require a longer period of IVM while those

with loose cumulus mass require a shorter period for optimum blasto-

cyst development (Hufana-Duran, 2008).

The quality of oocytes is important in ensuring the production of

viable embryos in vitro. A decrease in developmental competence is

due to insufficient nuclear and cytoplasmic maturity brought about by

the limitations in the IVC environment. Increased oxidative stress was

found as a major factor affecting in vitro embryo development

(Gasparrini et al., 2000). Ultrastructural studies showed an abundance

of cytoplasmic granules characterized by significant lipid content

(Hufana-Duran, 2008) that probably renders the buffalo oocytes and

embryos more sensitive to oxidative damage.

The critical factor in the IVM environment is the provision of the

support needed for signals that enhances the mechanisms to acquire

developmental competence by the oocyte. Culture media and its com-

ponents play an important role and can be categorized into simple and

complex (Gasparrini, 2002). TCM 199, Ham’s F-10, CR1aa, and CR2aa,

MEM, mSOF, and RPMI-1640 are used as basic media and made com-

plex by the supplementation with either serum (Hufana-Duran, 2008)

or follicular fluid (Gupta et al., 2002), growth factors (Chauhan

et al., 1998), hormones (Abdoon et al., 2001), antioxidants (Gasparrini

et al., 2006), and a controlled level of antibiotics to provide protection

from bacterial contamination.

2.4 | Sperm capacitation and in vitro fertilization

The success of IVF in water buffalo is significantly influenced by bull

fertility, the medium used, and the duration of IVF (Suresh

et al., 2009). Separation of live sperm cells for IVF by swim-up proce-

dures (Jamil et al., 2007), ion-exchange filtration (Mustafa

et al., 1998), or centrifugation using discontinuous density gradients

of percoll (Purohit et al., 2005) or silica particles (Hufana-Duran

et al., 2005) improved success rate. Appropriate sperm concentration

is necessary as too high could result in polyspermy while too few

sperm could result in a low fertilization rate. Sperm capacitation nec-

essary for the sperm to penetrate and fertilize an egg can be

enhanced using various media such as Brackett & Oliphant medium

with 2.5-mM caffeine and 10 μg/ml heparin (Hufana-Duran

et al., 2004; Madan et al., 1994; Nandi et al., 1998) or theophylline

(Hufana-Duran, 2008) or a mixture of phenylephrine, hypotaurine,

and epinephrine (Purohit et al., 2005), or osteopontin (Boccia

et al., 2013). Oocytes partly freed from cumulus cells enhance sperm

penetration and promote a higher fertilization rate. Sperm-oocyte co-

culture for IVF is carried out for 6 to 18 h depending upon the compo-

sition of the IVF medium. It is necessary to examine the best duration

of sperm-oocyte co-culture as differences exist depending on the IVF

media formulation, sperm concentration, and bull used (Gasparrini

et al., 2008). The use of sex-sorted sperm cells for IVF in water buffalo

was successfully demonstrated resulting in the birth of calves of pre-

determined sex (Liang et al., 2008; Lu et al., 2007). Accuracy of sexing

is around 90% in water buffalo, and a 4% difference in DNA contents

between X- and Y-chromosome-bearing spermatozoa was observed

(Lu et al., 2007). Embryos produced from IVF using silica gel isolated

sperm cells (Hufana-Duran et al., 2005) and sex-sorted sperm cells

(Liang et al., 2008; Lu et al., 2007) resulted in the birth of live healthy

calves.

2.5 | IVC and blastocysts development

The culture of embryos in vitro requires the necessary nutrients and

appropriate environment (temperature, humidity, gas) so that the fer-

tilized oocytes can undergo cleavage divisions and be able to reach

the blastocyst stage of development. Several culture media have
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been tested in the culture of buffalo embryos and all resulted in

the development of blastocysts: CR1aa, CR2aa, TCM-199, MEM,

RPMI-1640, and mSOF media (Gasparrini, 2002; Suresh et al., 2009).

The effectiveness of each medium formulation depends mainly on

providing the appropriate combination of antioxidants, co-culture,

growth factors, and gas phases. The methods used in IVC of

bovine embryos by co-culture with cumulus cells (Hamano &

Kuwayama, 1993) and the sequential media system containing pyru-

vate and lactate and different concentrations of serum and presence

of glucose (Hufana-Duran, 2008) resulted in full-term development

after embryo transfer (Hufana-Duran et al., 2004, 2007, 2008). Glu-

cose has been required by buffalo embryos for their proper develop-

ment from the earliest cultivation (Kumar et al., 2012). It was

observed that removal of the uncleaved oocytes during IVC pro-

motes a better quality of embryos that reach the blastocyst stage

with blastocyst development ranging from 22% to 32%

(Gasparrini, 2002; Hufana-Duran, 2008; Suresh et al., 2009). Metab-

olism of water buffalo embryos is different from cattle evidenced by

the 12 to 24 h earlier development than bovine embryos both under

in vitro and in vivo conditions (Galli et al., 2001; Ocampo

et al., 2000). Table 3 presents the breakthroughs in IVEP of water

buffalo.

3 | INTRACYTOPLASMIC SPERM
INJECTION (ICSI)

A micromanipulation technique that involves the injection of a single

spermatozoon into the cytoplasm of a mature oocyte is called ICSI. As

the egg will theoretically be fertilized using only a single sperm, this

method is considered a standard way to produce normal diploid

embryos. With regard to buffalo, ICSI became an alternative fertiliza-

tion technique for research and production purposes. Frozen buffalo

spermatozoa sometimes show immobility after thawing (Muer

et al., 1988), which may cause reduced fertility. This technique has

successfully been applied to buffaloes since 2006 (Lu et al., 2006).

3.1 | Application of buffalo ICSI

ICSI was applied in buffalo for the first time using the sex-sorted

sperm to produce sex-specific buffalo embryos (Lu et al., 2006). It is

beneficial in the preservation and conservation of endangered buffalo

species using frozen–thawed sperm or oocytes. With ICSI, reproduc-

tion of males with motility and fertilizing capacity problems as

observed in sex-sorted sperm cells and some sperm cells after cryo-

preservation can be made possible as it can improve pronuclear for-

mation and cleavage rate (Liang, Ye, et al., 2011) compared with IVF

(Liang et al., 2020). IVF with sex-sorted sperm that resulted in poor

embryo development can be improved via ICSI. ICSI-derived in vitro

production of buffalo embryos can reach 17–29% blastocyst rates

(Liang, Phermthai, et al., 2011).

