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The neurovascular unit is a functional unit composed of neurons, glial cells, pericytes,
and endothelial cells which sustain brain activity. While pericyte is a key component
of the neurovascular unit, its role in cerebral blood flow regulation remains elusive.
Recently, capillary stalling, which means the transient interruption of microcirculation
in capillaries, has been shown to have an outsized impact on microcirculatory changes
in several neurological diseases. In this study, we investigated capillary stalling and its
possible causes, such as the cerebral endothelial glycocalyx and leukocyte adhesion
molecules after depleting pericytes postnatally in mice. Moreover, we investigated
hypoxia and gliosis as consequences of capillary stalling. Although there were no
differences in the capillary structure and RBC flow, longitudinal optical coherence
tomography angiography showed an increased number of stalled segments in capillaries
after pericyte loss. Furthermore, the extent of the cerebral endothelial glycocalyx was
decreased with increased expression of leukocyte adhesion molecules, suggesting
enhanced interaction between leukocytes and endothelial cells. Finally, pericyte loss
induced cerebral hypoxia and gliosis. Cumulatively, the results suggest that pericyte
loss induces capillary stalling through increased interaction between leukocytes and
endothelial cells in the brain.

Keywords: capillary stalling, pericyte, leukocyte-endothelial cell interaction, cerebral endothelial glycocalyx,
leukocyte adhesion molecules

INTRODUCTION

A stable and adequate blood supply through the capillaries is crucial to meet the high energy
demands of the brain (Dawson, 1999; Fehm et al., 2006; Berthiaume et al., 2018b). The
neurovascular unit is composed of neurons, glial cells, pericytes, and endothelial cells that interact
together to properly sustain brain activity through cerebral microcirculation (Iadecola, 2017).
Previous studies have shown that pericyte loss decreases cerebral blood flow (CBF) and blood flow
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responses, which suggest the contribution of pericyte to cerebral
microcirculation (Bell et al., 2010; Hall et al., 2014; Mishra et al.,
2016; Sweeney et al., 2016; Kisler et al., 2017; Nikolakopoulou
et al., 2019). Furthermore, pericyte loss has been reported
in various brain diseases, such as Alzheimer’s disease, stroke,
vascular dementia, and traumatic brain injury (Dore-Duffy et al.,
2000; Fernández-Klett et al., 2012; Sengillo et al., 2013; Hall
et al., 2014; Miners et al., 2017; Ding et al., 2020). Although
previous studies have suggested the involvement of pericyte
in CBF maintenance and regulation, the mechanism by which
pericyte affects CBF remains elusive.

Cerebral microcirculation is not homogeneous (Villringer
et al., 1994; Kleinfeld et al., 1998), and transient interruption
of blood flow called capillary stalling occurs in the capillaries
(Erdener et al., 2017; Reeson et al., 2018). Recently, capillary
stalling has been reported as a cause of CBF downregulation, and
leukocyte plugging contributes to capillary stalling. Leukocyte
plugging is induced by the increased adherence of leukocytes
to endothelial cells, probably due to the increased interaction
between leukocytes and leukocyte adhesion molecules (Cruz
Hernández et al., 2019; El Amki et al., 2020). In particular,
leukocyte adhesion molecules, such as vascular cell adhesion
molecule 1 (VCAM1) and intercellular adhesion molecule 1
(ICAM1), which mediate the arrest of rolling leukocytes in
the blood, are known to be increasingly expressed under
inflammatory condition, leading to leukocyte adhesion (Shapiro
et al., 2010; Takeshita and Ransohoff, 2012).

Recently, it was shown that the extent of the cerebral
endothelial glycocalyx was related to capillary stalling (Yoon
et al., 2022). The endothelial glycocalyx is a scaffolding
network of proteoglycans, glycoproteins, glycosaminoglycans,
and associated plasma proteins on the luminal side of the vascular
endothelium (Weinbaum et al., 2007). The endothelial glycocalyx
serves as a barrier that limits the interaction between leukocytes
and leukocyte adhesion molecules expressed on the endothelial
cell surface (Reitsma et al., 2007; Uchimido et al., 2019).

In this study, we aimed to investigate the effect of pericyte loss
on capillary stalling and its possible causes, such as the cerebral
endothelial glycocalyx and leukocyte adhesion molecules after
depleting pericytes postnatally. We also investigated hypoxia and
gliosis as consequences of capillary stalling.

MATERIALS AND METHODS

Animal Preparation and Experimental
Procedures
The animal care and experimental procedures in this study
were performed with the approval of the Institutional Animal
Care and Use Committee (No. KA2018-32, KA2021-46) of
KAIST, and in accordance with the ARRIVE guidelines
(Percie du Sert et al., 2020).

PDGFRβ-CreERT2 mice (Sheikh et al., 2015) and ROSA26-
DTA mice (Sheikh et al., 2015) were transferred, maintained in
a specific pathogen-free facility of KAIST Laboratory Animal
Resource Center, and used after more than 10 generations
of back-crossing into C57BL/J background. PDGFRβ-CreERT2

mice and ROSA26-DTA mice were crossed to deplete pericytes
by diphtheria toxin A (DTA) expression in a PDGFRβ-dependent
tamoxifen-inducible manner (DTAiMPC) (Park et al., 2017).
Both CreERT2- and loxP/loxP-positive, vehicle (corn oil)
administered littermates were defined as control mice in each
experiment. Male and female mice were used indiscriminately
in the experiments. To deplete pericytes, 2 mg of tamoxifen
(Sigma, T5648) dissolved in corn oil (Sigma, C8267) was
injected intraperitoneally in 8-week-old DTAiMPC mice for five
consecutive days. After 2 weeks, the brain was collected to
perform immunohistochemistry, RNA-sequencing (RNA-Seq),
and western blotting after imaging.

