
Heliyon 10 (2024) e27710

Available online 13 March 2024
2405-8440/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC license
(http://creativecommons.org/licenses/by-nc/4.0/).

Research article 

Identification of prognostic models for glycosylation-related 
subtypes and tumor microenvironment infiltration characteristics 
in clear cell renal cell cancer 

Cheng Shen a,b,1, Bing Zheng a,1, Zhan Chen a,b,1, Wei Zhang a, Xinfeng Chen a, 
Siyang Xu c, Jianfeng Ji d, Xingxing Fang e,**, Chunmei Shi a,* 

a Department of Urology, Affiliated Hospital 2 of Nantong University, China 
b Medical Research Center, Affiliated Hospital 2 of Nantong University, China 
c Clinical Medicine Specialty, Xinglin College of Nantong University, China 
d Department of Burn and plastic surgery, Affiliated Hospital 2 of Nantong University, China 
e Nephrology Department, Affiliated Hospital 2 of Nantong University, China   

A R T I C L E  I N F O   

Keywords: 
Renal clear cell carcinoma 
Glycosylation-related genes (GRGs) 
Immune infiltration 
Signature 
Molecule subtypes 

A B S T R A C T ：   

Background: One of the most fatal forms of cancer of the urinary system, renal cell carcinoma 
(RCC), significantly negatively impacts human health. Recent research reveals that abnormal 
glycosylation contributes to the growth and spread of tumors. However, there is no information 
on the function of genes related to glycosylation in RCC. 
Methods: In this study, we created a technique that can be used to guide the choice of immuno-
therapy and chemotherapy regimens for RCC patients while predicting their survival prognosis. 
The Cancer Genome Atlas (TCGA) provided us with patient information, while the GeneCards 
database allowed us to collect genes involved in glycosylation. GSE29609 was used as external 
validation to assess the accuracy of prognostic models. The “ConsensusClusterPlus” program 
created molecular subtypes based on genes relevant to glycosylation discovered using differential 
expression analysis and univariate Cox analysis. We examined immune cell infiltration as 
measured by estimate, CIBERSORT, TIMER, and ssGSEA algorithms, Tumor Immune Dysfunction 
and Exclusion (TIDE) and exclusion of tumour stemness indices (TSIs) based on glycosylation- 
related molecular subtypes and risk profiles. Stratification, somatic mutation, nomogram crea-
tion, and chemotherapy response prediction were carried out based on risk factors. 
Results: We built and verified 16 gene signatures associated with the prognosis of ccRCC patients, 
which are independent prognostic variables, and identified glycosylation-related genes by bio-
informatics research. Cluster 2 is associated with lower human leukocyte antigen expression, 
worse overall survival, higher immunological checkpoints, and higher immune escape scores. In 
addition, cluster 2 had significantly better angiogenic activity, mesenchymal EMT, and stem 
ability scores. Higher immune checkpoint genes and human leukocyte antigens are associated 
with lower overall survival and a higher risk score. Higher estimated and immune scores, lesser 
tumor purity, lower mesenchymal EMT, and higher stem scores were all characteristics of the 
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high-risk group. High amounts of tumor-infiltrating lymphocytes, a high mutation load, and a 
high copy number alteration frequency were present in the high-risk group. 
Discussion. 
According to our research, the 16-gene prognostic signature may be helpful in predicting prog-
nosis and developing individualized treatments for patients with renal clear cell carcinoma, which 
may result in new personalized management options for these patients.   

1. Introduction 

The cancer of the urinary system with the greatest frequency, renal cell carcinoma (RCC), is characterized by high-grade malig-
nancies [1]. RCC can be broadly classified into three subgroups based on morphology: suspicious cell malignancies, clear cell renal cell 
cancer (ccRCC), and Kidney renal papillary cell carcinoma. More than 70% of RCC patients are kidney renal clear cell carcinoma 
(KIRC) instances [2]. Despite improvements in treatment methods, only 12% of individuals with clear cell renal cell carcinoma 
(ccRCC) have 5-year overall survival rates (OS) [2,3]. The prognosis of most patients remains dismal despite substantial improvements 
in diagnostic procedures and targeted therapy. The importance of genetic indicators in the highly individualized, precision medicine 
age is being supported by more and more data [4,5]. Finding biomarkers that aid in predicting the propensity for relapse and mortality 
is crucial for clinical decision-making and treatment targeting. 