3.2 | Factors affecting ICSI in buffalo

Chemical activation of oocytes is considered a key factor in buffalo

ICSI (Liang, Ye, et al., 2011). These authors found that without chemi-

cal activations, none of the buffalo oocytes could be fertilized by

sperm injection. This means that additional activation treatment is

necessary for meiosis completion, pronuclear formation, and embryo

development. In their report, the highest rate of second polar body

extrusion occurred at 3 h of activation with ethanol (EtOH) found as

the best chemical for activation when compare with ionomycin

(Io) (Liang, Ye, et al., 2011). After that, the oocytes showed second

polar body from both EtOH and Io groups were cultured in either

6-dimethylaminopurine (6-DMAP) or cycloheximide (CHX) and then

in vitro embryo cultured to examine embryo development to

T AB L E 3 Success rate on calf production of in vitro matured, fertilized, and cultured water buffalo embryos

Embryo production

method

Nature of

sperm

Resultant embryo

status before ET

Embryo

breed

Embryo recipient

breed

Calf production rate,

% (calf/recipient) References

Abattoir ovary,

IVM, IVF, IVC

Frozen–thawed Frozen–thawed Riverine

(2n = 50)

Riverine

(2n = 50)

23.1 (9/39) Kasiraj et al., 1993

Abattoir ovary, IVM,

IVF, IVC

Frozen–thawed Transferred fresh Riverine

(2n = 50)

Riverine

(2n = 50)

25.0 (4/16) Madan et al., 1994

Abattoir ovary, IVM,

IVF, IVC

Frozen–thawed Vitrified-warmed Riverine

(2n = 50)

Riverine

(2n = 50)

10.9 (6/55)

26.9 (7/26)

Hufana-Duran

et al., 2004,

2008

Abattoir ovary, IVM,

IVF, IVC

Frozen–thawed Vitrified-warmed Riverine

(2n = 50)

Swamp (2n = 48) 10.0 (4/40) Hufana-Duran

et al., 2007

Abattoir ovary, IVM,

ICSI, IVC

Sex-sorted Transferred fresh Riverine

(2n = 50)

Riverine

(2n = 50)

200.0 (2/1)

(twins)

Lu et al., 2007

OPU, IVM, ICSI, IVC Sex-sorted Transferred fresh

Frozen–thawed

Riverine

(2n = 50)

Riverine

(2n = 50)

20.6 (7/34)

9.0 (4/43)

Liang et al., 2008

Abbreviations: IVC, in vitro culture; IVF, In vitro fertilization; IVM, In vitro maturation; OPU, Ovum pick up.
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blastocyst stage. The combination of Io + 6-DMAP showed highest

(29%) blastocyst rates but no significant differ with EtOH + CHX

(24%) (Liang, Ye, et al., 2011).

3.3 | Frozen–thawed buffalo oocytes affecting the
developmental ability of ICSI-derived embryo

After cryopreservation or treatment with cryoprotectant (CPA), struc-

tural changes in the zona pellucida (ZP) have been shown to reduce

fertilization rates (Carroll et al., 1990; Vincent et al., 1990), but this ZP

hardening could be overcome by ICSI (Carroll et al., 1990; Karlsson

et al., 1996; Kazem et al., 1995; Mavrides & Morroll, 2002; Porcu

et al., 1997). Liang reported buffalo oocytes vitrified by the microdrop

method and activated by EtOH and CHX after ICSI (Liang, Phermthai,

et al., 2011). In this study, the blastocyst rates in the ICSI control

groups (23%) were significantly higher than those of vitrified groups

(11%). In another oocyte vitrification study, oocytes that extruded the

second polar body after ICSI and activation revealed that only a

minority (7–20%) of the vitrified oocytes compared with 46–48% of

the control oocytes also had two pronuclei, indicating that normal

activation is compromised by vitrification (Liang, Srirattana,

et al., 2012).

4 | CRYOPRESERVATION OF OOCYTES
AND EMBRYOS

The scarcity of oocytes is a major drawback for exploiting embryo

technologies in buffaloes. Therefore, cryopreservation can be a useful

technique to avail buffalo oocytes for various reproductive technolo-

gies. There are two methods applied to the cryopreservation of

oocytes and embryos: controlled slow freezing, which was favored in

early procedures, and ultra-rapid cooling by vitrification, which is now

a widely used method. Conventional slow freezing was first intro-

duced in 1971, which has become the cornerstone of slow freezing of

embryos (Whittingham, 1971). This method basically involves the use

of a single cryoprotectant in low concentrations (approximately 1 to

2 M) minimizing chemical and osmotic toxicity. However, during slow

cooling, ice crystal formation occurs, which is the major cause of

cryoinjury and cell death following cryopreservation (Fuller &

Paynter, 2004). Meanwhile, over the past several years, vitrification

has become an alternative method for oocyte/embryo cryopreserva-

tion that minimizes cellular damage wherein ice crystal formation is

prevented by the viscosity of the high concentrations of cryoprotec-

tants in vitrification media (Vajta, Holm, et al., 1997). Vitrification is

generally defined as the glass-like solidification of solutions at low

temperatures due to the increased concentration of cryoprotectant

during cooling, without the formation of intracellular ice crystals

(Rall & Fahy, 1985). It is being described as an inexpensive, fast, and

simple procedure (Stachecki et al., 2008) compared with the slow

freezing method. The principle of slow freezing and vitrification of

oocytes and embryos has been extensively reviewed elsewhere

(Hwang & Hochi, 2014; Konc et al., 2014; Leibo & Songsasen, 2002;

Mandawala et al., 2016).

4.1 | Cryopreservation of buffalo embryos

Both slow freezing and vitrification techniques are used for buffalo

embryo cryopreservation, and pregnancies as well as live calves from

slow-freezing (Galli et al., 2011) and vitrified–warmed embryos

(Hufana-Duran et al., 2004, 2007, 2008) have been achieved. To date,

cryopreservation of buffalo embryos is mainly carried out by vitrifica-

tion, as shown in Table 4.

