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ABSTRACT: The presence or absence of liquid−liquid phase separation (LLPS) in aerosol particles
containing oxidized organic species and inorganic salts affects particle morphology and influences
uptake into, diffusion through, and reactivity within those particles. We report here an accessible
method, similar to ice core analyses, using solutions that are relevant for both aerosol chemical systems
and aqueous two-phase extraction systems and contain ammonium sulfate and one of eight alcohols
(methanol, ethanol, 1-propanol, 2-propanol, 2-butaonol, 3-methyl-2-butanol, 1,2-propanediol, or 1,3-
propanediol) frozen in articulated (bendable) straws to probe LLPS. For alcohols with negative
octanol−water partitioning coefficient (KOW) values and O/C ratios ≥0.5, no LLPS occurs, while for
alcohols with positive KOW values and O/C ratios ≤0.33, phase separation always occurs, both findings
consistent with observations using different experimental techniques. When a third species, glyoxal, is
added, the glyoxal stays in the aqueous phase, regardless of whether LLPS occurs. When phase separation occurs, the glyoxal forms a
strong intermolecular interaction with the sulfate ion, red-shifting the ν3(SO4

2−) peak by 15 cm−1. These results provide evidence of
chemical interactions within phase-separated systems that have implications for understanding chemical reactivity within those, and
related, systems.

■ INTRODUCTION
Aerosol particles include substantial organic and inorganic
fractions,1 and this ever-changing internal chemical mixture
frequently leads to liquid−liquid phase separation (LLPS).
Morphology changes brought on by the onset or loss of LLPS
affect partitioning to, diffusion through, and reactivity within a
particle.2−4 LLPS can also alter a particle’s optical properties
and ability to act as a cloud condensation nucleator.5

Understanding the physical and chemical changes that aerosol
particles undergo as they age and their associated morphol-
ogies is important for our ability to better model the climate.6

A relatively recent body of both aerosol7−20 and aqueous,
two-phase extraction (ATPE)21−23 literature has explored
LLPS in mixed organic/inorganic systems. Among the
variables found to affect the formation of LLPS on the particle
scale are chemical composition and relative humidity. Other
related studies use particle imaging techniques such as optical
tweezers16 or cryo-TEM17 to probe bulk structure in particles
and droplets.24 While bulk analyses offer an overview of a
particle, probing the boundary between phases or intraparticle
organization requires zooming in on the internal composition.
The options for investigating these structures and relationships
are more limited, though important work has been done using
surface-enhanced18 and confocal19,20 Raman. In an example of
the latter, Wu et al.19 probed different spatial regions of
glutaric acid/magnesium sulfate droplets and found a clear
LLPS at high relative humidity with an organic shell and salt-
rich core. Song et al.9−11,25 have also found that when LLPS
occurs for aqueous-based particles containing organic and
inorganic components, the inner layer is predominantly water-

rich. We report here a simple method that, while lacking the
micrometer vertical resolution of confocal Raman, can probe
core−shell compositional information using instrumentation
and equipment accessible to nearly any laboratory or
educational institution.

■ RESULTS AND DISCUSSION

Presented below is a method, similar to ice core analyses, for
mapping solution composition as a function of depth using
FTIR-ATR spectroscopy on small slices (6 mm diameter, ∼1−
1.5 mm thick, 0.05−0.06 mL) of flash-frozen articulated
(bendable) straws, which probes LLPS and related phase
boundary conditions in aqueous solutions containing a salt and
an organic species that mimic both brown carbon aerosol
chemistry26,26−31 and ATPE systems23 along with analyzing
intrasolution structural motifs that may be operative in core−
shell particle morphologies. The solutions we use contain 3.0
M ammonium sulfate and 1.0 M concentration of one of eight
alcohols (methanol, ethanol, 1-propanol, 2-propanol, 1,2-
propanediol, 1,3-propanoediol, 2-butanol, and 3-methyl-2-
butanol). The solutions are frozen and chopped into between
30 and 40 slices, depending on the alcohol, before analysis with
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FTIR-ATR spectroscopy. Representative IR spectra for slices
from two different solutions are shown in Figure 1. In panels A
and B, the presence of alcohol IR peaks throughout the
solution indicates that 1,2-propanediol is fully miscible and the
solution lacks phase separation. However, spectra of the 1-
propanol solution presented in panels C and D indicate the
presence of LLPS. The separation can be seen in the
differences between the topmost slices, with an alcohol peak

