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Abstract

Motivation: Long non-coding RNAs (lncRNAs) are defined as transcripts longer than 200 nt that do

not get translated into proteins. Often these transcripts are processed (spliced, capped and polya-

denylated) and some are known to have important biological functions. However, most lncRNAs

have unknown or poorly understood functions. Nevertheless, because of their potential role in can-

cer, lncRNAs are receiving a lot of attention, and the need for computational tools to predict their

possible mechanisms of action is more than ever. Fundamentally, most of the known lncRNA

mechanisms involve RNA–RNA and/or RNA–protein interactions. Through accurate predictions of

each kind of interaction and integration of these predictions, it is possible to elucidate potential

mechanisms for a given lncRNA.

Results: Here, we introduce MechRNA, a pipeline for corroborating RNA–RNA interaction predic-

tion and protein binding prediction for identifying possible lncRNA mechanisms involving specific

targets or on a transcriptome-wide scale. The first stage uses a version of IntaRNA2 with added

functionality for efficient prediction of RNA–RNA interactions with very long input sequences,

allowing for large-scale analysis of lncRNA interactions with little or no loss of optimality. The sec-

ond stage integrates protein binding information pre-computed by GraphProt, for both the lncRNA

and the target. The final stage involves inferring the most likely mechanism for each lncRNA/target

pair. This is achieved by generating candidate mechanisms from the predicted interactions, the rel-

ative locations of these interactions and correlation data, followed by selection of the most likely

mechanistic explanation using a combined P-value. We applied MechRNA on a number of recently

identified cancer-related lncRNAs (PCAT1, PCAT29 and ARLnc1) and also on two well-studied

lncRNAs (PCA3 and 7SL). This led to the identification of hundreds of high confidence potential tar-

gets for each lncRNA and corresponding mechanisms. These predictions include the known com-

petitive mechanism of 7SL with HuR for binding on the tumor suppressor TP53, as well as
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mechanisms expanding what is known about PCAT1 and ARLn1 and their targets BRCA2 and AR,

respectively. For PCAT1-BRCA2, the mechanism involves competitive binding with HuR, which we

confirmed using HuR immunoprecipitation assays.

Availability and implementation: MechRNA is available for download at https://bitbucket.org/comp

bio/mechrna.

Contact: agawrons@sfu.ca or cenksahi@indiana.edu or backofen@informatik.uni-freiburg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

With the advance of large-scale transcriptome analysis, it has

become evident that the majority of the human genome is tran-

scribed into RNA (Djebali et al., 2012). Out of all currently anno-

tated genes, only a minority is known to code for proteins, while

most are believed to be non-coding RNAs (ncRNAs). Beside several

small ncRNAs, including small nucleolar RNAs (snoRNAs) and

microRNAs (miRNAs), manifold analyses showed that especially

long non-coding RNAs (lncRNAs), a designation given to any

ncRNA longer than 200 nt, play an important role in cell regulation

(Marchese et al., 2017). The major classes of lncRNAs include natu-

ral antisense transcripts (NATs), promoter-associated ncRNAs

(pncRNAs), pseudogenes and long intergenic non-coding RNAs

(lincRNAs). They have a variety of known functions influencing

transcription, splicing, mRNA stability and translation (Kung et al.,

2013).

For some lncRNAs, the specific mechanism of action is known,

however often only isolated examples exist. For many others, the

precise mechanism still needs to be determined. At the most funda-

mental level, every lncRNA mechanism involves RNA–RNA inter-

action and/or RNA–protein interaction (and via proteins, DNA

interactions). So in order to model lncRNA mechanisms computa-

tionally, algorithms for predicting these kinds of interactions are

essential. There are a number of tools to predict RNA–RNA interac-

tions. These follow four general approaches, in order of complexity:

hybridization-only [RNAHybrid (Rehmsmeier et al., 2004),

RNADuplex (Lorenz et al., 2011)], sequence concatenation

[PairFold (Andronescu et al., 2005), RNAcofold (Bernhart et al.,

2006)], accessibility-based [RNAup (Muckstein et al., 2006),

IntaRNA2 (Mann et al., 2017)] and full joint structure prediction—

leading to the first joint free energy model for interacting RNA

strands (Alkan et al., 2006) and follow-up work [piRNA (Chitsaz

et al., 2009), inRNAs (Salari et al., 2010), RIP (Huang et al., 2009)].