The most commonly used vitrification protocol applied to any

embryo stage in buffaloes is the two-step equilibration in a combina-

tion of permeating cryoprotective agents (CPAs), most often ethylene

glycol (EG) and dimethyl sulfoxide (DMSO). The protocol was reported

to be effective for buffalo embryos with good post-thaw in-vitro

development using in-straw vitrification (Manjunatha, Gupta,

et al., 2009) and solid-surface vitrification (SSV) method (Rahangdale

et al., 2021). High survival rates of compact buffalo morula and blasto-

cyst development were achieved following the use of EG as sole vitri-

fication solution or in combination with DMSO (Rahangdale

et al., 2021). In contrast, lower cryosurvival rate of buffalo morula

stage embryos was reported if compared with blastocyst stage

embryos (Manjunatha, Gupta, et al., 2008; Manjunatha, Ravindra,

et al., 2009). Hufana-Duran et al. (2004), however, demonstrated no

significant differences in the hatching rates (75–90%) among vitrified-

thawed embryos at the morula, early blastocyst, blastocyst, and

expanded blastocyst stages, following vitrification with EG-based

solution. As to the type of vitrification containers, several devices

have been applied for buffalo embryo vitrification such as French

straw (Hufana-Duran et al., 2004), Cryotop (Laowtammathron

et al., 2005), open pulled straw (OPS) (Sirisha et al., 2013), and SSV

(Rahangdale et al., 2021). High hatching blastocyst rate (90%) and

birth of live calves were reported following vitrification of buffalo

embryos at the early stage (Hufana-Duran et al., 2004). Meanwhile,

somatic cell nuclear transfer (SCNT) buffalo blastocysts were found

more tolerant to vitrification yielding a higher survival rate than

bovine blastocysts using Cryotop (Laowtammathron et al., 2005). In

addition, OPS was found to be superior over slow freezing for the

cryopreservation of zona-free cloned buffalo blastocysts with

improved cryosurvival rates at post-warming (Sirisha et al., 2013).

Meanwhile, OPU technique has been successfully applied to buffaloes

(Atabay et al., 2008; Boni et al., 1996; Galli et al., 2014). Vitrified blas-

tocysts derived from OPU oocytes resulted in significantly higher

blastocyst hatching rates (53%) than vitrified blastocysts derived from

slaughterhouse oocytes (40%) (Manjunatha, Gupta, et al., 2008).

Essentially, though vitrification technologies have been applied on

buffalo embryos more successfully than slow freezing methods

(Sirisha et al., 2013), buffalo embryos are found more cryosensitive

compared with bovine or ovine embryos, thus optimization of the pro-

tocol considering several factors can improve embryonic

development.
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4.2 | Cryopreservation of immature buffalo
oocytes

To date, there has been no consistent oocyte cryopreservation

method established in buffaloes, unlike in other livestock species such

as in cattle (Vajta, Hyttel, & Callensen, 1997). The development of

procedures for decreasing the detrimental effects of vitrification on

buffalo oocytes is needed to increase oocyte availability for reproduc-

tive technologies.

Oocytes collected from slaughterhouse-derived ovaries are at the

germinal vesicle (GV) stage in which the genetic material is contained

within the nucleus. Because this stage has no spindle present, GVs are

assumed to be less prone to chromosomal and microtubular damage

during cryopreservation. Possible damages of the meiotic spindle, and

other cytoskeletal elements and zona hardening, which could have

occurred during vitrification of buffalo oocytes at metaphase of the

second meiotic division (MII), can be overcome by cryopreservation of

buffalo immature oocytes (Chen et al., 2003) involving optimized

cryodevices and CPAs (Table 5). Earlier works using traditional French

straws on GV stage buffalo oocytes reported a high postwarming

survival but poor maturation rates (Dhali et al., 1999, 2000; Wani,

Maurya, et al., 2004). Wani, Misra, and Maurya (2004) reported the

first successful production of buffalo blastocysts from vitrified imma-

ture GV-stage oocytes. High concentration of the CPAs has proven to

be more efficient, wherein higher cleavage and blastocyst rates were

obtained from oocytes cryopreserved in 6- and 7-M DMSO, EG, pro-

panediol (PROH), and glycerol (GLY) compared with oocytes cryopre-

served in lower concentrations (3.5–5 M). Subsequent works reported

higher maturation rates (40%, 43%, 40%, and 24%) from buffalo

immature oocytes vitrified in 7-M DMSO, EG, PROH, and GLY (Wani,

Misra, & Maurya, 2004). Furthermore, a high blastocyst rate (15%)

from vitrified-warmed GV-stage buffalo oocytes with the combination

of CPAs such as EG, DMSO, and trehalose was described

(Abd-Allah, 2009). Recently, different vitrification solutions and

various cryodevices were compared with assess the developmental

competence of buffalo cumulus oocyte-complexes vitrified at GV

T AB L E 4 Vitrification of buffalo embryos using various protocols and devices

Embryo
source

Stage of
embryos

Equilibration
solution Vitrification solution Devices Survival rate References

IVF Morula

Early BL

BL

Expanded BL

10% EG 2 min 40% EG + 18% Ficoll

1 min

Straw Morula 91%

Early BL 80%

BL 75%,

Expanded BL 90%

Hufana-Duran

et al., 2004

SCNT BL 10% EG + 10%

DMSO 2 min

20% EG + 20% DMSO

30 s

Cryotop 87%–89% Laowtammathron

et al., 2005

IVF BL 10% EG + 10%

DMSO 4 min

25% EG + 25% DMSO

45 s

Straw SH-derived oocytes 40%

OPU-derived oocytes 53%

Manjunatha,

Ravindra,

et al., 2008

IVF Morula a.10% EG a.40% EG Straw 2 and 4 min in group c

yielded reasonable results

Mor. 46%–51%
BL. 68%–72%

Manjunatha, Gupta,

et al., 2009BL b.10% GLY + 10%

EG

c.10% EG + 10%

DMSO 2, 4,

6 min

b.25% GLY + 25% EG

c.25% EG + 25% DMSO

45 s

IVF Morula

BL

10% EG + 10%

DMSO 4 min

25% EG + 25% DMSO

45 s

Straw Mor. 45% w/o CB

53% w/CB

BL. 66% w/o CB

75% w/CB

Manjunatha,

Ravindra,

et al., 2009

SCNT BL 7.5% EG + 7.5%

DMSO 1 min

15% EG + 15% DMSO

30 s

Straw Conception rate: 11%–25% Saha et al., 2013

SCNT BL 8.5% EG + 8.5%

DMSO 5 min

16% EG + 16% DMSO

35–40 s

OPS 71% Sirisha et al., 2013

SCNT BL 8.5% EG + 8.5%

DMSO 5 min

16% EG + 16% DMSO

35–40 s

OPS Domestic buffalo as donor:

50%

Wild buffalo as donor: 38%

Priya et al., 2014

IVF Morula 4% EG 15 min 35% EG + 0.5 M sucrose

+ 0.5% PVP 45 s.