The tumor microenvironment (TME) is crucial in the development of tumor. TME comprises various cell types, such as vascular 
cells, cancer-associated fibroblasts, invading immune cells, etc. These cells can regulate angiogenesis, tumor cell invasion, growth 
inhibitory factor evasion, energy metabolism, immune evasion, and cell proliferation and death in a cell-involuntary way [6]. 
Emerging research indicates that modifications in glycosylation mediated by the tumor microenvironment have essential functional 
roles in tumor growth and metastasis, including cell adhesion, motility, invasion, and immune evasion. These changes in glycosylation 
are similar to oncogene activation and tumor suppressor gene loss, which are hallmarks of tumor formation [7–9]. Additionally, data 
show that genes related to glycosylation are linked to immune infiltration, expression of the programmed cell death ligand 1 (PD-L1), 
and head and neck squamous cell carcinoma (HNSCC) diagnosis and targeted treatment [10]. However, there is no information on the 
function of genes associated with glycosylation in ccRCC. 

In this research, we used differential expression analysis, univariate and multivariate Cox regression, and 16 glycosylation-related 
genes (GRGs) to independently assess the prognosis of ccRCC using the Cancer Genome Atlas (TCGA) database. Additionally, we 
looked into nomogram creation, somatic mutation analysis, and the prediction of chemotherapeutic response. 

2. Results 

2.1. Identification of genes involved in differential glycosylation and analysis of biological function 

One thousand-five genes associated with glycosylation were found in the GeneCards database, and protein-coding genes and 
correlation values higher than two were used as screening standards. Supplementary fig. S1 depicts the study’s primary flow. After 
that, by comparing kidney tissue from ccRCC with normal kidney tissue, a differential analysis revealed 209 upregulated and 122 
downregulated genes (Fig. 1A and B). According to GO and KEGG pathway enrichment studies, the following differentially expressed 
genes were primarily enriched in proteoglycans, cell adhesion molecules, biological processes connected to tumors, and signaling 
pathways in immunity and cancer (Fig. 1C and D). The top 10 up-and-down-regulated genes and their correlations are also displayed 
(Fig. 1E). PPI networks were investigated in the STRING database and shown in Cytoscape (Fig. 1F). The top 10 hub genes were sorted 
(Fig. 1G), and two modules were discovered using MCODE (Fig. 1H and I). 

2.2. Identification of glycosylation-related clusters and correlation analysis between clusters and tumor immune microenvironment, 
tumorigenesis score, and TSIs 

We identified 41 genes linked with prognosis by univariate Cox analysis, of which 15 genes (BTD, ST6GALNAC3, MYORG, CDH13, 
ABCG2, PKHD1, TEK, FUT6, TLR3, KL, DYSF, CALCRL, PODXL, CAT, KDR) were protective factors and 26 genes were risk factors 
(Fig. 2A). Most of the genes were shown to be associated using correlation analysis (Fig. 2B). According to a further clustering study 
using 41 prognosis-related genes, ccRCC patients are best classified when split into two categories (Fig. 2C). The survival study of the 
two subgroups of ccRCC patients revealed that cluster 1 had a better prognosis than cluster 2. (Fig. 2D). 

Fig. 1. | (A) 209 up-regulated and 122 down-regulated GRGs in the ccRCC are depicted on a volcano plot (FDR 0.05 and |logFC| > 1). (B) Heatmap 
of 331 DE-GRGs between normal kidney and ccRCC tissues. (C) For DE-GRGs, the top ten enriched phrases according to GO analysis belonged to BP, 
CC, and MF. (D) The top thirty enriched terms in KEGG analysis. (E) The correlations between the top ten up-regulated and down-regulated GRGs. 
(F) According to the STRING database, PPI network of the DE-GRGs. (G) The hub genes found using the “cytohubba” plugin (H, I) Two modules that 
were acquired using the “MCODE” plugin. CcRCC, clear cell renal cell cancer; GRGs, or glycosylation-related genes; FDR, or false discovery rate; FC, 
or fold change; DE-GRGs, differentially expressed GRGs; Gene Ontology, biological process, cell component, and molecular function are abbrevi-
ations for these terms. Kyoto Encyclopedia of Genes and Genomes, or KEGG; Protein-protein interaction, or PPI. 
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Additionally, we discovered that cluster 2 was linked to the poor expression of several MHC molecules (Fig. 2E). Further analysis 
using the CIBERSORT algorithm revealed that Cluster 2 was linked to more significant immune cell infiltration, including T cells CD4 
memory activated, T cells CD4 naïve, monocytes, macrophages M0, and T regulatory cells (Tregs) (Fig. 2F). The estimate method 
revealed that Cluster 2 had reduced tumor purity and higher stromal and estimate scores (Fig. 2G). Additionally, Cluster 2 had 
considerably more significant levels of angiogenic activity and tumorigenic cytokines (Fig. 2H). 