Hybridization-only methods, where only intermolecular base-paring

is considered, and sequence concatenation methods, where standard

algorithms for secondary structure prediction are applied to the con-

catenation of the input RNA, are very fast but produce unrealistic

interactions. Accessibility-based tools compute the partition func-

tion of each input sequence and determine the energy required for

any given region to be unpaired. These energies are then used as pen-

alties when predicting hybridizations. At the expense of a little

higher complexity, the modeled interactions are much more realistic.

Accessibility-based tools are efficient enough to have been success-

fully applied to prokaryotic sRNA and eukaryotic miRNA target

prediction on a transcriptome-wide scale. However, due to the com-

plexity of these algorithms, the problem of predicting lncRNA inter-

actions on a transcriptome-wide scale quickly becomes intractable

for any method more complex than hybridization-only predictions.

It is possible to use RNA–RNA interaction prediction software

for transcriptome-wide, lncRNA–RNA interaction prediction,

through the use of existing tools such as IntaRNA [on a

supercomputer (Terai et al., 2016)] or by new pipelines such as

RISearch2 (Alkan et al., 2017). All these approaches need to apply

the following steps (not necessarily in order): (i) determine accessible

regions on every target sequence [e.g. using Raccess (Kiryu et al.,

2011) and remove repeat regions]; (ii) determine ‘seeds’ with perfect

complementary and extend each seed with flanking sequences of

fixed length; and (iii) predict (and refine) the interaction between

the lncRNA and each of these sequences [e.g. using IntaRNA or

RactIP (Kato et al., 2010)]. Unfortunately, the targets of ncRNAs

identified through the above approach are typically not very specific.

For short ncRNAs such as sRNAs and miRNAs, it is possible to

improve specificity via sequence conservation (Wright et al., 2013,

2014) across species. However this does not extend to lncRNAs,

which are typically poorly conserved (Iyer et al., 2015). As we will

discuss below, one way to improve specificity may be to incorporate

RNA–protein interactions with RNA–RNA interactions with RNA–

protein interactions.

RNA–protein interactions can be determined experimentally

using CLIP-Seq, which is currently the standard protocol for the

transcriptome-wide identification of RNA-binding protein (RBP)

binding sites. Several protocol variants exist, most notably photoac-

tivatable-ribonucleoside-enhanced CLIP (PAR-CLIP) (Hafner et al.,

2010) and individual-nucleotide CLIP (iCLIP) (Konig et al., 2010).

Lately, enhanced CLIP (eCLIP) (Van Nostrand et al., 2016) and

infrared-CLIP (irCLIP) (Zarnegar et al., 2016) have been introduced

to further improve protocol efficiency with varying approaches, as

discussed by Uhl et al. (2017).

A drawback of CLIP-Seq protocols to identify RBP binding sites

is that they naturally rely on the expression of the target transcripts,

which is often cell- or tissue-specific, especially in the case of

lncRNAs (Brunner et al., 2012; Liu et al., 2016). Computational

prediction of missing binding sites is therefore in high demand.

While initial prediction methods such as MEME (Bailey and Elkan,

1994) have relied solely on sequence information, more recent tools

such as MEMERIS (Hiller et al., 2006), RNAcontext (Kazan et al.,

2010) and GraphProt (Maticzka et al., 2014) also incorporate struc-

tural information to further improve their predictions.

To our knowledge, no tool exists that integrates both RNA–

RNA and RNA–protein interactions. This is crucial for lncRNA

interaction prediction since their long length increases the probabil-

ity of protein binding. The type of RBP, whether it binds to the

lncRNA or the target and the location of the RBP relative to the

RNA–RNA interaction site can allow inference of the potential

lncRNA mechanism.