Cranial Window Surgery
To implant the chronic cranial window for in vivo imaging,
the mice were anesthetized with the mixture of Zoletil
(30 mg/kg) and xylazine (10 mg/kg) via intraperitoneal injection
and a cover glass and head plate were implanted on the
right primary somatosensory cortex at 6 weeks of age, as
previously described (Goldey et al., 2014). Body temperature
was maintained at 36.5–37.5◦C throughout the experiment
using a heating pad and a rectal feedback probe (Physitemp
Instruments, TCAT-2LV). Imaging was performed after 2
weeks of recovery.

Ex vivo Measurement of Capillary
Stalling
DiI-coated 4-µm microspheres, which label stalled segments in
capillaries (Nuytemans et al., 2018), were intravenously injected
under isoflurane anesthesia, 3 h before the sacrifice. Specifically,
we coated 4-µm microspheres (Thermo Fisher Scientific,
F8858) with DiI solution (Thermo Fisher Scientific, D282) as
previously described (Reeson et al., 2018). After evaporation and
reconstitution in 0.9% saline, 40 µL of DiI-coated microspheres
were intravenously injected under isoflurane anesthesia (5% for
induction, and 1.5–2% for maintenance with a gas mixture of
40% oxygen and 60% air). After 3 h, the mice were deeply
anesthetized with the mixture of Zoletil (30 mg/kg) and xylazine
(10 mg/kg) and intravenously perfused with 100 µL of DyLight
488 tomato lectin (Vector Labs, DL-1174) for 5 min to label
vascular structures (Robertson et al., 2015). Next, we performed
transcardial perfusion with ice-cold phosphate-buffered saline
(PBS) followed by 4% paraformaldehyde (PFA) in PBS. The
extracted brain was post-fixed with 4% PFA for 12 h at 4◦C and
transferred to a 30% (w/v) sucrose solution for cryoprotection.
The samples were coronally-sliced into 30 µm thick sections.
Brain slices were mounted using Vectashield mounting medium
(Vector Labs, H-1000). A confocal microscopy system (Nikon,
A1HD25) with a Plan Apo 20 × /0.75 objective lens and a
field of view of 634.88 × 634.88 µm, and a slide scanner
(Zeiss, AxioScan Z1) with a Plan Apo 10 × /0.45 objective
lens were utilized for imaging brain slices. Imaging and
analysis were performed in the primary somatosensory cortex
according to the mouse brain atlas (Paxinos and Franklin,
2001), and the measurements from at least 10 slides were
averaged for each mouse.
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In vivo Measurement of Capillary Stalling
A swept-source optical coherence tomography (OCT) system
with a center wavelength of 1.3 µm and an A-scan rate of
240 kHz, was used (Shin et al., 2018). The field of view of
optical coherence tomography angiography (OCTA) imaging
was 1 × 1 mm. The focus of the OCT beam was positioned
approximately 220 µm below the cortical surface where the
capillaries were embedded. Serial OCT en-face angiograms were
continuously acquired every 6.3 s for 63 s to investigate temporal
changes in microcirculation. Each angiogram consisted of 800
A-scans (in the x-direction) and 250 B-scans (in the y-direction).
The axial and lateral resolutions of the system were 10 µm
each. The inter B-scan time interval was determined to be
4.2 ms. Throughout the OCTA imaging experiment, the mice
were anesthetized with isoflurane (5% for induction, and about
1.5% for maintenance with a gas mixture of 40% oxygen and 60%
air), and physiological parameters, such as body temperature,
heart rate, and oxygen saturation (SpO2) were monitored (Kent
Scientific, PhysioSuite). Body temperature was maintained at
36.5–37.5◦C with the use of a heating pad and a rectal feedback
probe (Harvard Apparatus, 55-7020). Our procedures for OCTA
data analysis have been described previously (Yoon et al.,
2022). Maximum intensity projection of 3D OCT angiograms
was performed in a depth direction over 150–300 µm below
the cortical surface. A time-averaged OCT angiogram was
generated by averaging all angiograms acquired within 63 s. The
averaged angiograms were segmented using the Trainable Weka
Segmentation plugin in Fiji software (Schindelin et al., 2012;
Arganda-Carreras et al., 2017). The shadow of large pial vessels
from the upper depth interval was removed from the image, and a
binary mask of capillaries was generated. Capillary segments that
showed a sudden drop of the signal at least once in the temporal
series of the OCT angiogram were defined as stalled segments.
Stalled segments were automatically identified using MATLAB
(MathWorks), and confirmed by manual inspection. Capillary
segments that were stalled both at baseline and after 2 weeks were
defined as re-stalled segments.

