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Abstract: Extrusion is a thermomechanical technology that has been widely used in the production
of various starch-based foods and can transform raw materials into edible products with unique
nutritional characteristics. Starch digestibility is a crucial nutritional factor that can largely determine
the human postprandial glycemic response, and frequent consumption of foods with rapid starch
digestibility is related to the occurrence of type 2 diabetes. The extrusion process involves starch
degradation and order–disorder structural transition, which could result in large variance in starch
digestibility in these foods depending on the raw material properties and processing conditions. It
provides opportunities to modify starch digestibility by selecting a desirable combination of raw food
materials and extrusion settings. This review firstly introduces the application of extrusion techniques
in starch-based food production, while, more importantly, it discusses the effects of extrusion on the
alteration of starch structures and consequentially starch digestibility in various foods. This review
contains important information to generate a new generation of foods with slow starch digestibility
by the extrusion technique.

Keywords: extrusion; starch structure; starch digestibility

1. Introduction

As the main source of carbohydrates and energy in the diet, starch has a critical role
for human health. Starch in food can be divided into rapidly digestible starch (RDS), slowly
digestible starch (SDS) and resistant starch (RS) according to its digestion rate and location
in the human gastrointestinal tract [1]. Consumption of RDS could lead to a rapid increase
in postprandial blood glucose levels, which can further induce chronic metabolic diseases
such as obesity, type 2 diabetes and cardiovascular disease [2]. SDS is slowly digested
and absorbed in the small intestine, which is helpful in terms of maintaining a stable
postprandial blood glucose and insulin response [3]. RS cannot be digested in the small
intestine, while it can be partially or completely fermented in the colon into short-chain
fatty acids, which play an important role in improving gut health [4]. The health benefits of
SDS and RS have encouraged both academia and industry to develop starch-based foods
with either slowly digestible or resistant starch properties.

Extrusion has been widely applied in the production of starch-based foods, such
as biscuits, pasta and breakfast cereals, due to its convenience, high production effi-
ciency and low cost [5]. During extrusion, food macronutrients including starch undergo
order–disorder structural transitions, such as starch gelatinization, degradation (breakage
of starch molecules) and retrogradation (e.g., the formation of amylopectin double helices
and amylose–lipid complexes) [5]. These starch structural alterations during extrusion are
largely related to the final starch digestibility in food products. Native starch granules are
inherently more difficult to digest compared to gelatinized starch, because of its natural
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crystalline and granular structures [6]. The digestion rate of gelatinized starch can be sig-
nificantly reduced after retrogradation, which promotes the formation of some short-range
and long-range ordered crystalline structures [7]. Therefore, depending on different sources
of starch raw materials and their distinct gelatinization/retrogradation properties, large
variance in starch digestibility could be created in the extruded foods [8]. Small variations
in extrusion processing conditions can also cause a significant difference in starch structural
ordering state after extrusion and consequently result in the distinct starch digestibility of
extruded foods [9]. Therefore, it is conceivable that by selecting a desirable combination of
starch raw materials and extrusion processing conditions, extruded food products can be
developed with slow starch digestibility.

This review aims to firstly introduce the extrusion technique and its application in the
food industry, followed by a comprehensive review on the effects of extrusion on starch
structures and digestibility, as well as corresponding mechanisms. Although some reviews
have discussed the effect of extrusion on starch digestibility, this paper attempts to explain
the digestibility of extruded starch from the perspective of different starch structure levels.
This review could thus act as the basis for the development of extruded starch-based foods
with slow starch digestibility (i.e., low glycemic index) in the future.

2. Brief Introduction of Extrusion Technique

The aim of this section is to briefly introduce the extrusion technique, which could
serve as the basis to better discuss and understand its effects on starch structures and
digestibility in following sections. For further details on the extrusion technique, readers
are encouraged to refer to other previous reviews [10].

According to the number of screws, extruders can be divided into single-screw, twin-
screw and multi-screw extruders (Figure 1) [11]. There is only one screw in the barrel of
single-screw extruders, which can transport feed materials by the friction between screw
and barrel. The shortcoming of single-screw extruders is that they can easily be blocked
and leak and are only suitable for simple cooking and molding. According to the rotation
direction and assembly mode of screws, twin-screw extruders can be further divided into
co-rotating and counter-rotating, and meshing and non-meshing extruders. They rely
on the engagement of two screws to convey materials forcibly, so feed materials do not
easily flow backwards. It also has a unique self-cleaning function and can adapt to more
complicated processing needs [11]. Therefore, twin-screw extruders are more widely used
compared to the single-screw extruders nowadays. Multi-screw extruders are rarely used
in food processing because of their difficult manufacturing [11].
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Figure 1. Types of food extruders, including (a) single-screw extruder, (b) twin-screw extruder,
(c) types of die openings and (d) co- and counter-rotating screw. Reprinted with permission from
Ref. [12]. 2022, Elsevier.