To solve this problem, we propose MechRNA, a pipeline for

combining interaction predictions and biological data to discover

potential mechanisms. Specifically, this pipeline aims to discover

potential mechanisms of an input lncRNA by (i) predicting

lncRNA–target interactions using IntaRNA2 with a new feature

improving transcriptome-wide performance, (ii) identifying RBP

binding sites predicted by GraphProt on both the targets and the
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lncRNA, (iii) finding correlation between the lncRNA and targets

using the cancer genome atlas (TCGA) expression or user-provided

data, (iv) combining this evidence to generate candidate mechanisms

and finally (v) computing joint P-values to select the candidate

mechanisms that best explain the observed data.

2 Materials and methods

MechRNA has four inputs (Ensembl IDs of lncRNA sequence, tar-

get sequences and RBPs and a list of mechansims) and two modes

(screening and hypothesis-driven modes). In screening mode, the

user only specifies the lncRNA, and the entire transcriptome with all

available RBP models is used to predict all possible mechanisms.

Since nothing is known about the relationships between the

lncRNA, targets and RBPs, correlation data are used to reduce the

number of candidates. Hypothesis-driven mode allows the user to

specify any a priori information they may have on the lncRNA. For

example, a common case would be that the lncRNA was experimen-

tally shown to downregulate a set of targets. In this case, the user

would specify a list of all downregulatory mechanisms from those

that are available and the list of suspected targets. From these

inputs, MechRNA predicts lncRNA–target interactions, RBP bind-

ing sites and determines the most likely mechanism given these inter-

actions. Here we will describe each stage in detail. An overview of

the pipeline is shown in Figure 1.

2.1 Sequence decomposition by accessibility
Since IntaRNA2 uses accessibility to predict RNA–RNA interac-

tions, areas of low accessibility can be removed from the search

space. An added benefit of this approach is that long transcripts can

be naturally split into smaller sequences that can be analyzed inde-

pendently. Since IntaRNA2 complexity increases quadratically with

sequence length, sequence splitting makes cases tractable that are

intractable otherwise, i.e. even transcripts with length >20 kb can

be considered. To accomplish a proper splitting, we developed a

new algorithm that incrementally detects the least accessible (most

structured) positions in the sequence to be used as split positions.

The minimal number of splits are selected that are necessary to

make every subsequence shorter than a user-specified length and for

each of these subsequences to contain no position less accessible

than its split positions. A default maximum length threshold of

1500 nt was selected to ensure that the memory usage does not

exceed the typical amount of RAM on a PC or the per-core resource

availability of a computing cluster. It should be noted that the

majority of transcripts are less than the default threshold and there-

fore the heuristic will usually not be used, i.e. it is mainly applicable

to extreme cases.

The algorithm finds the minimal set of most structured points at

which to split a long input sequence according to a given length

restriction as follows: given a sequence S, the algorithm begins with

position x¼0 and y ¼ jSj � l where l is a fixed window length

(IntaRNA seed length by default). First, the algorithm computes

maxiðEDði; iþ lÞÞ, where x � i � y and ED is the accessibility

energy for that range. Accessibility energy is the energy required for

a region of RNA to be single stranded, inversely proportional to the

probability of the bases being paired in that region and computed

via the partition function. With the detected position i, a new inter-

val ðiþ l; jSj � 1Þ is created and put on the stack. Furthermore, for

the current interval, y is updated to i – 1. This process is repeated

until y� xþ 1 is less than the length threshold, at which time it is

added to the final list of intervals. The algorithm then moves to the

next interval from the stack, i.e. the interval created in the last itera-

tion. The iteration continues until the last interval is reached (the

first interval created with endpoint jSj � l). Highly structured

regions will produce many maximum ED windows in close proxim-

ity, so a minimum interval length is enforced (again, IntaRNA seed

length by default) and regions shorter than this minimum are dis-

carded. The final output is a set of intervals, which are then used as

input for IntaRNA. More specifically, IntaRNA will sequentially go

through each interval and find the optimal hybridization of the

lncRNA with the subsequence contained within the interval. An

example execution is shown in Figure 2.