Measurement of Capillary Diameter, RBC
Velocity, and RBC Volume Flux
After 2 weeks of recovery, in vivo imaging was performed
before tamoxifen administration (baseline) and 2 weeks after the
initial tamoxifen administration (after 2 weeks). A two-photon
microscopy (TPM) system (Zeiss, LSM 510) with a femtosecond-
pulsed tunable Ti:Sapphire laser (Coherent, Chameleon Ultra)
and a Plan Apo 20× /1.0 water immersion objective lens was used
for imaging. Throughout the TPM imaging experiment, mice
were anesthetized with isoflurane (5% for induction, and about
1.5% for maintenance with a gas mixture of 40% oxygen and 60%
air), and physiological parameters, such as heart rate and SpO2
were monitored (Kent Scientific, PhysioSuite). Body temperature
was maintained at 36.5–37.5◦C with the use of a heating pad
and a rectal feedback probe (Physitemp Instruments, TCAT-
2LV). To image vessels, 70-kDa Texas Red dextran (Thermo
Fisher Scientific, D1830; 1% (w/v) in saline) was intravenously
injected at a volume of 100 µL to label blood plasma immediately

before imaging. Imaging was performed at 150–300 µm below
the cortical surface with a center wavelength of 900 nm (with
a laser power of less than 50 mW). The measurements from at
least ten capillaries were averaged for each mouse. For capillary
diameter measurements, 5 diameter line scan images (scan time:
6.14 ms / line) were analyzed with Gaussian smoothing (σ = 3)
and a Huang threshold method using the Fiji software (Kisler
et al., 2017, 2018). For RBC velocity measurements, 5,000 velocity
line scan images (scan time: 1.93 ms/line) were analyzed using the
MATLAB Line-Scanning Particle Image Velocimetry (LS-PIV)
algorithm which determines RBC displacements between pairs
of line scan images using spatial cross-correlation analysis (Kim
et al., 2012). For our image settings, the LS-PIV parameters used
were windowsize = 518, number of averages (numavgs) = 200,
skip amount (skipamt) = 25, and shift amount (shiftamt) = 1,
as previously described (Kisler et al., 2018). For RBC volume
flux measurements, capillary diameter and RBC velocity collected
from a single capillary were used to define RBC volume flux

−→
F

using the formula,

−→
F =

π

8
−→v (0)d2

where−→v (0) is RBC velocity, and d is capillary diameter, with the
assumption that the flow in the capillary is laminar (Shih et al.,
2009, 2012). The measurements from at least 10 capillaries were
averaged for each mouse.

Measurement of the Extent of the
Cerebral Endothelial Glycocalyx
To label and image the cerebral endothelial glycocalyx, FITC-
conjugated wheat germ agglutinin (WGA) lectin (Sigma, L4895;
0.1% (w/v) in saline) was intravenously injected 45 min before
imaging at a dose of 6.25 mg/kg. Subsequently, 70-kDa Texas
Red dextran was intravenously injected at a volume of 100 µL
to label blood plasma immediately before imaging. Imaging was
performed at 150–250 µm below the cortical surface with a center
wavelength of 800 nm (with a laser power of less than 50 mW).
A TPM system (Zeiss, LSM 510) with a femtosecond-pulsed
tunable Ti:Sapphire laser (Coherent, Chameleon Ultra) and a
Plan Apo 20 × /1.0 water immersion objective lens was used for
imaging. Throughout the TPM imaging experiment, mice were
anesthetized with isoflurane (5% for induction, and about 1.5%
for maintenance with a gas mixture of 40% oxygen and 60% air),
and physiological parameters, such as heart rate and SpO2 were
monitored (Kent Scientific, PhysioSuite). Body temperature was
maintained at 36.5–37.5◦C with the use of a heating pad and a
rectal feedback probe (Physitemp Instruments, TCAT-2LV).