We examined the relationship with immunological checkpoints since there were substantial variations between the two groups 
regarding immune infiltration. Cluster 2 had increased levels of CD28, CD40, CD44, CD276, and TNFRSF7 expression (Fig. 2I). Higher 
TIDE scores were linked to Cluster 2 (Fig. 2J). 

2.3. Establishment and validation of glycosylation related prognostic models 

We used multivariate Cox regression to further screen the model’s gene set, ultimately adding 16 genes to the signature (Fig. 3A). 
Fig. 3B displays the coefficients for each gene in the signature. The relationship between the risk score and the hallmark genes is shown 
in Fig. 3C. With a 1-year AUC of 0.794, patients with a high-risk score had a poorer prognosis than those with a low-risk score (Fig. 3D). 
Results of survival analysis were validated in GSE29609 dataset (Fig. 3E). According to empirical research, patients in the high-risk 
group fared worse than those in the low-risk group, and these differences were present across virtually all clinical groupings (Sup-
plementary fig. S2). Additionally, univariate and multivariate Cox regression analysis revealed that signature was a separate risk factor 
(Fig. 3F and G). Finally, we looked at variations in risk ratings across subgroups based on several clinicopathological criteria. The 
findings demonstrated that patients with T3-4 stage, Grade 3–4, and Stage III-IV had higher risk scores, indicating that the more 
advanced the tumor, the higher the risk score (Fig. 3H–J). 

Based on the aforementioned multiple Cox regression analysis outcomes, we took age and signature into account while building a 
nomogram, with signature being the most crucial component (Fig. 3K). Actual survival times of 1, 3 and 5 years were extremely 
compatible with anticipated survival durations, according to calibration plots (Fig. 3L). In addition, we constructed a nomogram by 
integrating prognostic models from externally validated datasets and clinical factors selected by univariate and multivariate Cox 
regression analyses (Fig. 3M). 

2.4. Comparison of gene expression-based prognostic features in renal clear cell carcinoma 

Significant machine-learning-based prognostic and predictive gene expression signatures have been created in recent years thanks 
to advances in next-generation sequencing and big data technology [11]. We thoroughly searched the published signatures of ccRCC to 
compare the performance of GRGs with other signatures. There were six registered signatures [12–17](Supplementary table 1). The 
biological processes of pyroptosis, iron death, RNA-binding proteins, necroptosis, WNT, and drug sensitivity are all linked to these 
characteristics. Based on time-dependent ROC for ccRCC, we examined all models to forecast predictive effects. Our model out-
performs other models, and we found that while most models performed well on their training datasets, they performed severely on 
external datasets, likely owing to poor model generality brought on by overfitting. 

2.5. Tumor immune cell infiltration and immune checkpoint inhibitors were estimated based on characteristics 

We used GSEA to examine possible pathways to control tumorigenesis in the high-risk group. The findings revealed that the high- 
risk group had considerable enrichment in the P53 pathway (NES = 1.84, NOM p-value = 0.02, FDR q-value = 0.148) and numerous 
other traditional tumor-associated pathways (Fig. 4A). With NES = 1.67, NOM p-value = 0.008, and FDR q-value = 0.169, the VEGF 
signaling pathway was deemed the most pertinent KEGG signaling pathway (Fig. 4B). 

Previous research has demonstrated that the tumor microenvironment is crucial to the formation of tumors [18]. Using GSEA, we 
initially discovered that several immune-related pathways were linked to high-risk groups (Fig. 4C). We thus looked at the connection 
between this characteristic and the tumor immune microenvironment. According to the ssGSEA algorithm, high-risk groups had more 
immune-related activities or pathways and more immune cell infiltration than low-risk groups (Fig. 4D). The ESTIMATE algorithm 
looked at the statistics above and discovered that the high-risk group had lower tumor purity, higher immunological scores, and 
estimated scores (Fig. 4E). In the high-risk group, follicular helper T cells, regulatory T cells, CD8 + T cells, and macrophages were the 
primary immune cells entering the body (Fig. 4F). Dendritic and activated mast cells were also more prevalent in the high-risk group 
(Fig. 4G). Additionally, we looked at MHC expression and discovered that the high-risk group had a much higher level of MHC 
expression (Fig. 4H). The high-risk group had high CTLA4, PDCD1, and LAG3 immune checkpoint inhibitor expression levels (Fig. 4I). 