SSV Compact morula 59.0 � 1.94,

blastocyst 32.0 � 1.10

Rahangdale

et al., 2021

7.5% EG + 7.5%

DMSO 4 min

15% EG + 15% DMSO+

0.5 M sucrose 45 s

SSV Compact morula 49.0 � 1.63,

Blastocyst 29.0 � 1.63

Abbreviations: BL, blastocysts; CB, cytochalasin B; DMSO, dimethyl sulfoxide; EG, ethylene glycol; GLY, glycerol; OPS, open-pulled straw; OPU, ovum-

pick-up; PVP, polyvinyl pyrrolidone.
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stage (El-Shalofy et al., 2017). The highest survival rate (97%), matura-

tion rate (76%), cleavage rate (47%), and blastocyst development rates

(24%) of the COCs were achieved in SSV group compared with those

vitrified using traditional straws or those vitrified using OPS. In

addition, the use of VS1 solution (20% EG plus 20% DMSO) was

found more effective than VS2 solution (20% EG plus 20% GLY). This

work clearly shows that the combination of SSV and 20% EG + 20%

DMSO could be used effectively to vitrify GV stage buffalo COCs

(El-Shalofy et al., 2017). While DMSO has been used for the vitrifica-

tion of oocytes in buffalo (Wani, Maurya, et al., 2004), it has been

reported however that DMSO adversely affects the developmental

processes of oocytes (Vincent et al., 1990). Most recently, the

replacement of DMSO with 5% PVP on EG + sucrose vitrification

solution protects buffalo oocytes from cryoinjury and supports the

meiotic progression of oocytes in-vitro after vitrification and warming

(Jannatul et al., 2020).

Pretreatment of immature buffalo oocytes with cytochalasin B

(CB) for their cryopreservation in SSV and cryotop vitrification

methods failed to increase the viability, maturation, or embryo devel-

opment of vitrified oocytes (Liang, Rakwongrit, et al., 2012). Sharma

and Loganathasamy (2007) provided evidence that the meiotic stage

affects survival rates of buffalo cumulus-oocyte complexes submitted

to vitrification and/or warming with higher survival for matured

oocytes compared with immature ones. The low efficiency of vitrified

GV stage buffalo oocytes can be attributed to the lower penetrability

of GV-stage membrane compared with MII stage emphasizing the

effect of cryopreservation on uncoupling of cumulus cells and

oocytes, leading to poor maturation rates of vitrified immature

oocytes.

4.3 | Cryopreservation of matured buffalo oocytes

Comparative evaluation of efficiency between slow freezing and

vitrification of invitro matured buffalo oocytes resulted in success-

ful embryo development following vitrification (Atabay, Atabay, de

Vera, et al., 2010; Gautam et al., 2008). In the MII stage oocyte,

the cumulus cells surrounding the oocyte are expanded, microfila-

ments of actin are involved in cell shape and movements, and

microtubules form the spindle apparatus (Manjunatha, Gupta,

et al., 2008; Manjunatha, Ravindra, et al., 2008). Accordingly, the

oocyte stage (GV or MII) affects the composition and permeability

of the plasma membrane, which determines its sensitivity to cryo-

preservation (Agca et al., 1998; Le Gal et al., 1994). In most spe-

cies, MII stage oocytes survive cryopreservation at higher rates

than GV stage ones (Otoi et al., 1995; Somfai et al., 2012).

Although vitrification of MII stage buffalo oocytes also worked bet-

ter than that of GV stage ones (Sharma & Loganathasamy, 2007),

the subsequent embryo-development competence was still lower

than the fresh oocytes. To overcome problems of container vol-

umes, several devices have been applied for buffalo MII oocyte vit-

rification by using very small amounts of solution and submerging

the sample quickly into the LN2 (Table 6). This includes SSV

(Atabay et al., 2013; Boonkusol et al., 2007; Gasparrini

et al., 2007; Liang, Rakwongrit, et al., 2012), Cryoloop (Gasparrini

et al., 2007), Cryotop (Atabay et al., 2013; Attanasio, Boccia,

et al., 2010; Liang, Rakwongrit, et al., 2012; Muenthaisong

et al., 2007; Wang et al., 2016), straws (Gautam et al., 2008), and

microdrop (Liang, Srirattana, et al., 2012). Cryotop has been suc-

cessfully applied for IVM oocytes and SCNT blastocysts

(Laowtammathron et al., 2005; Parnpai et al., 2004, 2016). On the

other hand, parthenote blastocysts were obtained from invitro

matured buffalo oocytes vitrified using SSV and French straw,

which resulted in less damage and better blastocyst development

(Boonkusol et al., 2007).

Cryotop method has resulted in excellent survival and develop-

mental rates in human and bovine oocytes (Kuwayama et al., 2005).

Attanasio, De Rosa, et al. (2010) reported the blastocyst production

after IVF of vitrified matured oocytes, proving the feasibility of Cryo-

top in buffalo. To date, Cryotop has been successfully proven to vit-

rify buffalo embryos and MII-stage oocytes, which retain the

capability to develop into blastocyst following parthenogenetic activa-

tion, SCNT, IVF, and ICSI (Atabay & Atabay, 2017; Liang, Srirattana,

et al., 2012). Most recently, a more advanced form of Cryotop

method, known as Cryotech has been widely used in the human

oocyte (Kuwayama et al., 2005) and in bovine embryo vitrification

with 47% pregnancy rate (Gutnisky et al., 2013). Report on the use of

Cryotech in buffaloes has not been available so far. On the other

hand, microdrop was effective in terms of buffalo oocyte recovery,

survival, and embryo developmental rates (Liang, Srirattana,

et al., 2012).

On the type of permeable cryoprotectants, a mixture of EG

and DMSO has been widely used for buffalo MII oocyte vitrifica-

tion (Atabay et al., 2013; Attanasio, Boccia, et al., 2010; Gautam

et al., 2008; Liang, Srirattana, et al., 2012; Muenthaisong

et al., 2007). The exposure time in CPAs is considered a critical fac-

tor that requires balancing between preventing the formation of

intracellular ice and preventing toxic injury. Evidence showed that

buffalo oocytes exposed in 7.5% EG and 7.5% DMSO (without

cooling) for 4 min gave a similar blastocyst rate (22%) as that of

control (23%) but not in the 7- and 10-min exposure groups with

14%–15% blastocyst rates, respectively (Muenthaisong et al., 2007).