To measure the extent of the cerebral endothelial glycocalyx,
the intensity profiles of WGA lectin and dextran, which were
vertical to the capillary wall, were averaged along the capillary
wall using the Fiji software. The extent of the cerebral endothelial
glycocalyx was defined as the area under the curve (AUC) of
WGA lectin signal intensity between boundaries, as shown in
Supplementary Figure 1 (Yoon et al., 2017). The measurements
from at least ten capillaries were averaged for each mouse.
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Immunohistochemistry
All immunohistochemical analyses were performed in the
primary somatosensory cortex, 2 weeks after the initial tamoxifen
administration. The mice were deeply anesthetized with a
mixture of Zoletil (30 mg/kg) and xylazine (10 mg/kg), and
intravenously perfused with 100 µL of DyLight 488 tomato lectin
(Vector Labs, DL-1174) for 5 min to label vascular structures.
Next, we performed transcardial perfusion with ice-cold PBS
followed by 4% PFA in PBS. The extracted brain was post-
fixed with 4% PFA for 12 h at 4◦C and transferred to a 30%
(w/v)-sucrose solution for cryoprotection. The samples were
sliced coronally at a thickness of 30 µm. Brain slices were
blocked with 5% donkey (or goat) serum dissolved in PBST
(0.3% Triton X-100 in PBS) at room temperature for 1 h and
then incubated with the following primary antibodies at 4◦C
for 12 h: anti-CD13 (1:200; R&D Systems, AF2335), GLUT1
(1:200; Abcam, ab14683), GFAP (1:1,000; Abcam, ab4674), Tie2
(1:200; R&D Systems, AF762), for 24 h: VCAM1 (1:100; Sigma,
CBL1300), and ICAM1 (1:100; Abcam, ab119871). After several
washes with PBS, brain slices were incubated with the following
secondary antibodies at 4◦C for 12 h: anti-goat IgG, anti-
rabbit IgG, anti-rat IgG (1:1,000; Jackson ImmunoResearch),
and anti-chicken IgG (1:1,000; Abcam). To detect cerebral
hypoxia, Hypoxyprobe-1 (Hypoxyprobe, HP7) was injected
intraperitoneally 1 h before sacrificing the mice. To quantify the
blood-brain barrier (BBB) leakage, Alexa Fluor 405 Cadaverine
(Thermo Fisher Scientific, A30675) was intravenously injected
under isoflurane anesthesia (5% for induction, and 1.5–2%
for maintenance with a gas mixture of 40% oxygen and 60%
air). After 3 h, the mice were sacrificed and brain tissue
was harvested with PBS and PFA perfusion. Brain slices were
incubated with anti-mouse IgG (1:1,000; Abcam) antibody at
4◦C for 12 h. Brain slices were mounted using Vectashield
mounting medium (Vector Labs, H-1000). Confocal microscopy
(Nikon, A1HD25) with a Plan Apo 20 × /0.75 objective
lens, a field of view of 317.44 × 317.44 µm (for CD13 and
GFAP) or 634.88 × 634.88 µm (for GLUT1, Tie2, VCAM1,
ICAM1, Hypoxyprobe-1, Cadaverine, and IgG), was utilized
for imaging brain slices. Images were analyzed using the
Fiji software. For analysis, lectin+-vessel mask was segmented
using the Trainable Weka Segmentation plugin in Fiji software
(Schindelin et al., 2012; Arganda-Carreras et al., 2017). Pericyte
coverage was defined by the ratio of CD13+-pericyte area
to lectin+-vessel masked area in the image. Capillary density
was defined by the percentage of lectin+-vessel masked area
in the image. Capillary length was defined by the length of
skeletonized lectin+-vessel mask in the image, and adjusted as
a scale of mm/mm3. To measure capillary tortuosity, lectin+-
vessel mask was utilized along with Rapid Editable Analysis
of Vessel Elements Routine (REAVER),1 an open-source tool
to analyze vascular network, as previously described (Corliss
et al., 2020). The measurements from at least 10 slides were
averaged for each mouse.

1https://github.com/uva-peirce-cottler-lab/public_REAVER

RNA-Seq of Brain Capillaries
We performed transcardial perfusion with ice-cold DEPC-
treated water under deep anesthesia with the mixture of
Zoletil (30 mg/kg) and xylazine (10 mg/kg). Capillaries were
isolated from the extracted brain, as previously described
(Ogata et al., 2020). Total RNA was isolated using easy-
BLUE reagent (iNtRON Biotechnology, 17061). RNA quality
was assessed by Agilent 2100 bioanalyzer using the RNA 6000
Nano Chip (Agilent Technologies), and RNA quantification was
performed using ND-2000 Spectrophotometer (Thermo Fisher
Scientific). The construction of library was performed using
QuantSeq 3′ mRNA-Seq Library Prep Kit (Lexogen) according
to the manufacturer’s instructions. In brief, each 500 ng total
RNA were prepared and an oligo-dT primer containing an
Illumina-compatible sequence at its 5′ end was hybridized
to the RNA and reverse transcription was performed. After
degradation of the RNA template, second strand synthesis was
initiated by a random primer containing an Illumina-compatible
linker sequence at its 5′ end. The double-stranded library
was purified by using magnetic beads to remove all reaction
components. The library was amplified to add the complete
adapter sequences required for cluster generation. The finished
library is purified from PCR components. High-throughput
sequencing was performed as single-end 75 sequencing using
NextSeq 500 (Illumina). QuantSeq 3′ mRNA-Seq reads were
aligned using Bowtie2 (Langmead and Salzberg, 2012). Bowtie2
indices were either generated from genome assembly sequence
or the representative transcript sequences for aligning to
the genome and transcriptome. The alignment file was used
for assembling transcripts, estimating their abundances and
detecting differential expression of genes. Differentially expressed
genes (DEGs) were determined based on counts from unique
and multiple alignments using coverage in Bedtools (Quinlan
and Hall, 2010). The read count data were processed based on
quantile normalization method using EdgeR within a R software
using Bioconductor (Gentleman et al., 2004). Significant DEGs
were defined as P < 0.05. Gene classification was based on
searches done by DAVID and Medline databases (Huang et al.,
2009a,b). Gene set enrichment analysis (GSEA) was performed
using GSEA software2 to find enriched gene sets. Enrichment
analysis was performed by using gene set collections of the
molecular signature database (MSigDB v7.4) obtained from the
Broad Institute.3

Western Blotting
After transcardial perfusion with ice-cold PBS under deep
anesthesia with the mixture of Zoletil (30 mg/kg) and xylazine
(10 mg/kg), protein lysates were extracted from the brain
using an ice-cold PRO-PREP protein extraction solution
(iNtRON Biotechnology, 17081) with protease/phosphatase
inhibitor and EDTA (Thermo Fisher Scientific, 1861284).
Protein quantification was performed using the Bradford
assay (Bio-Rad), and the lysates containing 10–20 mg of