Fig. 2. | (A) Ten DE-GRGs connected to prognosis were shown using a univariate Cox analysis. (B) The correlations between the ten genes. (C) 
Clustering consensus matrix for k = 2. (D) The survival difference between clusters 1 and 2 is represented by the KM curve. The expression of MHC 
molecules (E), immune cell infiltration using CIBERSORT (F), immune and stromal scores using ESTIMATE (G), angiogenic activity, mesenchymal- 
EMT, tumourigenic cytokines and stemness scores (H), five common immunoinhibitors (I), and TIDE score (J) between the two clusters. CDF, 
Cumulative distribution function; KM, Kaplan–Meier; EMT, Epithelial-mesenchymal-transition; TIDE, Tumour Immune Dysfunction and Exclusion. 
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2.6. Correlation of angiogenic activity, mesenchymal EMT, tumor cytokines, and stemness scores with characteristics 

According to earlier research, different clusters were connected to stemness scores, oncoforming cytokines, mesenchymal EMT, and 
angiogenic activity. We then sought to determine if the processes behind the signature include any of these four tumor-associated 
activities. In ccRCC patients, we estimated the levels of angiogenic activity, mesenchymal EMT, tumor-promoting cytokines, and 
stemness. Mesenchymal EMT scores were lower, and tumorigenic cytokine scores were greater in the high-risk group, as shown in 
Fig. 5A. Fig. 5B displays the relationship between the risk score and four different metrics. It reveals that the risk score was favorably 
connected with the tumorigenic cytokine score and negatively correlated with the mesenchymal EMT score (R = − 0.19, p = 1.9e-05). 
Additionally, TSIs such as EREG-mRNAsi and ENHsi were less common in the high-risk group (Fig. 5C). 

2.7. Somatic mutation versus TMB profile 

We obtained primary nucleotide variation data from TCGA to examine variations in genomic mutations between high-risk and low- 
risk groups. The top five genes with the most significant mutation frequency in the high-risk group were VHL (44%), PBRM1 (42%), 
TTN (15%), SETD2 (15%), and BAP1 (14%), while the top five genes in the low-risk group were VHL (41%), PBRM1 (34%), TTN 
(16%), SETD2 (8%), and BAP1 (7%) (Fig. 6A and B). Somatic mutation interactions were also found. Most genes had co-existing 
mutations, and the high-risk group had mutually exclusive SPEN-PBRM1 mutations (Fig. 6C). Additionally, the low-risk group saw 
frequent gene mutation coexistence (Fig. 6D). Mutation rates in the high-risk group were considerably more significant than in the low- 
level group when TMB was also compared between the two groups (Fig. 6E). Compared to the high TMB group, the low TMB group’s 
survival time was noticeably longer (Fig. 6F). Using our model, we found that the prognosis of the high-risk + high TMB group was 
considerably poorer than that of the low-risk + low TMB group (Fig. 6G). Last, we looked at the marker gene’s mutation rate and 
discovered that CSF2 had more amplification mutations, BTD had more deletion mutations, and PKHD1 had more mistranslation 
mutations (Fig. 6H). 

2.8. Chemotherapy response prediction 

The two groups’ treatment responses to frequently prescribed chemotherapeutic drugs were predicted using GDSC. Between high- 
risk and low-risk groups, there were substantial differences in the sensitivity to various chemotherapeutic drugs (Fig. 7A). These results 
may be used to analyze treatment strategies specifically designed for patients in high-risk and low-risk categories. Additionally, the 
PubChem database was used to display the 3D structures of possible medications (gemcitabine, sorafenib, carmustine, and osimertinib) 
(Fig. 7B). 

2.9. Expression of 16 model genes in ccRCC and adjacent normal tissues 

To further validate the expression of model genes, we performed immunohistochemical experiments on clinical ccRCC tissues and 
normal tissue samples. We observed that nine model genes (ST3GAL5, PLAUR, CAPN3, NEIL3, CSF2, CALCRL, TIMP1, RNASE2, KDR) 
were more highly expressed in ccRCC than in normal tubular epithelial cells (Fig. 8A), and the remaining seven genes were less 
expressed in ccRCC compared with adjacent non-cancerous tissues (Fig. 8B). Immunohistochemistry was used to detect the expression 
of each molecule in three pairs of clinical specimens. This result confirms our analysis of the TCGA dataset. 