(at 964 cm−1) matching that from the neat alcohol and the lack
of sulfate peaks at either 1074 or 610 cm−1, and in the rest of
the solution slices where no alcohol peaks exist. Thus, when
LLPS forms in these systems, the organic phase sits exclusively
at the top of the solution with the salty aqueous phase below.
An alternate way to visualize solution chemical composition

versus depth is accomplished by comparing cleanly resolved
spectral features for the alcohols and ammonium sulfate

Figure 1. IR spectra for different depths in an articulated straw for 3.0 M ammonium sulfate solutions containing (a) 1.0 M 1,2-propanediol, (b) a
close up of the 1,2-propanediol peak used for analysis, (c) 1.0 M 1-propanol, and (d) a close up of the 1-propanol peak used for analysis (slice 32
has been omitted due to an instrumental error). In each case, the spectra have been processed using a water background. Slices shown run from the
bottom of the straw (slice 1) to the top (slice 31 of 33 for (a) and slice 36 of 36 for (c)). The sloped behavior is a consequence of background
subtractionlayers with substantially less water content than the background appear with sloped intensity profiles.

Figure 2. Integrated peak areas for solutions of an alcohol (1,2-propanediol (a) and 1-propanol (b)) and ammonium sulfate as a function of
solution depth (with slice 1 corresponding to the bottom of the straw).
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throughout a single solution. Figure 2 shows such a
visualization (along with Figures S1−S5), with plots of the
integrated peak areas of two cleanly resolved peaks for each
slice from a frozen straw. We typically used the sulfate
ν4(SO4

2−) band, peaked here at 610 cm−1 with a FWHM of 30
cm−1,32 and whichever alcohol peak was the most cleanly
resolved in the fingerprint region. The qualitative results are
robust and do not depend on the specific IR feature chosen for
analysis (see Figure S1, both the ν4(SO4

2−) peak at 610 cm−1

and the ν4(NH4
+) peak at 1440 cm−1 behave the same). The

information extracted from the straw slices exposes an
interesting feature of LLPS solutions because the small
volumes and large number of slices allow us to probe the
transition region between phases. The abrupt phase boundary
can be seen in panel D of Figure 1 (slices 34−35), finishing
completely within slice 34, as slice 33 shows no obvious
alcohol IR peaks. Also shown in panel D of Figure 1 are
differential comparisons between slice 1 (the bottom of the
straw) and two intermediate slices, numbers 33 and 25 (all
slices below 25 show identical behavior) that highlight the lack
of a decreasing alcohol concentration as a function of distance
from top of straw. A similar differential analysis (not shown)
using the ammonium sulfate reference spectrum gives an
identical result, showing that the alcohol can indeed be found
only in the top fraction. An aqueous/organic transition region
can be seen in the four other alcohols that exhibit LLPS (see
Figures S2, S3, and 3). While the very top of the solution (the
full organic phase, slice 36, Figure 1 panel D and Figure 2
panel B) appears to contain no ammonium sulfate, as observed
in similar systems,14 the transition layer carries information on
the relationship between the two phases. There is no, for
example, evidence of peak shifting in the transition region for
either alcohol or sulfate, at least for these binary solutions,
suggesting that the two species do not replace water

interactions for sulfate−alcohol interactions (see Figure S6).
Further work with higher resolution methods exploring this
transition layer will be informative for understanding if, for
example, the alcohol “pushes” the ammonium sulfate out of the
way or out-competes it for water solvation.
Whether a solution will exhibit LLPS appears to depend on

both the octanol−water partition coefficient (KOW) and the O/
C ratio. Of note, even though we find that the organic layer sits
on top of the aqueous salt layer, this is not driven by density, as
seen in Table 1, but rather it is likely due to the energy of
interaction differences that favor alcohol−alcohol over
alcohol−other interactions. Negative KOW values correspond
to a lack of LLPS, and positive KOW values correspond to the
presence of LLPS. The ability of the partition coefficient to
predict LLPS formation is particularly relevant for systems
containing molecules with no oxygen atoms (such as
imidazole, as discussed later). While none of the solutions
here contain an octanol phase, the hydrophobicity or
hydrophilicity of the alcohol, indicated by the sign of
KOW,

33,34 clearly relates to whether LLPS forms, and the
extent of this predictability is an avenue of ongoing research.
This LLPS dependence on the O/C ratio of the added organic
species for ammonium sulfate/organic mixtures has been the
subject of numerous studies.9−12,15 These diverse experiments
show that separation tends to occur for systems containing
species with O/C ratios less than 0.44, never occurs for
systems containing species with O/C ratios above 0.8, and is
salt-dependent for intermediate O/C ratios. In broad agree-
ment, we find that solutions with no LLPS have alcohol O/C
ratios of 0.5 or larger, while solutions with LLPS have alcohol
O/C ratios less than 0.5, as summarized in the table, and the
capability of our solutions in frozen and sliced straws to
recapture this known behavior is a useful test of the straw
method.