2http://www.gsea-msigdb.org/gsea/index.jsp
3https://www.gsea-msigdb.org/gsea/msigdb/
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protein were separated on 8–15% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE), followed by
transferring onto nitrocellulose membranes (Pall Corporation,
66485). After blocking with 5% skim milk (BD Biosciences,
232100), the membranes were incubated with following
primary antibodies overnight at 4◦C: anti-VCAM1 (1:2,000;
Santa Cruz Biotechnology, sc-13160), ICAM1 (1:2,000; R&D
Systems, AF796), Tie2 (1:2,000; R&D Systems, AF762), p-Tie2
(1:1,000; R&D Systems, AF2720), NFκB (1:1,000; Santa Cruz
Biotechnology, sc-8008), p-NFκB (1:1,000; Cell Signaling
Technology, 3039), Angiopoietin1 (1:2,000; R&D Systems,
AF923), Angiopoietin2 (1:2,000; R&D Systems, AF623), Tie1
(1:2,000; R&D Systems, AF619), glyceraldehyde 3-phosphate
dehydrogenase (GAPDH; 1:5,000; Santa Cruz Biotechnology, sc-
25778). Then, the membranes were incubated with horseradish
peroxidase-conjugated anti-rat, anti-rabbit, and anti-mouse
antibodies (1:5,000, Thermo Fisher Scientific) at 4◦C. After
removing the secondary antibodies and washing with TBST
(tris-buffered saline with 0.1% tween 20) for a few times, the
band intensities were detected using the Clarity Western ECL
Substrate (Bio-Rad, 1705061). Images were analyzed in an
ImageJ software (NIH).

Statistical Analyses
Statistical analyses were performed using GraphPad Prism 9
(GraphPad Software). Data are presented as mean ± standard
deviation (SD) or median with interquartile range. Data were
tested for normality using Shapiro-Wilk test. Differences between
groups were tested using parametric or non-parametric statistics
depending on the distribution of the data. For comparing two
groups, Student’s t-test, Welch’s t-test or Mann-Whitney test were
used. Statistical significance was set to P < 0.05. All statistical
details are included in figure legends and Supplementary Table 1.

RESULTS

Pericytes Are Efficiently Ablated in the
Brain of DTAiMPC Mice
PDGFRβ-CreERT2 mice and ROSA26-DTA mice were crossed
to deplete pericytes by diphtheria toxin A (DTA) expression in
a PDGFRβ-dependent tamoxifen-inducible manner (DTAiMPC)
(Voehringer et al., 2008; Sheikh et al., 2015; Park et al., 2017).
To deplete pericytes, 2 mg of tamoxifen dissolved in corn oil
was injected intraperitoneally for five consecutive days (Park
et al., 2017; Nikolakopoulou et al., 2019; Figure 1A). CD13+-
pericyte coverage was significantly reduced in the brain vessels
of DTAiMPC mice (56.80% coverage vs. control mice), consistent
with previous finding in retinal vessels (Park et al., 2017). No
significant differences were found in capillary structure, such
as capillary density, capillary length, and capillary tortuosity
(Figures 1B,C). However, the capillary diameter was significantly
enlarged in pericyte-deficient mice without a significant change
in RBC velocity. In addition, the RBC volume in the capillaries
showed no significant difference in DTAiMPC mice compared
to control mice (Figures 1D,E). These results indicate that
pericyte loss has no effect on RBC flow in non-stalled capillaries.

Next, we investigated BBB leakage, because pericyte is known
to contribute to BBB integrity (Armulik et al., 2010; Daneman
et al., 2010; Nikolakopoulou et al., 2019). However, there was
no BBB leakage in pericyte-deficient mice when it was accessed
in two ways: intravenous injection of cadaverine (950 Da),
and IgG staining (200 kDa) (Supplementary Figure 2). These
results indicate that partial loss of pericytes is not sufficient to
interfere with BBB integrity during adulthood. Furthermore, glial
fibrillary acidic protein (GFAP) expression, a marker for astrocyte
activation, was significantly increased in pericyte-deficient mice
(Supplementary Figure 3). This indicates that pericyte loss
induces gliosis in the brain.

Pericyte Loss Increases Capillary
Stalling
To investigate the effect of pericyte loss on capillary stalling, we
compared the number of stalled segments in the capillaries
between experimental groups. The number of capillary
segments labeled with DiI-coated microspheres was nearly
three times higher in pericyte-deficient mice (Figures 2A,B).
Furthermore, we conducted in vivo label-free imaging of cerebral
microcirculation using OCTA to measure the number of stalled
segments (Figure 2C). Consistent with our finding in ex vivo
analysis, the number of stalled segments was significantly
increased in pericyte-deficient mice compared to control mice
(Figure 2D). However, the percentage of re-stalled segments,
which is the ratio of the capillary segments stalled again after 2
weeks, was not significantly different between the experimental
groups (Figure 2E). Overall, these results indicate that pericyte
loss increases capillary stalling in the brain.