3. Discussion 

Recurrence and metastasis still happen in around 30% of patients with poor clinical outcomes, despite improvements in survival 
and quality of life brought about by developments in diagnostic methods and thorough treatment. In recent years, several genome- 
wide biomarkers have been introduced to ccRCC through high-throughput sequencing technologies. For precise prognosis and 
customized care, they are still insufficient. Increasing evidence suggests that glycosylation-related genes are essential in carcino-
genesis, progression, and metastasis of ccRCC. However, no studies focusing on the association of glycosylation-related genes with 
ccRCC prognostic assessment and molecular subtypes have been published [19,20]. In this work, we discovered a unique 
glycosylation-related signature made up of 16 genes that may be able to predict a patient’s clinical prognosis and response to 
chemotherapy. Our research may help ccRCC patients receive more accurate survival probability predictions. 

In the current study, we classified patients into two molecular subclasses based on our evaluation of 41 GRGs’ performance in 
ccRCC and healthy tissues. There were notable variations between the two subtypes in terms of immune infiltrating cells and clinical 
findings. Furthermore, there is a considerable correlation between the immunological and tumor-related pathways and both subtypes. 

Fig. 3. | The 16 genes chosen for the signature by multivariate Cox analysis are depicted in a forest plot in (A). (B) The signature’s 16 included 
genes’ coefficients. (C) The relationships between the 16 genes and the signature. ROC analysis, heatmap, and the survival status together with the 
risk score in the TCGA (D) and GSE29609 cohort (E). Both a univariate (F) and multivariate Cox analysis revealed that the signature was an in-
dependent risk factor for ccRCC patients in the TCGA cohort (G). the variations in risk scores across several groups based on clinicopathological 
characteristics, such as clusters (H), T stage (I), Tumor stage (J), and Tumor grade. (K) Nomogram based on age and risk score. (L) Nomogram 
calibration plots for forecasting the likelihood of survival for 1, 3, and 5 years. The Cancer Genome Atlas; ROC, receiver operating characteristic. 
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We then built quantitative nomograms and robust prognostic models for GRGs, which greatly enhanced their performance. Clinical 
features, prognosis, tumor microenvironment (TME), immune checkpoint expression, mutation spectrum, responsiveness to immu-
notherapy, and medication sensitivity were all significantly different between the high and low GRG score groups. Prognostic models 
based on GRGs can show the effectiveness of various treatments and enable more accurate prognostication and classification of pa-
tients, which is crucial in clinical practice. 

We discovered that these 16 genes were somewhat related to cancers after reviewing the literature. 13 genes linked explicitly to 
ccRCC were found among them, according to the research found in PubMed. For instance, the predictive biomarker ST3GAL5 has been 
linked to CD8 + T-cell depletion in ccRCC [21]. A poor prognosis for ccRCC can result from high PLAUR expression [22]. LGALS1 can 
predict probable immunological checkpoints and the effectiveness of anti-PD1 treatment in ccRCC patients [23]. In patients with 
ccRCC, overexpression of NEIL3 is linked to poor survival [24]. In individuals with ccRCC, CDH13 has been identified as a possible 
therapeutic target [25]. Regarding renal clear cell carcinoma, CSF2, TLR3, and RNASE2 closely correlate with immune infiltration and 
predict overall survival [15,16,26]. TIMP1 can hasten the development of renal clear cell carcinoma 21 through the EMT signaling 
pathway [27]. Patients treated for renal cell carcinoma with sunitinib in the first line may benefit from using KDR as a predictive 
biomarker of clinical outcome [28]. According to reports, LY96 may target dendritic cells in immunotherapy for renal cell carcinoma 
[29]. In clear cell renal cell carcinoma, TEK is a new prognostic marker [30]. Clear cell renal cell carcinoma’s clinicopathological 

Fig. 4. | The high-risk group enriched in pathways associated with tumor formation and progression. Signaling pathways for P53 (A) and VEGF (B) 
were considerably enriched in the high-risk group. (C) Increase the number of pathways linked to immunological, chemokine, and MHC molecules 
enriched in the high-risk group. Immune cell infiltration and immune-related functions or pathways (D), immune and stromal scores (E), immune 
cell infiltration using TIMER (F) and CIBERSORT (G), MHC molecules expression level (H), five common immunoinhibitors (I) between the high- 
and low-risk groups. (*P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant). 

Fig. 5. | (A) Differences between the high- and low-risk groups in terms of angiogenic activity, mesenchymal-EMT, tumourigenic cytokines, and 
stemness scores. (B) The relationship between the risk score, mesenchymal-EMT, tumour-promoting cytokines, and stemness scores. TSI variations 
between the two groups (C). TSIs, Tumour stemness indices. (*P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant). 
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characteristics and prognosis are linked to the m6A-related immunity gene PKHD1 [31]. A PubMed search for “GENE and ccRCC” 
revealed that three genes (CAPN3, CALCRL, and BTD) had not been examined concerning ccRCC. More fundamental and clinical 
investigations are necessary to confirm our findings, the processes underlying the predictive significance of the 16 genes on which 
GRGs are based, and develop new therapeutic targets to extend OS in ccRCC patients. 