The low development rate after warming has been attributed to

the high lipid content in buffalo oocytes, cytoskeleton damage dur-

ing freezing, and plasma membrane enriched with cholesterol or

unsaturated fatty acids, making it more sensitive to chilling injuries.

Most recently, supplementation with 0.6 mg/ml L-carnitine during

IVM improves the buffalo oocytes’ survival, IVF rates, and subse-

quent embryo development, which had been associated with

improved mitochondrial activity, enhanced β-oxidation, and reduced

levels of reactive oxygen species (Liang et al., 2020). Finally, the

addition of cytoskeleton stabilizers, such as CB has been demon-

str5ated to reduce injury to oocytes during vitrification. Treatment

with 8 mg/ml CB prior to vitrification had a positive effect on the

developmental capacity of vitrified buffalo oocytes (Wang

et al., 2016).
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T AB L E 6 Vitrification of buffalo matured oocytes using various protocols and devices

Equilibration solution Vitrification solution Devices Survival rate BL rate Reference

SSV: 4% EG 12–15 min

CLV: 7.5% EG + 7.5%

DMSO 3 min

SSV: 35% EG + 5%

PVP + 0.4 M trehalose

25–30 s

CLV: 16.5% EG + 16.5%

DMSO 25 s

SSV, CLV SSV + cumulus cell: 95.8%

SSV - cumulus cell: 84.6%

CLV + cumulus cell: 98.5%

CLV - cumulus cell: 81.4%

SSV + cumulus cell:

1.5% SSV cumulus

cell: 7%

CLV + cumulus cell: 0%

CLV cumulus cell: 2.8%

Gasparrini

et al., 2007

SSV: 4% EG 5–10 min

Straw: 4% EG 5–10 min

SSV: 35% EG + 5%

PVP + 0.4 M

Trehalose 25–30 s

Straw: 40% EG + 5%

PVP + 0.4 M

Trehalose 1 min + LN2

vapor 3 min

SSV,

straw

SSV: 89.3%

straw: 81.8%

SSV: 13.6%

straw: 5.5%

Boonkusol

et al., 2007

7.5% EG + 7.5% DMSO

4 min

7 min

10 min

15% EG + 15% DMSO

1 min

Cryotop MII/vitrified: 66%–71%
enucleated/vitrified:

69%–71%

MII/vitrified:

4 min: 10%

7 min: 9%

10 min: 8% enucleated/

vitrified:

4 min: 9%

7 min: 7%

10 min: 7%

Muenthaisong

et al., 2007

a. 10%, 25%, 40% EG

each 1 min

b. 10%, 25%, 40%

DMSO each 1 min

c. 10% EG + 10%

DMSO 1 min

d: 10% EG + 10%

PROH 1 min

a: 40% EG 1 min

b: 40% DMSO 1 min

c: 20% EG + 20% DMSO

1 min

d: 20% EG + 20% PROH

1 min

Straw a. 85%

b. 92%

c. 96%

d. 95%

a. 1.66%

b. 2.29%

c. 5.49%

d. 2.74%

Gautam

et al., 2008

a. 7.5% EG + 7.5%

DMSO 3 min

b. 10% EG + 10%

DMSO 3 min

a. 16.5% EG + 16.5%

DMSO 20–25 s

b. 20% EG + 20% DMSO

20–25 s

Cryotop a. 84%

b. 85.6%

a. 6.4%

b. 7.8%

Attanasio,

Boccia,

et al., 2010

10% EG + 10% DMSO

3 min

20% EG + 20% DMSO

20–25 s

Cryotop 86%–92% 1.4%–8.0% Attanasio, De

Rosa,

et al., 2010

10% EG + 10% DMSO

1 min

20% EG + 20% DMSO 30

or 45 s

Microdrop 30 s: 96%

45 s: 91%

30 s: 11%

45 s: 7%

Liang,

Phermthai,

et al., 2011

VA: 10% EG + 10%

DMSO 1 min

VB: 4% EG 12–15 min

VA: 20% EG + 20%

DMSO 30 s

VB: 35% EG + 50 mg/ml

PVP 30 s

Microdrop

Cryotop

VA + microdrop: 93%

VA + Cryotop: 97%

VB + microdrop: 79%

VB + Cryotop: 81%

VA + microdrop: 8%

VA + Cryotop: 10%

VB + microdrop: 5%

VB + Cryotop: 11%

Liang,

Rakwongrit,

et al., 2012

7.5% EG + 7.5% DMSO

5 min

15% EG + 15% DMSO +

0.5 M sucrose

Cryotop

SSV

CTP cumulus (+): 85.93%

CTP cumulus (�): 82.67%

SSV cumulus (+):87.74%

SSV cumulus (�): 81.38%

CTP cumulus (+):

10.46%

CTP cumulus (�): 4.29%

SSV cumulus

(+):12.41%

SSV cumulus (�): 3.00%

Atabay

et al., 2013

10% DMSO and 10%

EG 1 min.

(with pre-treatment

with CB 8 μg/ml for

30 min)

20% DMSO, 20% EG and

0.5 M sucrose 30 s

Cryotop 2nd polar body formation:

CB + Cryotop:51.16%

Cryotop: 43.88%

17.08%

10.21%

Wang

et al., 2016

10% EG + 10% DMSO 20%EG + 20% DMSO Cryotop 0 mg/ml L-carnitine 96%

0.3 mg/ml L-carnitine 97%

0.6 mg/ml L-carnitine 97%

1.2 mg/ml L-carnitine 96%

0 mg/ml L-carnitine 4%

0.3 mg/ml L-carnitine

4%

Liang

et al., 2020

(Continues)

12 of 26 SRIRATTANA ET AL.



5 | SCNT

5.1 | Cloned buffalo embryo and offspring
production

Cloned swamp buffalo embryos were first successfully produced by

SCNT using fetal fibroblasts as the donor cells in 1999 (Parnpai

et al., 1999). In 2004, three recipients were pregnant after transferring

cloned swamp buffalo derived from fetal fibroblasts; however, no

recipient could carry to term (Saikhun et al., 2004). Simon et al. (2006)

also transferred cloned river buffalo embryos derived from fetal fibro-

blasts to the recipients but no pregnancy was found. In 2007, the first

SCNT swamp buffalo was successfully produced using granulosa cells

(Shi et al., 2007). After that, several cloned swamp and river buffalo

calves were successfully produced by the conventional SCNT (Wilmut

et al., 1997) and the handmade cloning (HMC) methods (Vajta, 2007)

by different workers using various donor cell types (Table 7).