Pericyte Loss Decreases the Extent of
the Cerebral Endothelial Glycocalyx
To understand the molecular processes underlying increased
capillary stalling, we performed RNA-Seq of brain capillaries
after isolation from the brain (Figure 3A and Supplementary
Figure 4). Interestingly, genes that are known to maintain
the structure of the endothelial glycocalyx, such as Tek, Bgn,
Dcn, Gpc3, B4galt3, Papss2, and Slc35b3, were significantly
downregulated in the brain capillaries of pericyte-deficient mice
(Figure 3B). In addition, a previous study reported that the extent
of the cerebral endothelial glycocalyx is smaller in the stalled
segments of the capillaries (Yoon et al., 2022). Therefore, we
measured the extent of the cerebral endothelial glycocalyx in
pericyte-deficient mice by using the region that best matched the
capillary image plane (dotted square in Figure 3C). Our findings
showed that the extent of the cerebral endothelial glycocalyx was
significantly decreased in pericyte-deficient mice (Figure 3D).
These results show that pericyte loss induces the decrease of the
extent of the cerebral endothelial glycocalyx.

Leukocyte Adhesion Molecules Are
Highly Expressed in Pericyte-Deficient
Mice
We found that the vascular surface coverage of VCAM1 and
ICAM1 was significantly increased in pericyte-deficient brain
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FIGURE 1 | Pericyte coverage is reduced in the brain of DTAiMPC mice. (A) Schematic diagram of the mouse model and experimental timeline for selective depletion
of pericytes in brain capillaries by tamoxifen administration. Tamoxifen (2 mg) was treated intraperitoneally for five consecutive days in 8-week-old DTAiMPC mice.
Analyses were performed 2 weeks after the initial tamoxifen administration. (B,C) Images and comparisons of CD13+-pericyte coverage over lectin+-vessels, and
capillary density, capillary length, and capillary tortuosity in vehicle-treated control (n = 6) and DTAiMPC (n = 8) mice. (D) Representative image of capillary in
two-photon microscopy (TPM) imaging. White arrows indicate that the line scanning directions to measure capillary diameter and RBC velocity. (E) Paired
comparisons of capillary diameter, RBC velocity, and RBC volume flux in control (n = 5) and DTAiMPC (n = 4) mice. Imaging is performed twice, before tamoxifen
administration (baseline) and 2 weeks after the initial tamoxifen administration (after 2 weeks), in the same mice. The measurements from at least 10 capillaries for
each mouse were averaged. Error bars represent mean ± SD. ∗∗∗∗P < 0.0001 and ∗P < 0.05 vs. control, by Welch’s t-test for unpaired comparison analyses and
Student’s t-test for paired comparison analyses. Scale bars: 100 µm (B, white) and 10 µm (D, yellow). PDGFRβ, platelet-derived growth factor receptor beta; DTA,
diphtheria toxin; IHC, immunohistochemistry; WB, western blot; RBC, red blood cell.

vessels (Figures 4A,B). Consistently, VCAM1 and ICAM1
expression was significantly increased in the brain lysate of
pericyte-deficient mice (Figure 4C). These results indicate

that pericyte loss leads to increased expression of leukocyte
adhesion molecules. In addition, to test whether the increase
of VCAM1 and ICAM1 expression due to pericyte loss may
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FIGURE 2 | Capillary stalling is increased in pericyte-deficient mice. (A,B) Images and comparison of the number of capillary segments labeled with DiI-coated
microspheres in control (n = 5) and DTAiMPC (n = 5) mice. The number of capillary segments labeled with DiI-coated microspheres was measured in the primary
somatosensory cortex. The measurements from at least 10 capillaries for each mouse were averaged. (C) CCD and time-averaged OCTA images at different time
points showing no structural changes both in control and DTAiMPC mice. Time-averaged OCTA images were obtained by averaging 10 angiograms acquired in 63 s.
Imaging was performed twice, before tamoxifen administration (baseline) and 2 weeks after the initial tamoxifen administration (after 2 weeks), in the same mice.
Positions of stalled segments are shaded in yellow. (D,E) Comparisons of the number of stalled segments and percentage of re-stalled segments in control (n = 6)
and DTAiMPC (n = 5) mice. The number of re-stalled segments after 2 weeks was normalized to the number of stalled segments at baseline. Error bars represent

(Continued)
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FIGURE 2 | median with interquartile range and mean ± SD. ∗P < 0.05 vs. control, by Mann-Whitney test for comparison analysis of the number of capillary
segments labeled with DiI-coated microspheres. ∗∗P < 0.01 vs. control, by Student’s t-test for paired comparison analysis of the number of stalled segments and
Welch’s t-test for unpaired comparison analysis of the number of stalled segments. All scale bars are 100 µm. CCD, charge-coupled device; OCTA, optical
coherence tomography angiography.

FIGURE 3 | The extent of the cerebral endothelial glycocalyx is decreased in pericyte-deficient brain capillaries. (A) Representative image of isolated brain capillaries.
(B) Comparisons of the transcription profiles of genes contributing to maintaining structure of glycocalyx. List of genes was selected based on previous studies and
only those that showed significant difference (P < 0.05) were selected. Capillaries were isolated from the brain of control (n = 3) and DTAiMPC (n = 4) mice. (C) TPM
image of WGA lectin+-glycocalyx in capillary. Dotted square in TPM image indicates the region for analysis of the cerebral endothelial glycocalyx extent. (see
supplementary Figure 3 for details.) (D) Comparison of the extent of the cerebral endothelial glycocalyx in control (54 capillaries, n = 4) and DTAiMPC (56 capillaries,
n = 5) mice. White circles represent the individual value of the cerebral endothelial glycocalyx extent for each capillary. Black and red circles represent the averaged
value of the cerebral endothelial glycocalyx extent for each mouse. The averaged values of the cerebral endothelial glycocalyx extent for each mouse are utilized for
comparison analysis. The measurements from at least 10 capillaries for each mouse were averaged. Error bars represent mean ± SD. **P < 0.01 and *P < 0.05 vs.
control, by Student’s t-test for comparison analyses of gene transcription profiles. *P < 0.05 vs. control, by Welch’s t-test for comparison analysis of the cerebral
endothelial glycocalyx extent. Scale bars: 100 µm (A) and 10 µm (C). Tek, tek receptor tyrosine kinase; Bgn, biglycan; Dcn, decorin; Gpc3, glypican 3; B4galt3,
beta-1,4-galactosyltransferase 3; Papss2, 3′-phosphoadenosine 5′-phosphosulfate synthase 2; Slc35b3, solute carrier family 35 member b3; TPM, two-photon
microscopy; WGA-lectin, wheat germ agglutinin lectin; AUC, area under the curve.