There is a tight relationship between immune infiltration and the clinical prognosis of renal cell carcinoma (RCC). The most recent 
theory states that the amount and distribution of invading immune cells are critical factors in cancer development, immunotherapy 
efficacy, and prognosis. Tumor-infiltrating immune cells (TICs) may have predictive value as they create a mini-ecosystem in the 
cancer microenvironment [32]. The phenotypic and operation of tumor cells can be interfered with by efficient immune responses in 
the tumor microenvironment. The association between glycosylation processes and the tumor microenvironment further clarifies the 
link between immune infiltrates and risk groups. We discovered several disparities in immune cell infiltration in numerous low- and 
high-risk groups using the glycosylation-related gene signature. We discovered that the high-risk group had higher levels of CD8 + T, 
macrophages, and Treg expression, which may account for the variations in prognosis between the high-risk and low-risk groups. 
Growing data shows that individuals with ccRCC who have higher amounts of three cells would have a poorer prognosis [33–37]. 
Further, we found a significant increase in the prevalence of M0 macrophages and mast cells in the high-risk group. M0 macrophages 
can become M2 macrophages, promoting immune evasion [38]. In addition, mast cells play a crucial role in controlling inflammation 
and immunosuppression [39]. In addition to suppressing immune responses against tumors by releasing anti-inflammatory cytokines, 
they can also promote tumor growth by controlling the formation of new blood vessels [40,41]. The high-risk subgroup showed 
increased immune cells infiltrating the tumor, leading to their classification as “hot tumors,” which may be responsible for the 
significantly poorer survival of high-risk ccRCC patients, which suggests excellent potential for anti-cancer. Additionally, Type II IFN 

Fig. 6. | The somatic mutations in the high-risk group (A) and the low-risk group are depicted in waterfall maps (B). Heatmap shows the mutually 
exclusive mutations and co-occurrences of the variously altered genes in the high-risk group (C) and the low-risk group (D). *p < 0.01. (E) TMB 
comparison between groups at high and low risk. (F) A distinction in overall survival between groups with high and low TMB levels. Based on TMB 
and risk score, there is a difference in overall survival (G). (H) The 16 gene mutation rates in ccRCC patients as reported by the cBioPortal database. 
(ns, not significant). 

Fig. 7. | (A) The dissimilarities between high- and low-risk patients’ reactions to standard chemotherapy medicines. (B) Four probable target 
medicines’ 3D structures. (*P < 0.05; **P < 0.01; ***P < 0.001; NS, not significant). 

C. Shen et al.                                                                                                                                                                                                           



Heliyon 10 (2024) e27710

12

Response expression, which is thought to be a crucial component in coordinating the interaction between malignancies and the im-
mune system, was much more significant in the high-risk group than in the low-risk group [42]. As a result of suppressing CTLA-4, 
GPC3, PDCD1, and PDL1, immune checkpoint drugs have demonstrated new potential in treating cancer [43]. According to our 
research, the high-risk group had higher CTLA4, PDCD1, and LAG3 expression levels. As a result, immunotherapy may work for 
patients who express immune checkpoint inhibitors highly. Renal cell carcinoma has responded well to PD-1 and CTLA-4 targeted 
immunotherapy in combination with nivolumab and ipilimumab [44]. The elevated expression of immune checkpoints and the tu-
mor’s immunological microenvironment activity are consistent with these findings. The tumor immune milieu may thus be reliably 
assessed using this signature, and the effectiveness of immune checkpoint inhibitors can be predicted. 

There is evidence linking TMB to both immunotherapy response and clinical outcome. According to several studies, TMB strongly 
predicts progression-free survival and objective response rate; overall survival is only partially predicted by raised TMB [45]. Our 
investigation revealed a significant relationship between TMB and GRG model scores. By integrating TMB and score into an 
all-inclusive predictive model, we enhanced the prognosis for survival and thus offered significant insights for guiding immuno-
therapy. The effectiveness of immunotherapy as a crucial clinical strategy for cancer treatment has significantly increased due to the 
success of immune checkpoint inhibition. Clinical investigations have verified the safety and effectiveness of various ICIs [46,47]. Our 
survey showed notable variations in immune checkpoint performance across rating categories; this is a valuable point of reference for 
further immunotherapy. 