The extrusion process can be generally described as follows: raw material enters the
extruder from the feeding cavity and is transported forward in the barrel under the force of
the rotating screw. Due to the friction among the screw, material and inner wall of the barrel,
the material is strongly squeezed, stirred and sheared, resulting in further refinement and
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homogenization of the material. With the continuous increase in pressure and temperature
in the barrel cavity, the raw material could be melted and changed from a solid state to
fluid state when certain moisture content is present, accompanied by a series of physical
and chemical reactions. When the material is finally discharged from the die of the extruder,
the water from the extruded material evaporates quickly and produces a huge expansion
force owing to the instantaneous pressure drop, which causes the extruded material to
instantly expand, thereby forming a loose, porous and crispy expanded product [11,13].
Many physical, chemical and textural changes take place in the extrusion process, such as
starch gelatinization and degradation [14]. Readers are encouraged to refer to other com-
prehensive reviews to gain a better understanding of the effects of extrusion on structural
and property alterations in different food macronutrients [15,16].

There are many advantages of applying extrusion technology in food production.
For example, the die of the extruder can be designed into a variety of complex structures
(Figure 1c), thus giving the extruded food various shapes, such as rod, ball, tube, curved
cylinder and cone. After molding, the extrudate is cut into a suitable length by a blade
rotating along the surface of the die. In the extrusion process, functional ingredients or
fortified nutrients such as vitamins and minerals can be added to improve the nutritional
value of different foods and meet the dietary nutritional needs of special individual groups,
such as infants and the elderly. In addition, extrusion can be used as a pretreatment method
to improve the processing characteristics of raw materials or the functional characteristics of
food ingredients [17]. For example, extrusion can improve the hydration and gelatinization
properties of natural flour and increase its application potential in different food prod-
ucts [18]. The pregelatinized starch prepared by improved extrusion cooking technology
(IECT) showed improved gel stability and a lower short-term retrogradation rate [19].
Shorter amylopectin fragments with fewer intermolecular associations formed by extrusion
processing have the effect of retarding the staling of bread and cakes [20].

3. Effects of Extrusion on Starch Structures

Starch has a complex structure, which can be generally divided into five levels [21].
Individual starch chains are the first-level structure, which are further connected through
α-(1,6) glycosidic linkages into amylose or amylopectin molecules (second-level structure).
Amylopectin side chains (especially A and B1 chains) can form double helices into clus-
ters (third-level structure), with the branching points located in the amorphous area [22].
These semi-crystalline lamellae are alternated with amorphous growth rings (fourth-level
structure) into starch granules (fifth-level structure). The first- to second-level structures
are frequently referred to as the starch molecular structure, and the third- to fourth-level
structures can be generally referred to as the crystalline structure.

Each level of starch structure can potentially have a significant effect on the final
starch digestibility in different food products, depending on their order–disorder structural
transition during food processing, as well as their physical, chemical or combined modifica-
tions. The major difference in starch digestibility in various foods is related to whether the
starch is ingested native, gelatinized or retrograded. Native starch is inherently difficult to
digest as it has crystalline (such as long-range ordered structure (crystals) and short-range
ordered structure (double helices)) and granule structures (such as the size, shape and
surface morphology of starch granules) [6]. Crystalline and granule structures can thus
largely determine the starch digestibility at its native state [23]. For example, native potato
starch has a slower digestion rate than maize starch due to the lack of granule surface
pores [23]. Starch granules heated in the presence of water undergo an order–disorder
phase transition called gelatinization, which commonly involves water uptake, granular
swelling, the unwinding of double helices, loss of birefringence, starch solubilization and
viscosity development. After complete gelatinization, all starch crystalline structures (such
as hexagonal and orthorhombic crystals) would be destroyed, which can substantially
promote starch digestibility [24]. Dispersed starch molecules after gelatinization could
re-associate into crystallites through both inter- and intramolecular interactions during the
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cooling period [25], a process known as starch retrogradation. Hexagonal crystallites are
frequently formed with the progression of retrogradation [26]. Although the crystallites
or entanglements formed during retrogradation are less stable than those from the native
starch, these crystallites are still able to largely inhibit or restrict their binding affinity and
catalysis activity towards starch digestive enzymes due to their bulk configuration, which
can subsequently result in a slower starch digestion rate and higher RS content [27]. For
instance, the amount of RS and SDS is significantly increased after starch retrogradation on
cooling [28], possibly due to the formation of perfectly and imperfectly packed crystallites
during retrogradation, respectively. Starch molecular structures are thus the driving factors
in determining the starch digestibility in both gelatinized and retrograded states, as the
higher levels of starch structures, such as amylopectin double helices, have been destroyed
during gelatinization [29].