be linked to the angiopoietin-Tie2 signaling pathway, we
first examined Tie2 expression in vessels, because RNA-Seq
results from the brain capillaries showed transcriptional
inactivation of Tek (Tie2 coding gene) in pericyte-deficient
mice (Figure 3B). As expected, Tie2 signal intensity in
vessels was significantly decreased in pericyte-deficient
mice (Supplementary Figures 5A,B). Furthermore, Tie2
expression was significantly decreased in the brain lysate of

pericyte-deficient mice (Supplementary Figure 5C).
Unexpectedly, however, there were no significant differences
in p-Tie2, p-Tie2/Tie2, NFκB, p-NFκB, p-NFκB/NFκB,
Angiopoietin1, Angiopoietin2, and Tie1 expression
(Supplementary Figure 6). These results show that pericyte loss
induces the decrease of Tie2 expression, however, it does not
affect Angiopoietin1 and Angiopoietin2 expression, Tie2 and
NFκB activity in the brain.
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FIGURE 4 | Pericyte loss leads to increased expression of leukocyte adhesion molecules. (A,B) Images and comparisons of VCAM1+ and ICAM1+ coverage over
lectin+-vessels in control (n = 5) and DTAiMPC (n = 5) mice. (C) Comparisons of VCAM1 and ICAM1 expression in the whole brain lysate in control (n = 4) and
DTAiMPC (n = 4) mice. GAPDH control is shown in Supplementary Figure 6A. Error bars represent mean ± SD and median with interquartile range. ∗∗P < 0.01
and ∗P < 0.05 vs. control, by Welch’s t-test for comparison analyses of vascular surface coverage of VCAM1, vascular surface coverage of ICAM, VCAM expression
in the whole brain lysate. ∗P < 0.05 vs. control, by Mann-Whitney test for comparison analysis of ICAM1 expression in the whole brain lysate. All scale bars are 100
µm. VCAM1, vascular cell adhesion molecule 1; ICAM1, intercellular adhesion molecule 1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.
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Cerebral Hypoxia Is Induced by Pericyte
Loss
To investigate the development of cerebral hypoxia, we measured
glucose transporter 1 (GLUT1) expression in the vessels. GLUT1
signal intensity in the vessels was significantly increased in the
pericyte-deficient mice (Figures 5A,B). Consistently, GLUT1
expression in the brain lysate was significantly increased in
pericyte-deficient mice (Figure 5C). In addition, Hypoxyprobe-
1 (pimonidazole HCl) signal intensity had a trend toward an
increase (p = 0.0724) in pericyte-deficient mice (Supplementary
Figure 7). These results indicate that pericyte loss induces
cerebral hypoxia.

DISCUSSION

In this study, we demonstrated that pericyte loss induced
capillary stalling in the brain without changing the capillary
structure and BBB integrity. The capillary diameter was enlarged
approximately 25% after pericyte loss, consistent with previous
findings that showed that pericyte regulates basal capillary tone
(Peppiatt et al., 2006; Berthiaume et al., 2018a). Although the
capillary diameter was increased, the RBC velocity and RBC
volume flux were not changed after pericyte loss. According
to several previous studies, however, pericyte loss induces BBB
leakage and CBF downregulation (Armulik et al., 2010; Daneman
et al., 2010; Nikolakopoulou et al., 2019). This discrepancy might
be due to differences in animal model. Furthermore, the RBC
volume flux that was measured would be the value in non-stalled
capillaries. Because the RBC volume flux in stalled capillaries
would be negligible, the CBF which corresponds to the sum of the
RBC volume flux would be decreased in pericyte-deficient mice.
Our results suggest that capillary stalling is a mediating process
in pericyte loss inducing CBF downregulation.

We measured capillary stalling in two ways: ex vivo analyses
using DiI-coated microspheres and in vivo analyses using
longitudinal OCTA imaging and found increased capillary
stalling in pericyte-deficient mice in either of two ways.
Moreover, the number of stalled segments in capillaries was
higher in in vivo than in ex vivo analyses. Presumably,
this discrepancy resulted from the difference in the temporal
resolution of the two methods (3 h for the DiI-coated
microspheres and only 6.3 s for longitudinal OCTA imaging).
Indeed, the higher the temporal resolution the higher the
sensitivity to detect capillary stalling is.