Immunophenotype-based stratification is effective, and our created prognostic profile is immune by nature. Our simulations of the 
effects of various medications on various reactions also showed how significantly the sensitivity to multiple treatments varied between 
the high-risk and low-risk groups. We will examine the connection between these medications and renal clear cell carcinoma 
throughout upcoming investigations. We further validated the expression of model genes, and we performed immunohistochemical 
experiments on clinically operated ccRCC tissue and adjacent non-cancerous tissue specimens. We observed 16 model genes, which are 
consistent with our Shengxin analysis results. Further experiments are needed in the future to validate functional differences in in-
dividual model genes. 

However, we must acknowledge that there are some inevitable limitations to our study. Our study is mainly based on a public 
database of bioinformatics approaches, and more in vivo and in vitro studies are needed to determine how these 16 identified genes 
contribute to the formation of ccRCC patients. Second, due to the lack of complete patient survival data in external datasets, GSE29609 

Fig. 8. | IHC analysis of model genes. (A) Genes are highly expressed in renal cancer tissues compared to adjacent non-cancerous tissues. (B) Genes 
are highly expressed in adjacent non-cancerous tissues compared to renal cancer tissues. 
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used in the current study as external validation requires the inclusion of more datasets containing survival data for validation in the 
future due to the small amount of data. In addition, the risk model only examined immune cells, immune function, MHC molecules, 
immune checkpoints, and immunotherapy in this study. Potential links between risk models and immune status are only suggestive. 
We will continue to collect sufficient samples in the future to assess the usefulness of this model in combination with immunotherapy 
and to see if there is a difference in the benefit of immunotherapy between the high-risk and low-risk groups. Finally, the fact that 
people’s responses to different drugs can vary widely impacts the time and effort we devote to studying new treatment options. 

4. Conclusion 

In conclusion, our work uses GRGs to create predictive profiles and molecular subtypes of renal clear cell carcinoma. In addition, 
differences in immune patterns, gene mutation status, and drug sensitivity between various molecular subtypes and risk groups were 
examined. This feature helps to optimize individualized treatment, making it invaluable for clinical application and translation. 

5. Materials and methods 

5.1. Clinical patients and tissue samples 

The Second Affiliated Hospital of Nantong University gathered 43 paired RCC tissue samples and adjacent non-cancerous samples 
from patients undergoing radical or partial nephrectomy between 2017 and 2019 and compared them to their normal tissue coun-
terparts. Following collection, the tissue samples were put into immediate storage at − 80 ◦C. This study has received unanimous 
approval (Ethics No. 2021YL012) from the Second Affiliated Hospital’s ethics committee by the 1964 Helsinki Declaration. All par-
ticipants’ patients received thorough explanations and signed written informed consent forms. 

5.2. Acquisition of data 

We obtained information about simple nucleotide variations, pertinent clinical data, and RNA-seq data from the TCGA website 
(https://portal.gdc.cancer.gov/). GSE29609 is the dataset that was downloaded from the GEO database (https://www.ncbi.nlm.nih. 
gov/geo/). Using the GEOquery program in R, the gene expression and clinical datasets were retrieved. The clinical data collection was 
analyzed to gather information on grade, T, M, and N as well as survival time and status. The sample size was 39 instances after 
integrating the clinical data by sample name with the GEO transcriptome data. 39 samples from GSE29609 were approved as a test set 
for judging prognostic model precision. All patient files with missing data were removed. 1005 glycosylation genes were extracted 
from GeneCards (https://www.genecards.org) with a relevance score ≥7. 

5.3. Differential expression analysis of glycosylation-related genes (DE-GRGs) 

When comparing 72 normal renal tissues and 539 ccRCC tissues from the TCGA, DE-GRGs were generated using a screening 
threshold of | log Foldchange (FC) | > 1 and a false discovery rate (FDR) of 0.05. The Kyoto Encyclopedia of Genes and Genomes and 
Gene Ontology (GO) were then analyzed using DE-GRGs (KEGG). Cytoscape and the STRING database were used to examine protein- 
protein interactions (PPIs). Cytohubba and MCODE plugins examined hub genes and modules. 

5.4. Cluster analysis 

The identification of 41 DE-GRGs linked to prognosis was done using a single-variable Cox regression analysis (Supplementary 
table 2). The “ConsensusClusterPlus” program was used to conduct a cluster analysis to determine the various molecular subtypes 
linked with glycosylation. To compare outcomes between the two groups, we employed Kaplan-Meier (K-M) analysis. Chi-square tests 
were used for research, and heat maps were produced to display the relationship between clustering and clinical characteristics. 