Therefore, it is conceivable that by modifying the order–disorder state of starch,
including the long-range ordered structure (crystals) and short-range ordered structure
(double helices), in various food products by extrusion could largely determine their starch
digestibility. The following section is thus focused on the effects of extrusion on different
levels of starch structures, aiming to elucidate the mechanisms by which extrusion affects
starch structures and digestibility.

3.1. Starch Molecular Structure

Starch is a glucose polymer, which can be divided into amylose and amylopectin.
Amylose typically accounts for 20–30% of starch and is an essentially linear molecule
linked with α-1,4-glycosidic bonds. Amylopectin is a highly branched molecule con-
nected by α-1,4 and α-1,6-glycosidic bonds. Starch molecules could undergo significant
degradation during extrusion, which has a critical effect on the physiochemical proper-
ties and digestibility of starch [30]. Therefore, a comprehensive characterization of starch
degradation degree during extrusion is crucial in terms of understanding the extrusion
processing–starch structure–starch property relations. Currently, starch molecular struc-
tures are frequently characterized by the chain-length distribution (CLD) and molecular
size distribution of amylose and amylopectin molecules [31]. Different techniques, includ-
ing size-exclusion chromatography (SEC), fluorophore-assisted capillary electrophoresis
(FACE), high-performance anion-exchange chromatography (HPAEC) and asymmetric
flow field fractionation (AF4), have been applied to obtain the starch CLD and molecu-
lar size distribution [32]. The advantages and limitations of each technique in terms of
characterizing the starch fine molecular structure can be found in earlier reviews [33].

The high temperature, pressure and mechanical shearing force in the extrusion process
can easily break hydrogen bonds among starch molecules, especially with the amylopectin
molecules [34]. As shown in Figure 2, the size distribution of fully branched Mazaca starch
(0% amylose) is wide and left-skewed at the beginning of extrusion, while the amylopectin
peaks of Gelose 50 corn starch (55% amylose) and Gelose 80 corn starch (85% amylose)
are much smaller [35]. As extrusion proceeds, amylopectin molecules are continuously
degraded and converge towards the maximum stable size, while there is a much less
significant change in the size distribution of amylose molecules [35]. Finally, the degraded
amylopectin and amylose molecules reveal a single size distribution peak. It seems that
amylopectin is more susceptible to shear degradation than amylose, possibly due to its large
molecular size and highly branched structure [35]. As a result, the proportion of molecules
in the molecular size range of amylose increases after extrusion due to the significant
degradation of amylopectin molecules into smaller molecules [36]. Table 1 shows the
changes in starch molecules and amylose content during extrusion. Many studies have
found that the amylose content of starch does not significantly change, regardless of
extrusion processing conditions [37–39]. Sarawong et al. [40] reported that the amylose
content of green banana flour increased significantly due to the cleavage of α-1,6 glycosidic
bonds of amylopectin under shearing force in the extruder. In contrast, the extruded high-
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amylose corn flour had decreased amylose content because of the leaching of amylose and
the formation of complexes with lipids [41].

Foods 2022, 11, x FOR PEER REVIEW 6 of 18 
 

 

changed by improved extrusion cooking 
technology (IECT); 

(2) B2 and B3+ chains of JFSS are converted 
to A and B1 chains after IECT treatment. 

High-amylose maize 
flour (HAMF), 

normal maize flour 
(NMF) 

Amylose content of HAMF considerably 
decreased, while that of NMF increased after 

extrusion. 

The decrease in amylose content in 
HAMF may be induced by its high 
amylose and lipid content, where 

excessive leaching of amylose is bound 
with free lipids to form amylose–lipid 

complex during extrusion. 

[41] 

 
Figure 2. Molecular size distribution evolution of Mazaca (upper), Gelose 50 (middle) and Gelose 
80 (bottom) starch during extrusion. The barrel was divided into 20 intervals along the conveying 
direction for sample collection purposes. Starch samples were collected at different barrel intervals 

Figure 2. Molecular size distribution evolution of Mazaca (upper), Gelose 50 (middle) and Gelose
80 (bottom) starch during extrusion. The barrel was divided into 20 intervals along the conveying
direction for sample collection purposes. Starch samples were collected at different barrel intervals
(e.g., 5, 8, 13, 18 and 20) after the torque of the extruder reached a steady state. Reprinted with
permission from Ref. [35]. 2022, ACS Publications.