The increased interaction between leukocytes and leukocyte
adhesion molecules fosters the adhesion of rolling leukocytes on
the endothelial cell surface (Ley et al., 2007; Nourshargh and
Alon, 2014). We measured the extent of the cerebral endothelial
glycocalyx as a possible cause of increased capillary stalling
because of its established association to leukocyte-endothelial cell
interaction (Reitsma et al., 2007; Uchimido et al., 2019). Previous
studies have shown that the endothelial glycocalyx is degraded in
diseases, leading to increased leukocyte adhesion (Kumase et al.,
2010; Schmidt et al., 2012; McDonald et al., 2016). Furthermore,
the decreased extent of the cerebral endothelial glycocalyx is
associated with increased capillary stalling (Yoon et al., 2022).

RNA-seq results also suggested that leukocyte-endothelial cell
interaction could be enhanced in pericyte-deficient mice. The
adhesive interaction between leukocyte and endothelial cell
is regulated by sequential activation of different families of
membrane proteins (Panés and Granger, 1998). Taken together,
it could be inferred that increased capillary stalling induced
by pericyte loss is associated with increased leukocyte adhesion
to endothelial cell due to the decreased extent of the cerebral
endothelial glycocalyx and increased expression of leukocyte
adhesion molecules. In addition, we investigated Tie2 signaling
as the main upstream pathway of increased expression of
leukocyte adhesion molecules. Previous studies have shown
that the enhanced expression of VCAM1 and ICAM1 is
induced by the activation and nuclear translocation of the
inflammatory transcription factor NFκB, which is a downstream
signaling molecule of the angiopoietin-Tie2 signaling pathway
(Parikh, 2017). In addition, pericyte produces Angiopoietin1, an
agonistic ligand of Tie2 (Augustin et al., 2009; Saharinen and
Alitalo, 2011). We therefore hypothesized that the decrease of
Angiopoietin1 due to pericyte loss may deactivate Tie2 signaling,
and in turn, increase VCAM1 and ICAM1 expression. Although
transcriptional inactivation of Tie2 coding gene and decreased
expression of Tie2 were observed, there was no significant
difference in the Tie2 signaling pathway. This result suggests
that the angiopoietin-Tie2 signaling may not be involved in
the increased expression of leukocyte adhesion molecules in the
brain. Previous study reported that Tie2 is expressed at lower
levels by pericytes, and pericyte-expressed Tie2 also controls
angiogenesis and vessel maturation, which suggests that pericyte-
expressed Tie2 contributes to maintaining the homeostasis of
the vasculature (Teichert et al., 2017). It is known that the
expression of leukocyte adhesion molecules is increased during
inflammation (Ley et al., 2007). Furthermore, increasing evidence
points to the role of pericyte to maintain immune homeostasis
in the brain (Rustenhoven et al., 2017). Taken together,
these results suggest that the cerebral inflammation induced
by pericyte loss leads to increased expression of leukocyte
adhesion molecules. The combination of the increased expression
of leukocyte adhesion molecules and increased exposure of
leukocyte adhesion molecules due to the decreased extent of
the cerebral endothelial glycocalyx leads to increased interaction
between leukocytes and leukocyte adhesion molecules, which
results in increased capillary stalling. When the regulation of
cerebral blood flow is not working properly, the oxygenated
blood supply to the brain tissue is limited (Kisler et al.,
2017), which in turn leads to hypoxia in the brain (Bell
et al., 2010; Nikolakopoulou et al., 2019). Considering the
profound effect of capillary stalling on CBF downregulation
(Cruz Hernández et al., 2019), increased capillary stalling would
limit the oxygenated blood supply to the brain tissue. In turn,
cerebral hypoxia and augmented gliosis were induced in pericyte-
deficient mice, which may lead to the vicious cycle of increasing
capillary stalling.

This study has some limitations. First, OCTA and TPM
imagings were performed only in the cortex of mice due to
the relatively shallow imaging depth of the imaging modalities.
In addition, arterial blood flow was not measured to show
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FIGURE 5 | Cerebral hypoxia is induced in pericyte-deficient mice. (A,B) Images and comparisons of mean GLUT1 intensity in lectin+-vessels in control (n = 5) and
DTAiMPC (n = 5) mice. (C) Comparisons of GLUT1 expression in the whole brain lysate in control (n = 4) and DTAiMPC (n = 4) mice. GAPDH control is shown in
Supplementary Figure 6A. Error bars represent mean ± SD. ∗P < 0.05 and ∗∗P < 0.01 vs. control, by Welch’s t-test for comparison analyses. All scale bars are
100 µm. GLUT1, glucose transporter 1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.

upstream blood flow change after pericyte loss. Since we used the
whole brain lysate to investigate the angiopoietin-Tie2 signaling
pathway in pericyte-deficient mice, it could provide a limited

opportunity to detect the change in capillaries. Nevertheless, our
results clearly demonstrated increased capillary stalling in the
pericyte-deficient mice compared to the control.
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CONCLUSION

In conclusion, this study showed that pericyte loss resulted
in increased capillary stalling in the brain through increased
interaction between leukocyte and endothelial cell, which was
mediated by the decreased extent of the cerebral endothelial
glycocalyx and increased expression of leukocyte adhesion
molecules. Furthermore, pericyte loss induced hypoxia and
gliosis. This study provides clues regarding pericyte loss-inducing
alterations in microcirculation, and we expect that pericyte could
be a potential therapeutic target for microcirculatory dysfunction
in neurological diseases.
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