5.2 | Epigenetic modification to improve buffalo
cloning efficiency

The overall efficiency of cloned animal production is still relatively low

(Zhang et al., 2021). Several abnormalities have been found in SCNT

embryos and offspring (Keefer, 2015; Niemann et al., 2002; Ogura

et al., 2013), which may be caused by incomplete epigenetic repro-

gramming of the donor cell during SCNT (Tian et al., 2003; Yang

et al., 2007). Epigenetic modifications such as DNA methylation and

histone modifications play an important role in embryonic develop-

ment (Niemann, 2016; Sproul et al., 2005). Aberrant epigenetic modi-

fications such as DNA methylation and histone acetylation, and also

abnormal gene expression patterns for example insulin-like growth

factors (IGF-1 and IGF-2) have been found in cloned buffalo embryos

when compared with those of IVF embryos (Jyotsana et al., 2016; Luo

et al., 2013; Mohapatra et al., 2015; Pandey et al., 2009; Saini

et al., 2016, 2017; Srirattana et al., 2014; Sun et al., 2015; Suteevun,

Parnpai, et al., 2006; Suteevun, Smith, et al., 2006).

Trichostatin A (TSA) is a hydroxamic acid inhibitor (Marks

et al., 2001) and is one of the most used histone deacetylase inhibitors

(HDACi) to improve cloning efficiency in many mammalian species

such as mice (Kishigami et al., 2006), rhesus monkeys (Sparman

et al., 2010), pigs (Zhang et al., 2007), rabbits (Shi et al., 2008), cattle

(Akagi et al., 2011), and cynomolgus monkeys (Liu et al., 2018). To

facilitate nuclear reprogramming, the donor cells were treated with

0.3-nM TSA for 48 h prior to SCNT. TSA treatment in donor cells

increased the cleavage and blastocyst rates and increased the histone

H4 lysine 8 acetylation (H4K8ac) level of SCNT swamp buffalo

embryos to a level equivalent to those of IVF counterparts (Luo

et al., 2013). Significant improvement in mouse cloning was found

when TSA was treated on reconstructed oocytes/embryos (Kishigami

et al., 2007). In SCNT swamp buffalo, treatment of TSA at 25 nM for

10 h on reconstructed oocytes could enhance embryo development,

but no beneficial effect on the DNA methylation level was observed

(Srirattana et al., 2014). When HMC river buffalo embryos treated

with 75-nM TSA for 10 h, the global level of histone H4 lysine 5 acety-

lation (H4K5ac) in blastocysts was increased and level of histone H3

lysine 27 trimethylation (H3K27me3) were decreased, however, the

global level of histone H3 lysine 18 acetylation (H3K18ac) was not

affected (Selokar et al., 2015). And it was concluded that TSA treat-

ment could not improve embryo development and offspring rate.

Scriptaid, 6-(1,3-Dioxo-1H, 3H-benzo[de]isoquinolin-2-yl)-

hexanoic acid hydroxyamide is a drug that acts as a Histone deacety-

lase inhibitor (HDACi). Scriptaid has proven less toxic than TSA in

cloned mice (Van Thuan et al., 2009), cattle (Wang et al., 2011), rabbit

(Chen et al., 2013), and pigs (Xu et al., 2013). Adding 500 and

1000 nM of Scriptaid for 10 h into embryo culture media increased

the blastocyst formation rate of HMC river buffalo embryos and

increased cell number in blastocysts (Panda et al., 2012). Similarly,

treatment of SCNT buffalo embryos with 500-nM Scriptaid for 24 h

increased blastocyst formation rate and also resulted in higher levels

of H3K18ac and lower methylation levels of global DNA at the blasto-

cyst stage, which was similar to fertilized counterparts (Sun

et al., 2015).

When donor cells were treated with TSA or 5-aza-20-

deoxycytidine (5-aza-dC), a DNA methyltransferase inhibitor (DNMTi)

prior to cloning, acetylation levels of these donor cells were increased

and methylation levels were decreased (Saini et al., 2016). Moreover,

treatment of 50-nM TSA and 7.5-nM 5-aza-dC in donor cells and/or

reconstructed oocytes increased blastocyst rates and decreased apo-

ptosis rate of HMC river buffalo embryos (Saini et al., 2017). How-

ever, valproic acid (VPA), another HDACi, treatment in donor cells

increased histone acetylation of the cells but could not increase the

blastocyst rate of HMC river buffalo embryos (Selokar et al., 2017).

Moreover, treatment of donor cells with another DNMTi, RG108

T AB L E 6 (Continued)

Equilibration solution Vitrification solution Devices Survival rate BL rate Reference

Fresh control 100% 0.6 mg/ml L-carnitine

8%

1.2 mg/ml L-carnitine

8%

Fresh control 19%

Abbreviations: CB, cytochalasin B; CLV, cryoloop vitrification; DMSO, dimethyl sulfoxide; EG, ethylene glycol; LN2, liquid nitrogen; MII, metaphase II

stage; PROH, propylene glycol (1, 2-propanediol); SSV, solid surface vitrification; VA, vitrification A solution; VB, vitrification B solutions.
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could decrease DNA methylation level in buffalo donor cells and could

increase the blastocyst formation rate of SCNT buffalo embryos (Sun

et al., 2016).

There are a number of reports that nonchemical and biological

agents were used for improving buffalo embryo production efficiency.

Transfection of 50-nM DNMT1 small interfering RNA (siRNA) to 1-cell

stage HMC buffalo embryos decreased levels of DNMT1 mRNA and

DNMT1 protein and increased blastocyst formation rate but did not

alter the DNA methylation level (Selokar et al., 2015). Treatment of

buffalo donor cells with cell-free extracts from buffalo matured

oocyte (BOE) decreased expression levels of HDAC1, and increased

H3K9ac level as well as OCT4 and NANOG pluripotency-related gene

expression levels in the donor cells. Moreover, HMC river buffalo

embryos produced from BOE-treated donor cells had similar OCT4,

NANOG, and SOX2 expression levels to those in IVEP blastocysts

(Sadeesh et al., 2017). microRNAs (miRNAs) are single-stranded non-

coding RNA molecule (about 22 nucleotides) that are involved in

oocyte maturation and fertilization (Gilchrist et al., 2016), embryo

development (Hossain et al., 2012), maternal-to-zygotic transition

(Mondou et al., 2012), and epigenetic reprogramming and pluripo-

tency (Onder & Daley, 2011). miRNA-145 is involved in early embry-

onic development (Tesfaye et al., 2009) and differentiation of stem

cells (Xu et al., 2009) and was found to be a higher expression in

cloned embryos than that in IVEP embryos. Treatment with an inhibi-

tor of microRNA-145 (80 nM) for 1 h after electrofusion could

decrease the apoptotic index and increase the blastocyst rate of HMC

T AB L E 7 Summary of the cloned buffalo offspring

Buffalo
type

Cloning
method Donor cell Blastocyst rate (%)