On the other hand, SEC CLD results show that amylose also undergoes degrada-
tion during extrusion, causing the production of shorter amylose chains and the loss of
iodine binding capacity by these amylose chains [42]. Interestingly, amylopectin CLD
does not change significantly after mild extrusion, suggesting that degradation mainly
occurs near the branching points [19,39]. Meanwhile, extensive extrusion could further
degrade the α-(1, 4) glycosidic bonds in amylopectin chains [38]. Based on the results
of Brummer et al. [43], the significant cleavage of α-1,4 linkages would only occur when
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the product temperatures exceed 180 ◦C. Mechanical shear is believed to be the main
mechanism of starch molecular degradation during extrusion [14,44]. On the other hand,
heat energy can gelatinize starch and reduce its viscosity; thus, it may indirectly aid in the
degradation of starch molecules [36].

Table 1. Effects of extrusion on starch molecular structure.

Starch Type Changes in Starch Molecular Structure Mechanism Reference

Genetically modified
corn starches

(1) Amylopectin undergoes significant
degradation during extrusion, while the

size distribution of amylose does not
seem to vary notably;

(2) No qualitative differences in SEC
weight distributions of debranched starch

between native and extruded starches.

(1) The susceptibility of starch to shear
degradation depends on molecular size

and branching structure;
(2) The shear degradation of starch

during extrusion preferentially cleaves
off branch points (α-1,6-linkages).

[35,44]

Rice starch

(1) Most degradation by extrusion occurs
on amylopectin molecules;

(2) Chain-length distribution of
debranched rice starch and extruded

samples reveals no significant differences.

(1) Amylopectin is more sensitive to
degradation than amylose by extrusion
because of its higher branching degree

and larger molecular size;
(2) Glycosidic bonds near amylopectin

branching points are susceptible to shear
degradation during extrusion.

[19,39]

Wheat starch

Amylopectin fraction with high
molecular size decreases while the

fraction in the molecular size range of
amylose increases.

Preferential degradation on amylopectin. [36]

Green banana flour
Amylose content increases in green

banana starch after extrusion (from 16.2%
to 17.3–33.5%).

Preferential cleavage of amylopectin
α-1,6-glycosidic bonds under shearing

force in the extruder.
[40]

Jackfruit seed starch
(JFSS)

(1) Molecular weight, radius of gyration,
relative crystallinity of starch are notably
decreased while amylose content is not

changed by improved extrusion cooking
technology (IECT);

(2) B2 and B3+ chains of JFSS are
converted to A and B1 chains after IECT

treatment.

IECT breaks α-1,4-glycosidic bonds in
amylopectin backbone. [38]

High-amylose maize
flour (HAMF), normal

maize flour (NMF)

Amylose content of HAMF considerably
decreased, while that of NMF increased

after extrusion.

The decrease in amylose content in
HAMF may be induced by its high
amylose and lipid content, where

excessive leaching of amylose is bound
with free lipids to form amylose–lipid

complex during extrusion.

[41]

As mentioned above, the degradation of starch molecules is of significance in terms of
determining the starch digestibility in both its gelatinized and retrograded state. Excessive
shearing may cause amylose to degrade into molecules with a much shorter chain, which
cannot retrograde efficiently, inhibiting the formation of retrograded amylose double
helices, which are known as type 3 RS (RS3) [45]. Small dextrin degraded from amylopectin
may also inhibit the aggregation of amylose during retrogradation [39]. On the other
hand, smaller amylopectin molecules have a faster retrogradation rate through both inter-
and intramolecular interactions compared to the undegraded amylopectin; retrograded
amylopectin double helices mainly contribute to the formation of SDS instead of RS [46].
Therefore, by optimizing the starch molecular structure through extrusion, one could
potentially slow down the starch digestibility in extruded food products.
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3.2. Starch Crystalline Structure

Starch granules are composed of semi-crystalline and amorphous growth rings (ap-
proximately 100~400 nm thickness), which can be frequently characterized by X-ray
diffractometry (XRD) and small-angle X-ray scattering (SAXS) techniques [47]. The semi-
crystalline growth ring is further composed of alternating amorphous and crystalline
lamellae with a periodicity of 9–10 nm [48,49]. The crystalline lamellae are formed by
ordered amylopectin double helices, whereas the amorphous lamellae consist of amylose
chains and amylopectin branching points [32,50]. According to the different X-ray diffrac-
tion characteristics, natural starch can be divided into A, B and C types, among which the
C-type diffraction pattern is a mixture of the A and B types [51,52]. A-type starches (e.g.,
wheat, rice and corn) normally have orthorhombic crystalline structures, B-type starches
(e.g., high-amylose starches) contain hexagonal crystalline structures, and the X-ray diffrac-
tion patterns of C-type starches (e.g., legume, root, some fruit and stem starches) exhibit
simultaneously both the orthorhombic and hexagonal crystalline structures [53,54]. In
addition, it is proposed that amylose can form a V-type crystallinity polymorph with both
endogenous and extrinsic lipids, where the amylose chain is present as a left-handed single
helix [55]. However, this crystal structure has not been identified in crystallography. Under
a polarized microscope, starch granules give rise to birefringence (commonly referred to as
Maltese cross), which is a characteristic of the crystalline structure, indicating the radial
anisotropy of the molecular chain arrangement within starch granules [56].