Figure 3. Integrated peak areas for solutions of an alcohol (1,2-propanediol (a) and 3-methyl-2-butanol (b)), ammonium sulfate, and glyoxal as a
function of solution depth (with slice 1 corresponding to the bottom).

Table 1. Alcohol Physical Properties and Miscibility Results for 3.0 M Aqueous Ammonium Sulfate Solutions Containing 1.0
M Alcohol

alcohol 1,3-propanediol 1,2-propanediol methanol ethanol 2-propanol 1-propanol
2-butanol 3-methyl-2-

butano

miscible? separable? alcohol fully miscible alcohol separates from the ammonium sulfate layer
density (g/mL) 1.06 1.036 0.792s 0.789 0.786 0.803 0.806 0.818
log(Korg/w) −1.04a −0.92a −0.74b −0.30b 0.05b 0.25b 0.65b 1.28b

O/C ratio 0.667 0.667 1 0.5 0.333 0.333 0.25 0.2
aRef 24. bRef 25.
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A specific example of the usefulness of the sliced straw data,
beyond merely identifying the presence or absence of LLPS,
comes from how it may help explain our previous, bulk-phase
kinetic data for aqueous ammonium sulfate solutions
containing 3-methyl-2-butanol and glyoxal.35 We posited that
changes to the solvation environment upon addition of alcohol
could create microregions of aggregated alcohol molecules in
the bulk solution that excluded glyoxal and ammonium sulfate,
the relevant reactants in the formation of imidazole-2-
carboxaldehyde (IC) and biimidazole (BI), two components
of brown carbon aerosol. In effect, these microregions would
decrease the volume available to the reactants. The
stratification data reported here cannot confirm or deny the
presence of specific microheterogeneities themselves in the
original solution, though they can tell when a glyoxal/
ammonium sulfate/alcohol system exhibits LLPS and provide
information on intrasolution interactions. As seen in Figure 3,
if the alcohol forms no LLPS with ammonium sulfate (panel A,
1,2-propanediol); then, the glyoxal is fully miscible, but if the
alcohol leads to LLPS formation (panel B, 3-methyl-2-
butanol), the glyoxal stays in the ammonium sulfate layer.
The addition of glyoxal does not appear to alter whether or

not LLPS forms, though it offers an important lesson for
understanding more complicated solutions. Glyoxal miscibility
follows ammonium sulfateregardless of the alcoholdue to
strong intermolecular interactions that depend appreciably on
the sulfate concentration, and thus, miscibility should be
insensitive to the alcohol.36 The alcohol, and thus the presence
or absence of LLPS can, however, still affect the glyoxal−
sulfate interaction, as seen in the gradual decrease in glyoxal
concentration in Figure 3 panel B, as a function of solution
depth. A detailed view of this decrease can be seen in the
spectra in Figure 4. When glyoxal is present in the 3-methyl-2-
butanol and ammonium sulfate solution (panel A), there is a
related peak shift for ν3(SO4

2−) (centered at 1074 cm−1 in the
reference spectrum). At the bottom of the straw, glyoxal is
overrepresented and a complexation with the sulfate ion causes
a shift in the sulfate peak. Just below the alcohol layer (slices
25−29 in panel A), there is less glyoxal present and the sulfate
peak has shifted approximately 15 cm−1 to higher energy, to be
in line with the reference position. The position of the
ν4(NH4

+) peak, at 1450 cm−1, does not shift, indicating no
comparable glyoxal−ammonium interaction; the reaction

partner for glyoxal is ammonia, not ammonium, so this lack
of interactivity makes sense.28,35,37 When no glyoxal is present,
as seen in panel B, no sulfate peak shift is observed. Kurteń et
al.36 attribute the strength of the glyoxal−sulfate interaction to
a “salting in” effect. When no LLPS forms, as in solutions with
1,2-propanediol (panel A of Figure 3), the glyoxal−sulfate
interaction is broken up by the presence of alcohol throughout
the solution (see Figure S6), and no sulfate peak shift occurs.
Phase separation in the 3-methyl-2-butanol system excludes
both glyoxal and ammonium sulfate from the topmost layers,
resulting in an ammonium sulfate/glyoxal layer that is nearly
17% smaller in volume than if no alcohol was present. The
increased reactant concentrations in this smaller volume
increases the rate of product formation (for both IC and
BI), even though the rate constants stay largely unchanged
across the studied concentration range.35