No. of
recipient

Pregnancy
rate (%) Calving rate (%) Reference

Swamp SCNT Fetal fibroblast 21.3 16 3 (18.8) 2 (12.5) one calf

died

Shi et al., 2007

Granulosa cell 22.2 5 1 (20.0) 1 (20.0) died after

14 days

River HMC Fetal fibroblast 24.0 5 1 (20.0) 1 (20.0) died after

5 days

Shah et al., 2009

Newborn fibroblast 33.0 8 2 (25.0) 1 (12.5)

River HMC Embryonic stem cell 27.3 6 2 (33.3) 1 (16.7) George et al., 2011

Swamp SCNT Fetal fibroblast 18.6 16 3 (18.8) 2 (12.5) Lu et al., 2011

River HMC Fetal fibroblast 30.7 4 1 (25.0) 1 (25.0) died after

4 h

Panda et al., 2011

River HMC Newborn fibroblast 41.7 9 1(11.1) 1 (11.1) died shortly

after birth

Saha et al., 2013

Fetal fibroblast 39.1 4 1 (25.0) 1 (25.0)

River HMC Fresh semen derived

epithelial cell

48.8 12 1 (8.3) 1 (8.3) Selokar

et al., 2014

Frozen semen derived

epithelial cell

51.4 10 2 (20.0) 1 (10.0) died after

12 h

Swamp SCNT Skin fibroblast 25.0 12 10 (83.3) 1 (8.3) Tasripoo

et al., 2014

River HMC Skin fibroblast 28.8 3 1 (33.3) 1 (33.3) Jyotsana

et al., 2015

River HMC Urine-derived epithelial

cell

50.4 5 1 (20.0) 1 (20.0) Madheshiya

et al., 2015

River HMC Skin fibroblast 50.0 4 1 (25.0) 1 (25.0) died after

21 days

Saini et al., 2016

Swamp HMC Fetal fibroblast 27.9 7 2 (28.6) 2 (28.6) Liu et al., 2018

River HMC Frozen thawed semen

derived epithelial

cell

One demicytoplast

12.7

8 1 (12.5) 1 (12.5) died after

12 days

Raja et al., 2019

Two demicytoplast

47.6

8 1(12.5) 1 (12.5)

River HMC Skin fibroblast 40.4 8 2 (25.0) 1 (12.5) Selokar

et al., 2019

River HMC Skin fibroblast 42.6 13 4 (30.8) 2 (15.4) Shyam et al., 2020

Abbreviations: HMC, handmade cloning; SCNT, conventional somatic cell nuclear transfer.
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river buffalo embryos (Sah et al., 2020). Other miRNAs play on embry-

onic development, miRNA-21 is involved in the regulation of apopto-

sis and miRNA-29b plays an important role in controlling DNA

methylation in cells. Treatment of miRNA-21 (40 nM for 1 h) and

miRNA-29b (40 nM for 1 h) mimics improved blastocyst quality,

reduced apoptosis, and altered gene expression but did not increase

the blastocyst rate of HMC buffalo embryos (Rashmi et al., 2019).

Canonical WNT (wingless-related mouse mammary tumor viruses)

signaling pathway has been reported to inhibit embryonic develop-

ment (Tepekoy et al., 2015). Dickkopf-1 (DKK1) is a secretory inhibi-

tor of the canonical WNT signaling pathway, which could increase

blastocyst formation, conception, and birth rates of HMC river buffalo

embryos (Shyam et al., 2020). DKK1 can also increase the preimplan-

tation development of bovine IVF embryos (Denicol et al., 2014).

Histone methylation plays an important role during embryonic

development and is regulated by histone methyltransferases and his-

tone demethylases (Jambhekar et al., 2019). Aberrant epigenetic

reprogramming of histone 3 lysine 9 trimethylation H3K9me3 was

found in cloned bovine (Pichugin et al., 2010; Santos et al., 2003),

mouse (Ribeiro-Mason et al., 2012), and rabbit (Yang et al., 2013)

embryos. Histone demethylase Kdm4d could regulate the level of

H3K9me3. In SCNT buffalo embryos, the expression level of Kdm4d

was significantly lower while the level of H3K9me3 was significantly

higher when compared with the IVEP buffalo embryos. Microinjection

of Kdm4d mRNA could correct the H3K9me3 level, increase the

expression level of ZGA (ZSCAN5B, SNAI1, eIF-3a, and TRC) and

pluripotency-related genes (POU5F1, SOX2, and NANOG) and pro-

mote the developmental ability of buffalo SCNT embryos (Feng

et al., 2021). Events of epigenetic modification such as histone acety-

lation, DNA methylation, and histone methylation should be deeper

studied during buffalo embryonic development. The effects of epige-

netic modulators on the full-term development of cloned buffalo

embryos are needed to be determined.

5.3 | Generation of transgenic buffalos

The production of transgenic animals has numerous potential applica-

tions in establishing human genetic disease models, producing phar-

maceutical proteins, and improving the growth performance and

disease resistance of farm animals (Laible et al., 2015). In 2018, Lu

et al. transfected enhanced green fluorescent protein (eGFP) into male

swamp buffalo fetal fibroblasts using the electroporation technique. A

total of 72 blastocysts produced from transfected donor cells were

transferred to 36 recipients and six recipients became pregnant. At

the end of gestation, the pregnant recipients delivered six healthy

transgenic calves and one stillborn transgenic calf (Lu et al., 2018).

Producing offspring with the desired sex is a significant goal in live-

stock production. The combination of CRISPR/Cas9-mediated gene

editing and SCNT techniques could apply to sexing preimplantation

embryos. The eGFP gene was integrated into the Y chromosome of

swamp buffalo fetal fibroblasts. When these cells were used as the

donor cells, the results showed that eGFP reporter is suitable for the

visualization of the sex of embryos (Zhao et al., 2020). Moreover, the

blastocyst rate of transgenic SCNT embryos was similar when com-

pared with that of the nontransgenic group (Zhao et al., 2020). This

report showed that the transgenic donor cells had no negative effect

on buffalo embryonic development. On the other hand, when human

insulin gene was transfected into buffalo fetal fibroblasts using

nucleofection and these transgenic cells were used as the donor cells,

the blastocyst rate of SCNT was lower than that of of nontransgenic

donor cells (Mehta et al., 2018). Moreover, when Venus construct

(derivative of the enhanced yellow fluorescent protein) was trans-

fected into river buffalo fetal fibroblasts using electroporation tech-

nique, the morula and blastocysts rates of HMC river buffalo embryos

produced by Venus transgenic cells were found lower than that of

nontransgenic cells (Kumar et al., 2018).