As mechanically explained in the second section, extrusion involves both thermal and
mechanical energy, which could largely damage the starch crystalline structure, including
the long-range ordered structure (crystals) and short-range ordered structure (double
helices). During extrusion, starch granules could rapidly absorb water and swell, leading to
starch gelatinization. On the other hand, after extrusion, melted starch molecules could be
re-associated into double helices during cooling, leading to starch retrogradation. Therefore,
starch undergoes a transition between order and disorder structures (as mentioned above)
over the extrusion process, involving both starch gelatinization and retrogradation; this
process could significantly determine the starch digestibility in different starch-based
foods [57].

According to XRD results, the original diffraction peak intensity of native starch
obviously decreases or disappears, and there may be new diffraction peaks appearing after
extrusion (Figure 3) [58]. The new peaks appearing at 2θ of 7◦, 13◦ and 20◦ are related
to V-type crystals and explained as the result of the lamellar growth of starch crystals
after the breakage of orthorhombic crystals [58]. Biliaderis [55] showed that extrusion
at high temperatures (>185 ◦C) can form a new crystalline structure called the Eh type,
characterized by a different interaxial helical distance and slight shift in the diffraction
peak to a lower diffraction angle compared to the Vh-type crystallinity structure. Similarly,
von Borries-Medrano et al. [59] reported that the extruded sample showed a peak (Eh
pattern) at 2θ of 18.4◦, although this crystal structure has not been indexed. In their
view, due to the low degree of chain arrangement, the Eh-type crystallinity structure is
unstable and would irreversibly transform into the Vh crystallinity structure when the
moisture content is increased [55]. However, from a crystallographic point of view, there is
currently no evidence for the formation of these two crystalline structures. The effects of
extrusion on starch crystalline structure also depend on the starch molecular structures. For
example, high-amylose starch could still fully or partially retain its crystallinity structure
after extrusion, compared to the normal or waxy starch, which could be related to its much
higher gelatinization temperatures [60].
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As mentioned above, the digestion rate of native starch is largely determined by
the starch crystalline structure. For example, hexagonal crystals are more difficult to be
digested by starch digestive enzymes than orthorhombic crystals [61]. Amylose–lipid
complexes are known as type 5 RS (RS5) [62]. Therefore, extrusion could potentially modify
starch digestibility at its native state through the alteration of the starch crystalline structure.
Furthermore, starch gelatinization increases the availability of starch towards digestive
enzymes, which causes the substrate to be more easily digested [63]. Starch digestibility
is therefore often positively correlated with the degree of gelatinization [24]. The starch
gelatinization degree can thus be modified by controlling the extrusion raw materials,
temperature, moisture, screw speed, die size, feed rate and other factors in order to achieve
desirable starch digestibility in extruded foods [64]. For example, different degrees of
gelatinization of high-amylose maize starch were developed by extrusion, which resulted
in a significant difference in the starch digestibility [65]. Similarly, it has been found that the
RDS content was significantly increased while RS content decreased after the extrusion of
soybean flour, possibly related to starch gelatinization [8]. On the other hand, as mentioned
in the above section, extrusion could reduce the amylopectin molecules’ size, which can
promote the retrogradation of amylopectin molecules and formation of SDS due to the
formation of unstable double helices [66]. This was supported by the addition of extruded
banana starch to bread, which resulted in a significant increase in SDS content [63].
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3.3. Starch Granule Morphology

There is large variance in starch granule structures among different starch sources due
to the influence of genetics and the growing environment, which can be frequently charac-
terized by scanning electron microscopy (SEM). For example, the size of starch granules
varies from less than 1µm to more than 100 µm in diameter [67]. Potato starch granules
(15~100 µm) are larger than those of cereal starch, such as rice starch granules (3~8 µm) [68].
Wheat starch granules have a bimodal size distribution, with a mean diameter of 15~40 µm
and 1~10 µm [61]. Starch granules can have round, spherical, oval, lenticular, polygonal or
irregular shapes. For example, potato has an oval starch granule, and rice has a polyhedral
starch granule [69]. Another important structural feature of starch granules is the presence
of pores, channels and cavities [70]. For example, corn, sorghum and millet starch have
surface pores [71]. These pores connect the surface to the helium of starch granules [72,73],
which allows the entrance of starch digestive enzymes [74]. Therefore, starches with surface
pores are frequently digested at a faster rate than those without surface pores [71].