Evidence of LLPS can inform our understanding of
reactivity, though further work with glyoxal-containing
solutions is needed. The same kinetic work35 found that
methanol and ethanol behave similarly to 3-methyl-2-butanol
for IC production, with flat rate constants as a function of
concentration. In contrast to 3-methyl-2-butanol, however,
methanol and ethanol have concentration-dependent rate
constants for BI formation. Both BI and imidazolethe first
heterocycle formedhave negative octanol−water partition
coefficients,38 while IC has a positive KOW.

39 Further work is
needed to explore where these compounds sit within aged
reaction solutions and whether new or additional layers form
during aging. Characterizing how a solution changes internally
as it ages will be useful for understanding the chemistry of
formation of light-absorbing compounds in secondary organic
aerosol mixtures containing oxidized hydrocarbons.
Despite the substantial size, volume, and surface area

differences of these straw-based solutions versus atmospheric
aerosol, and given previous observations consistent with the
present work that find organics tend to partition to the outer
layer while inorganics to the aqueous core,9,11,19,40,41 reframing
the tubes into the context of a sphere (see Figure S7) offers
several useful insights. For example, a spherical particle of 50
nm radius with an alcohol layer representing 10% of the total
volume (similar percentage to that observed in the straw data)
can be calculated to have an outer layer of approximately 17 Å.
This thickness corresponds to between 3 (for 3-methyl-2-

Figure 4. IR spectra for different depths in an articulated straw for 3.0 M ammonium sulfate solutions containing 3-methyl-2-butanol. The solution
in panel A also contains 0.095 M glyoxal, while panel B does not. The inset of panel A shows a close up of the glyoxal peak used for analysis, at 1033
cm−1.
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butanol) and 5 (for methanol) monolayers of alcohol at the
surface of the particle, though this is best thought of as an
upper bound for the shell thickness. Aerosol particles have a
much larger surface area than a bulk solution confined to a
straw, and given the volatility of the alcohols, evaporative losses
(which we suppress in our bulk solutions, see below) that alter
the size and composition of the organic layer are likely to
occur. Assuming a core−shell morphology, reasonable given
the substituents,16 an outer organic layer is likely to affect a
number of surface processes.42,43 Isoprene epoxide (IEPOX)
uptake into an aerosol was reduced in the presence of a particle
with an organic coating,43 surface tension was reduced for
particles with organic surface coatings,16 and bulk diffusion
time scales increased with increasing phase separation.42

Another key variable that controls particle morphology and
the formation and loss of LLPS in aerosol systems is the
relative humidity (RH).19,44,45 A mixed organic/inorganic
particle, at high RH, is generally found to be homogeneous,
transitioning to a phased system and different particle
morphology states as the RH decreases. The bulk solution
method reported here, as such, is not directly comparable with
RH studies on single particles, at least in terms of measuring
under what particle-scale conditions LLPS forms. Akin to the
confocal Raman work of Wu et al. to map spectral differences
between the core and shell of a drying droplet,19 however, the
work presented above is a window into the intrasolution
interactions that may drive observed particle morphology and
properties, for morphologies that exhibit similar solution
stratification. The glyoxal concentration gradient seen in Figure
4, for example, suggests that under conditions when a particle
exhibits a core−shell morphology, glyoxal is likely to be
concentrated away from the outer organic layer, and this has
direct implications on understanding intraparticle reactivity.

■ CONCLUSIONS
The straw technique presented here offers a robust way to
probe for the presence of LLPS in aqueous organic−salt
systems. By using aerosol- and separation science-relevant
chemical mixtures, the method can be used to connect bulk-
phase laboratory observations to particle-scale studies of
similar systems and phenomena. In addition to the ability of
this method to confirm known solution behaviorthat LLPS
forms when the O/C ratio of the organic component is
approximately 0.5 or largerthe ability to freeze the solutions
captures a moment in time. Taking this kind of a snapshot of a
solution, for example as part of a kinetic experiment, can bring
to light subtle differences in the way solution components
organize themselves (such as the presence or absence of strong
glyoxal−sulfate interactions along with LLPS), organization
that can affect chemical reactivity, and also allows for studying
the boundary region between phases in an LLPS system.
Additional applications of this technique for visualizing
intrasolution organization could include capturing ammonium
sulfate salting out at high alcohol concentrations and analyzing
the effect of alcohol (or other oxidized organic substituent)
concentration on a system already exhibiting LLPSrelevant
for ATPE work. In a nonaerosol application, this method could
be an alternate way to build phase diagrams,46 one that
eliminates the perturbation introduced by sampling via
syringes. These proposed uses should further our under-
standing of LLPS systems and the relationship between the
chemical composition and solution structure within an aerosol
particle.