5.4 | Interspecies SCNT (iSCNT) in buffalo

iSCNT, where the recipient cytoplasm and donor nucleus are derived

from different species, provides an alternative tool for the preserva-

tion of endangered species using oocytes and recipients from related

domestic species (Beyhan et al., 2007). iSCNT buffalo blastocysts

were successfully produced using bovine oocytes as the recipient

cytoplast (Kitiyanant et al., 2001; Lu et al., 2005; Saikhun et al., 2004).

However, the mixing of two populations of mitochondrial DNA from

the buffalo donor cell and bovine recipient oocyte has been found in

iSCNT buffalo embryos (Srirattana et al., 2011). Incompatibility

between the nuclear and mitochondrial genomes is thought to be one

of the major causes of developmental arrest among iSCNT embryos

(Ogura et al., 2013). To improve iSCNT efficiency, treatment of

buffalo–bovine iSCNT reconstructed oocytes with 20-μM zebularine

(DMNTi) and 2-μM BIX-01294 (HDACi) could decrease the respective

levels of 5-methylcytosine and histone 3 lysine 9 dimethylation

(H3K9me2). The quality of iSCNT blastocysts was improved due to

the significant expression of OCT4 and CDX2 in BIX-01294 and CDX2

in zebularine treatments. However, treatment with zebularine and

BIX-01294 did not enhance developmental competence of iSCNT

embryos (Alsalim et al., 2018). For iSCNT, river buffalo donor cells

were transferred to swamp buffalo enucleated oocytes (Yang

et al., 2010). The result showed that the blastocyst rate of river-

swamp embryos was not different from the swamp–swamp embryos.

A total of 30 river-swamp blastocysts were transferred to 13 recipi-

ents, four recipients established pregnancy. While three of them were

aborted, one live river-swamp buffalo calf was born. These results

indicate that swamp-river buffalo embryos can develop to full term

(Yang et al., 2010). Moreover, buffalo oocytes also have the potential

to reprogram somatic cells from bovine and goat up to the blastocyst

stage (Selokar et al., 2011). In addition, wild buffalo iSCNT embryos

were successfully produced through HMC using recipient oocytes

from river buffalo (Bubalus bubalis) and skin fibroblasts from wild buf-

falo (Bubalus arnee) (Priya et al., 2014). The blastocyst rate of wild buf-

falo iSCNT embryos was about of 38–50% (Priya et al., 2014; Saini

et al., 2015). iSCNT could be used as an alternative approach in
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buffalo cloning. However, nuclear and mitochondrial genomes incom-

patibility, mtDNA heteroplasmy, embryonic genome activation of the

donor nucleus by the recipient oocyte, and availability of suitable fos-

ter mothers for iSCNT embryos are needed to be determined and

solved.

6 | CONCLUSION AND FUTURE
PERSPECTIVE OF ART IN BUFFALO

ART in buffaloes has achieved considerable success as shown by the

birth of live healthy riverine calves (2n = 50) out of in vitro produced-

vitrified embryos in both the riverine and swamp (2n = 48) buffalo

recipients, MOET produced embryos, embryos from OPU-derived

oocytes, sex-sorted sperm cells, and SCNT.

ES and fixed-time artificial insemination partly solved distinct

problems or the extrinsic factors affecting buffalo reproduction. The

window on estrus occurrence and time of ovulation can be synchro-

nized using Ovsynch protocols during breeding season and with P4-

based protocols in combination with gonadotropin, estradiol, equine

chorionic gonadotropin, human chorionic gonadotropin, and PG dur-

ing the nonbreeding season. Enhancing PG-based ES protocol with

gonadotropin (GnRH or hCG) had a beneficial effect on improving the

pregnancy rate. A deep understanding and wide knowledge of follicu-

lar dynamics in buffalo are necessary for developing new innovative

approaches and improving the currently used regimens for controlled

breeding. There is a need to focus on the correlation between ovarian

structures and endocrine milieu at various times points during hor-

monal treatment and the size of follicles at the time of insemination.

IVEP is a potential alternative in the production of desired ani-

mals. The quality of the oocytes, the components of the IVC medium,

the culture condition, and the quality of sperm cells are important

considerations in the success rate. Resultant embryos can withstand

cryopreservation and develop to term once given the appropriate con-

dition. With the poor ovulation response of buffalo, IVEP is a good

alternative in the production of genetically superior animals. With the

advancements in ICSI, reproduction among genetically superior bulls

with sperm motility and fertility problems and enhancing fertilization

using sex-sorted embryos become possible though the activation fac-

tor needs further improvement for a higher success rate.

Cryopreservation of oocytes has been found critically important

in the progress and practical application of reproductive biotechnol-

ogies in buffaloes. However, overall efficiency obtained with frozen/

thawed gametes and embryos remained low. Further research must

focus on the biochemical evaluation of various CPAs and careful

selection of the most effective CPAs along with efficient carrier

methods. The development of procedures for decreasing the detri-

mental effects of vitrification on buffalo oocytes is needed to increase

oocyte availability for reproductive biotechnologies. In addition, the

transfer of vitrified buffalo embryos from vitrified/warmed oocytes

into recipient animals to produce healthy calves must be seriously

pursued in order to prove the full developmental potential of the vitri-

fied/warmed buffalo oocytes. Moreover, variability of protocols with

varying efficiencies exists, thus there is a need for standardization of

protocols. The reduction of technical variations and mindfulness of

quality control of the vitrification system will enhance procedural con-

sistency, repeatability, and efficiency among laboratories. Therefore,

future research undertakings should be directed not only on improv-

ing the efficiency of the vitrification system but also to narrowing

down the variability of the manual system to achieve standardized

operation to increase the overall efficiency of oocyte and embryo

vitrification, especially in buffaloes.

Buffalo SCNT is a powerful tool for elite animal production, con-

servation of endangered species, and generating transgenic animals to

improve human health and animal production. However, the molecu-

lar mechanisms and full-term development of the cloned buffalo

embryos are still needing further investigation in order to improve

buffalo cloning efficiency.
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