Extrusion could largely destroy the structural integrity of starch granules through
fragmentation and finally results in irregular hole-shaped structures due to the sudden
drop in pressure and evaporation of water when starch material is extruded from the
die (Figure 4) [30,75]. It has been found that the pore wall becomes thicker, the pore
size is enlarged, while the number of pores decreases, over increasing moisture content
and feeding rate during extrusion [76]. However, it has been reported that some starch
crystallites could still remain after extrusion [60]. Similarly, it has been found that starch
molecules inside the granule fragments remain intact, while those on the surfaces of the
fragments are more likely to be shear-degraded [44].
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Extrusion destroys the compact granular structure of starch and turns it into a loose
and porous structure, which may promote the starch digestion rate and lead to less starch
reaching the colon (a decrease in the RS content) [77]. Furthermore, the starch granule
surface structure can also significantly affect the starch digestibility. For example, rougher
surfaces (with pores and cracks) can supply more binding sites for starch digestive enzymes
and thus cause a faster digestion rate than a starch material with a smoother surface (such
as potato starch) [78]. Therefore, extrusion could also have a significant effect on the starch
digestibility by altering the starch granule surface structure.

4. Effects of Extrusion Parameters on Starch Digestibility and Possible Mechanisms
4.1. Raw Material Composition

Raw material characteristics such as the source and size of starch granules, amy-
lose/amylopectin ratio, lipid, protein and dietary fiber content could largely determine the
digestibility of extruded starch. Bean genotype has been proven to affect the digestibility of
starch, largely due to the varied organization and amylose content of starch granules [8].
Depending on the botanical source, the crystal types and crystallinity of starch vary. The
RS content of extruded kidney bean (16.3%) and field pea starch (15.6%) is much higher
than that of extruded corn starch (2.5%) [79]. This could be attributed to the C-type crys-
talline structure of native kidney bean and field pea starch (containing a mixture of both
orthorhombic and hexagonal crystals) compared to corn starch, which has an orthorhombic
crystal structure. Hexagonal crystals have more branch points clustered in the amorphous
region, which are more rigid and resistant to enzymatic hydrolysis than orthorhombic
crystals. Particle size is another critical factor in determining the starch digestibility after
extrusion. For example, finely milled sorghum and barley grains have higher digestibil-
ity than medium and coarsely milled grains after extrusion, due to their higher specific
surface area and therefore enlarged area for contact with starch digestive enzymes [80].
The particle size can also affect the rate and extent of water penetration during starch gela-
tinization, thus further affecting starch digestibility [80]. The formation of RS during the
extrusion process is mainly attributed to the retrogradation of amylose molecules [45]. As a
result, amylose content is a critical factor in determining starch digestibility after extrusion,
and high-amylose starches generally form more RS than normal or waxy starches [41,81].
Lipid content could act as a lubricant during the extrusion process, which reduces the
mechanical force and degradation of starch macromolecules, further affecting the starch
digestibility [82].

Amylose content and structure (e.g., chain-length distribution) can affect the extruded
starch digestibility by forming complexes with both endogenous and extrinsically added
lipids, which is known as RS5 [16]. This can be explained by the decrease in amylose
solubility and conformational hindrance of V-type crystals to enzyme attack [83]. The
formation of amylose–lipid complexes has been found in many studies during the extrusion
process, and the amount of amylose–lipid complexes depends on the type of both starch
and lipid components present in the food [58,84]. Monoglycerides and free fatty acids more
easily form complexes than triglycerides [84], as triglycerides are too large to enter into
starch spirals to form stable helices. Within a certain range, the higher the amylose content,
the shorter the fatty acid chain length, and the more complexes could be formed [85].
The ability of amylopectin to form complexes with fatty acids is much weaker than that
of amylose, mainly due to the short side chain and steric hindrance of amylopectin [86].
Saturated fatty acids are favored over unsaturated ones in amylose–lipid complex formation
since the molecular rigidity of the double bonds in unsaturated fatty acids hinders access
to the amylose helix [87].

Protein can form a matrix around starch granules, delaying or preventing its contact
with digestive enzymes, thereby reducing starch digestibility [88]. For example, beans
frequently have a slow starch digestion rate due to their high protein content [89]. During
the extrusion process, protein can also restrict the swelling and gelatinization of starch
granules, thus reducing the starch digestibility [90]. Dietary fiber in raw feed materials
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could also affect starch digestibility. For instance, the addition of tomato and grape pomace
could reduce the starch digestibility of barley extrudates, possibly due to the fact that starch
granules are trapped in the protein–fiber–starch network structure [91]. Apple pomace
could limit starch gelatinization by reducing the starch hydration level, which reduces the
total digestible starch content [92].