■ EXPERIMENTAL METHODS

Glyoxal (Sigma Aldrich, 40% by weight in H2O), ammonium
sulfate (Sigma Aldrich, 99.0%), methanol (Pharmco-Aaper,
99.8%), ethanol (Pharmco-Aaper, 99.5%), 1-propanol (Sigma
Aldrich, 99.5%), 2-propanol (Sigma Aldrich, 99.5%), 2-butanol
(Sigma Aldrich, 99.5%), 3-methyl-2-butanol (Sigma Aldrich,
98%), 1,2-propanediol (Sigma Aldrich, 99.5%), and 1,3-
propanediol (Sigma Aldrich, 98%) were used without further
purification. All solutions were prepared in ultrapure water
(18.2 MΩ, Thermo Scientific Barnstead NANOpure).
The articulated straw coring analysis method used above

begins with preparation of the straws. The straws (6 mm
diameter, 260 mm length, made of polypropylene, and
purchased from Far East Brokers and Consultants) were first
trimmed so that the end closest to the articulations was
removed, resulting in the “bottom” end of the straw starting at
the articulation section. This cut end was then wrapped with
parafilm. After fully extending the articulated section of the
straw, 2 mL of pre-prepared solution was added. Solution
preparation is similar to that described elsewhere. Briefly, the
solution contains 3.0 M ammonium sulfate and 1.0 M
concentration of one of eight alcohols, mixed in ultrapure
water. For solutions containing 0.095 M glyoxal, the glyoxal
was added prior to the alcohol.
Once the solution was added to the straw, the loaded straw

was tapped several times to release bubbles trapped in any of
the articulations. Then, the portion of the straw containing
liquid was fully submerged in a liquid nitrogen bath until
frozen. We experimented with freezing speed and found that
our results were repeatable only when the straws were directly
and fully submerged. Slow freezing speeds, wherein the straw
was incrementally submerged, allowed the solution to
rearrange (on one occasion forcefully ejecting a portion out
the top) or prevented freezing at all (liquid nitrogen
temperatures were required, as solutions placed in a −80 °C
freezer never solidified). Once frozen, the parafilm was
removed and extra straw was removed from the top so that
only the ice core portion remained.
The straws were sliced, using a razor blade, at each of the

thinnest parts of the articulation to produce 30−40 slices
(depending on the alcohol), each of approximately 2.5 mm
thickness for a volume of 0.05−0.06 mL. Slices with smaller
volumes or thicknesses are possible by using a different straw
(smaller diameter, more closely spaced articulations), though
we have not found any as yet. Each slice was placed into a 0.5
mL PCR tube immediately after being cut, and the razor blade
wiped. The PCR tubes were placed on dry ice to prevent
evaporative loss of alcohol and to prevent chemical reactivity in
solutions containing both ammonium sulfate and glyoxal. If the
frozen tube ever appeared to be melting, it was refrozen after
resealing the bottom end with parafilm before slicing resumed.
An example of the slicing process is shown in Figure 5.
After all slices had been transferred to PCR tubes, and stored

on dry ice, they were taken for analysis using an FTIR-ATR
instrument (Alpha Platinum, Bruker). Each sample (one slice
stored in a PCR tube), now cold (but not frozen) and fully
liquid, was placed under a cover slip on the ATR surface for
analysis. This cover slip prevented evaporative alcohol loss
during analysis and preserved chemical information without
introducing new structural motifs (such as a droplet surface
not present within the straw column). Infrared spectra were
collected with 2 cm−1 resolution and averaged 60 times.
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Ultrapure water was used as a background. Peak analysis, to
produce the data shown in the above figures, was done using
the instrument’s provided software (OPUS) by selecting a
baseline around the peak of interest and integrating. Any
postprocessing of the data was done using Igor Pro (version
6.37, WaveMetrics).
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