5.5. Generation of the prognostic model 

To identify independent genes for ccRCC and create prognostic characteristics, multivariate Cox regression analysis was also 
performed. Graphpad software displayed the coefficients of chosen genes. The predictive value of the attributes was assessed using K-M 
analysis and receiver operating characteristic (ROC) curves. We tested whether or not the signature was an independent risk factor 
using univariate and multivariate Cox analysis. Correlation analysis, stratified analysis, and nomogram building between risk score 
and clinical features were performed by clinicopathologic criteria. Calibration plots were used for 1-, 3-, and 5-year survival to assess 
the degree of agreement between projected probability and actual survival. 

5.6. Immunohistochemistry (IHC) 

We tested IHC on the retrieved RCC and the nearby normal tissues. The paraffin tissue sections were deparaffinized in xylene and 
then submerged in graded alcohol solutions for hydration after baking at 60 ◦C for 60 min. After applying a drop of Ultra V Block to the 
slides to block them for 5 min, tissue slices were incubated with a primary anti-gene antibody (1:100–1:1000, Proteintech) overnight at 
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4 ◦C. The anti-rabbit/mouse IgG (1:200–1:500, Proteintech) secondary antibody was added dropwise to the slides after they had been 
cleaned with PBS. The slides were then incubated at 37 ◦C for 10–30 min. Before being examined under a microscope, the tissue 
samples were finally dyed with diaminobenzidine (DAB). 

5.7. Feature-based gene set enrichment analysis 

In order to investigate probable processes, we employed GSEA to examine route enrichment in the high-risk group. There were four 
genes in the internal reference gene set: c2kegg, c2biocartar, and c5go. Normalized enrichment score (NES) > 1, nominal (NOM) p- 
value <0.05, and FDR q-value <0.25 were the screening criteria. 

5.8. Immunologic Landscape analysis 

The immunological state of high-risk and low-risk groups was compared using three immune-related algorithms. Each sample’s 
immune cell activity, immunological function, and immune route were determined using one-sample GSEA (ssGSEA). From earlier 
research, marker genes for various immune cells were developed. The ESTIMATE method was used to determine the immune score, 
stromal score, projected score, and tumor purity based on the ratio of immune cells to stromal cells. The CIBERSORT algorithm 
predicted the makeup of immune cells that infiltrated each tumor sample. Based on cluster analysis and characterization, we also 
compared MHC molecule expression. 

The clustering and danger of five popular immunosuppressive molecules (PD-L1, CTLA4, HAVCR2, LAG3, and PD1) were first 
studied regarding immune checkpoints. Longer survival and worse resistance checkpoint blockade therapy are well-known to be 
associated with higher tumor immune dysfunction and rejection (TIDE) scores. Physicians can choose patients who will benefit more 
from immune checkpoint treatment using the TIDE score. As a result, using the TIDE database, we generated the TIDE score for TCGA 
ccRCC patients. 

5.9. Analysis of tumor-related scores and tumor stemness indices (TSIs) 

In earlier research, it was discovered that individuals with a poor prognosis for glioma had higher scores for angiogenic activity, 
mesenchymal epithelial-mesenchymal transition (EMT), tumorigenic cytokine, and stemness. We used the ssGSEA method to deter-
mine scores for each tumor sample for angiogenic activity, mesenchymal-EMT, Tumorigenic cytokines score, and stemness. Biological 
activity and a greater level of tumor dedifferentiation in stem cells are linked to TSIs. We got TSIs from TCGA patients from a previous 
study [48]. 

5.10. Gene mutation analysis 

We used the “maftools” software to execute gene mutations based on TCGA somatic mutation data. The tumor mutation burden 
(TMB) was then determined for each patient and contrasted between the high-risk and low-risk groups. TMB score was used to do a 
survival analysis. The cBioPortal database displayed somatic mutations in a few of the signature’s chosen genes. 

5.11. Chemotherapy response 

We used the Genomics of Drug Sensitivity in Cancer (GDSC) database, a public dataset combining cancer cell drug sensitivity 
information and molecular markers of drug response [49], to evaluate the impact of predictive characteristics in predicting ccRCC 
treatment response. The oncoPredict package [50] was used to download the gene expression profiles for the GDSC2 gene and data 
regarding associated drug responses. The half maximum inhibitory concentration (IC50) of all medications in ccRCC patients was 
predicted using sensitivity ratings. 

Data availability 

Data used to support the conclusions of this investigation, including expression and clinical information, have been placed in the 
TCGA repository (https://portal.gdc.cancer.gov/), and GEO repository (https://www.ncbi.nlm.nih.gov/geo/) All of the aforemen-
tioned databases allow users to obtain their data for free, and our research complied with their terms of service. 
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