4.2. Feed Moisture, Extrusion Temperature and Screw Speed

Feed moisture has a significant effect on both starch structure and digestibility during
extrusion (Table 2). As the moisture content increases, the lubricating effect is enhanced,
reducing the friction among raw material, screw and barrel [12]. High moisture content
could further reduce the viscosity and shorten the residence time of starch material in the
extruder cavity, thus weakening the shearing effects on starch molecules [93].

In terms of starch digestibility, the influence of moisture content depends on the
balance between starch gelatinization and retrogradation (Table 2) [94]. Starch gelatinization
mainly occurs at high moisture content during extrusion [95], which might increase the
susceptibility of starch towards digestive enzymes. On the other hand, it is believed that
starch retrogradation is enhanced at relatively high moisture content during extrusion,
which could promote the formation of more RS3 [96]. This is partially due to the fact that
water acts as a plasticizer to decrease the starch glass transition temperature so that starch
molecules are more flexible to rearrange into double helices during retrogradation [96,97].
For example, the extrusion of a sorghum–barley mixture at moisture above 30% produced
more RS [98]. Similarly, Kim et al. [99] found that higher feed moisture content and a longer
storage time can significantly increase the RS content (by~11 times). The RDS content of
extruded brown rice and pinto bean flour mixture was decreased while RS increased with
the increase in processing moisture [100]. However, contradictory results have also been
found in the literature. For example, it has been found that higher RS content was produced
by extrusion under limited moisture content, which was rationalized by the notion that
extrusion could produce a higher amount of smaller molecules and shorter chains due to
the lack of lubrication of water under limited moisture content, and these degraded starch
molecules have higher mobility during cooling, promoting the formation of RS [101]. A
summary of the effects of different extrusion parameters on starch digestibility is shown in
Table 2.

Table 2. Effects of main extrusion parameters on starch digestibility.

Extrusion Parameter Botanic Source Effects on Starch
Digestibility Possible Mechanisms Reference

Feed moisture Brown rice and pinto
bean composite flours

RDS increases while RS
decreases with lowered

feed moisture

The lower the processing moisture,
the higher the degree of mechanical
degradation, resulting in a decrease

in RS

[100]

Buckwheat flour Low moisture increases
starch digestibility

Lower moisture content enhances
the degree of starch molecular

degradation, and thus increases
starch digestibility

[97]

Rice flour
RS increases with the

increase in
feed moisture

High feed moisture increases the
mobility of starch molecules, leading
to gelatinization, and enhances the

tendency of starch to retrograde,
which leads to the formation of

resistant starch

[102,103]
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Table 2. Cont.

Extrusion Parameter Botanic Source Effects on Starch
Digestibility Possible Mechanisms Reference

Corn and
potato starches

High moisture
decreases starch

digestibility

Water has a lubricating effect inside
the extruder that reduces the starch
degradation. Water decreases the
feed material temperature during

extrusion, resulting in less
gelatinization and slower starch

digestion rate

[104]

Extrusion temperature
Corn starch–guar gum

mixtures/Corn and
potato starches

Starch digestibility
increases with the

increased extrusion
temperature

Higher temperature results in
greater starch gelatinization and
thus higher starch digestibility

[59,105]

Rice flour RS increases with
increasing temperature

High temperature causes melting of
crystallites and formation of

reorganized crystallites that are
more stable to heat

[102,103]

Novel wholemeal
wheat flours

No relationship
observed between the
starch digestibility and
extrusion temperatures

Starch was completely gelatinized
and had no retrogradation as the
samples were dried immediately

after extrusion

[106]

Screw speed Whole grain oat flour
Moderate screw speed
(300 rpm) led to higher

SDS and less RDS

Low screw speed means long
residence time. High screw speed
produces high shearing on starch

molecules. Therefore, both low and
high screw speed can reduce SDS

[101]

Green banana flour
Samples extruded at
lower screw speeds

have higher RS content

Starch degradation is relatively less
at lower screw speed, and longer

residence time is favorable
[40]

Mixture: chickpea flour,
maize flour, oat flour,

corn starch,
onion powder

As the screw speed
increases, RS decreases

Shear effect at higher screw speeds
makes starch molecules more

sensitive to enzymes
[107]

Higher temperatures can frequently promote starch gelatinization and the destruction
of starch crystallites during extrusion, which can thus increase the starch digestibility [108].
For example, corn and potato starches extruded at higher temperatures revealed higher
in vitro digestibility than those extruded at lower temperatures [105]. In addition, the
extrusion temperature can affect the formation of amylose and lipid complexes. It is
believed that there is an optimal temperature for lipids with different fatty acid chain
lengths to form complexes with amylose molecules [109,110]. Gulzar, Hussain, Naseer and
Naik [103] found that with the increase in barrel temperature, a crystalline structure that is
more stable to heat and decomposition is formed, showing an increase in RS content.

Screw speed is another critical factor affecting starch digestibility (Table 2). With
the increase in screw speed, the friction and shearing force on raw starch-based material
increase, which further increase the extent of starch destruction and degradation [96,111].
However, if the screw speed is too high, the residence time of feed material in the barrel
is largely shortened, resulting only in insufficient starch gelatinization [112]. Therefore,
the effect of screw speed on starch digestibility is determined by the combination of
shearing action and residence time. For example, for sorghum extrudates, maximum starch
digestion was produced at a moderate moisture level (30%) and screw speed (250 rpm) [94].
Conversely, Brahma, Weier and Rose [101] found that moderate screw speeds (300 rpm)
tended to enhance SDS and diminish RDS, because either an overly long residence time or
an overly high shear rate was not conducive to preserving the slowly digestible property
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of starch. In addition, it was reported that the starch digestibility of sorghum–barley
extrudates was not significantly affected by the screw speed [98]. The effects of screw speed
on starch digestibility are also related to other conditions, such as raw material properties
and screw configuration, so the conclusions of different studies have contradictory trends.

Besides moisture content, extrusion temperature and screw speed, other important
extrusion variables, such as feed rate, screw configuration and die design, will also affect
starch digestibility. The feed rate mainly affects the residence time of the material in the
extruder barrel, which further affects the degree of starch gelatinization and degradation.
For example, lower feed rates imply a longer residence time and enhanced shearing action
on starch molecules. Therefore, feed rate had a negative effect on the RDS content of
extruded bean powders [8]. However, contradictory results can also be found in the
literature, e.g., it was reported that the feed rate did not significantly (p > 0.05) affect the
starch digestibility of sorghum–barley blends [98]. The contradiction of these results could
be derived from the different botanical starch sources. Extruder screws can be made into
different types of conveying and mixing elements (kneading and reverse screw elements).
The type, length and position of the screw elements and the spacing between two elements
significantly affected the molecular breakdown of starch in rice flour [113]. Different
element types and screw configurations can determine the mean residence time of feeding
materials by affecting the conveying efficiency, thereby changing the degree of starch
degradation [113]. The shape, length and diameter of the die could affect the pressure and
shear rate at the die head, thus affecting the degree of expansion and structural damage of
the starch.

Overall, there are sometimes contradictory conclusions about the influence of different
extrusion parameters on starch digestibility, which might be related to the botanical source
of the starch. Depending on the plant source, the crystalline structure of starch and the
ratio of amylose to amylopectin differ. In addition, flour is quite different from pure starch,
because starch interacts with other ingredients in flour during extrusion. Therefore, from
this point of view, it is impossible to draw a general conclusion about how extrusion
parameters change the starch structure and digestibility, and this review can only provide
partial references for explaining the mechanisms.

5. Conclusions and Prospects

Starch digestibility is a key factor in determining the human postprandial glycemic
response, and the frequent consumption of RDS has been associated with the occurrence
of many chronic diseases. Extrusion, as a common food processing technology, has a
significant effect on the alteration of starch’s structure (i.e., order–disorder transition) and
consequently starch digestibility. This review focused on the summarization of these effects
and the possible mechanisms, with the aim to facilitate the development of starchy foods
with slow starch digestibility. Extrusion could significantly degrade starch, especially amy-
lopectin molecules around their branching points. Starch crystalline structures undergo
continuous order–disorder–reorder transitions during extrusion, through starch gelatiniza-
tion and retrogradation. As a result, the starch granule structure could also be largely
modified. As a consequence, starch digestibility can be altered by extrusion processing.
The alteration of starch digestibility by extrusion depends on the raw feed material com-
position, as well as the extrusion processing parameters, such as feed moisture, extrusion
temperature and screw speed. This provides opportunities for developing starch-based
foods with desirable starch digestibility by controlling these extrusion factors.

However, many aspects remain to be investigated in the future, in order to better
apply the extrusion technique to develop starch-based foods with slow starch digestibility.
For example, it is known that many factors, including the raw feed material composition,
extrusion moisture, temperature and screw speed, can affect the starch structure and
digestibility. However, it remains unclear how these factors combined determine starch
digestibility after extrusion. Most of the past studies only focus on a single or a few of these
factors. Therefore, it is still highly necessary to systematically consider the effects of all
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these different factors on the starch digestibility after extrusion. Furthermore, extrusion is
frequently used together with other techniques, such as acid or enzymatic treatments, in
order to better modify starch properties. Investigations are required to fully understand
the effects of the combination of these techniques with extrusion on starch digestibility in
the future. The emergence of new food extrusion techniques such as supercritical fluid
extrusion technology, two-stage or multi-stage extrusion and the combination of extruders
and three-dimensional (3D) printers should also be investigated in the future in order to
expand the applications of extrusion in modifying starch properties.
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