In a test with 100 random sequences of length over 1500 nt, the

algorithm reduced the runtime by 13% and peak memory usage by

65%. Since peak memory has a constant upper bound when using

this approach, the peak usage reduction is even more dramatic for

extreme cases. It must be noted that the full accessibility matrix for

the entire target/lncRNA structure is used for computing hybridiza-

tion energies and is reused for each interval within a target. This

allows us to limit the search space of possible hybrids as described

without any loss in optimality. In other words, any interaction cal-

culated in an accessible region using subsequences of the input

RNAs will be identical to those computed using the full input

sequences. In the test above, out of the top 10% of predictions using

the vanilla algorithm, 95% of them were identical to those found

when using the decomposition. This number increases to 97% when

we allow for small differences in predicted sites. The only case where

an ‘optimal’ interaction may be missed is if a highly energetic hybrid

exists between highly structured regions of both RNAs where the

difference in energy is still greater than the difference in energy for

interactions in more accessible regions. It is unclear whether this
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Fig. 1. Overview of the MechRNA pipeline. IntaRNA2 computes the optimal

RNA–RNA interaction sites between the lncRNA and the accessible regions of

targets/transcriptome. GraphProt predicts protein binding sites for all specifi-

cied RBPs on all targets and the lncRNA. Information derived from these pre-

dictions, as well as correlation data, is used to generate candidate

mechanisms. Finally, the candidate with the lowest joint P-value is selected

for each lncRNA-target pair, and a output list of mechanisms is produced.

(*)Since at the time of publication only 22 RBP CLIP-Seq datasets were avail-

able for non-splicing related, post-transcriptional regulation proteins
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type of interaction actually occurs in nature as such interactions

exhibit slow kinetics.

2.2 RNA–RNA interaction predictions
The next stage is the prediction of RNA–RNA interactions using

IntaRNA2 (Mann et al., 2017) with the modifications outlined

above. Details on the IntaRNA2 algorithm can be found in the

Supplementary Section 1. IntaRNA2 is executed with the parame-

ters –tAccL 150 –tAccW 200 –qAccL 150 –qAccW 200 -n 5 –

tRegionLenMax 1500. The AccL and AccW options used by

RNAplfold within IntaRNA2 are recommended by Lange et al.

(2012). The n option specifies the number of predictions (opti-

malþ suboptimals). The tRegionLenMax option specifies the maxi-

mum length of an accessible sequence. This value was selected based

on the available computational resources and the average RNA

length in the reference transcriptomes. This reduces the usage of the

heuristic to minimize the effect on the sensitivity of the algorithm.

MechRNA can run IntaRNA2 on a standard machine or distrib-

ute the computation across multiple jobs on a computing cluster.

Interactions are predicted between the lncRNA and one of the two

reference transcriptomes (Ensembl GRCh37.75 and GRCh38.86).

The transcriptomes include all mRNA and ncRNA transcripts,

excluding sequences <40 nt. This threshold was selected in order to

include primary miRNA transcripts while removing dubious, unclas-

sified transcripts. A subset of these transcriptomes is used if the user

specifies a list of targets. Once all predictions are completed, the top

most energetic interactions (default 3%) are selected for further

analysis. P-values are computed for each of these interactions using

a distribution estimated from the free energies of all interactions

(details in Supplementary Section 2.1).

2.3 RNA–protein interaction predictions
For determining RBP binding sites on transcripts, we rely on pub-

licly available CLIP-Seq data. However, since CLIP-Seq depends on

transcript expression, binding sites on transcripts specific to certain

cell types or conditions cannot be recovered. As we want to study

interactions across a reference transcriptome including lncRNAs

specifically expressed in certain cancers, we would consequently

miss many sites by relying only on direct binding evidence from

CLIP-Seq. Therefore, to comprehensively capture protein binding

information into our interaction models, we used GraphProt to cre-

ate transcriptome-wide binding site predictions for 22 RBPs which

are known to participate in post-transcriptonal gene regulation and

influence transcript stability. As an example, using this approach,

we successfully predicted the interaction between hnRNP-L and the

lncRNA DSCAM-AS1, for which there were no reads present in the

hnRNP-L CLIP-Seq data (Niknafs et al., 2016). Based on the bind-

ing sites inferred from CLIP-Seq data for a given RBP, GraphProt

learns its binding preferences and integrates these into a predictive

model, incorporating either sequence (referred to as sequence

model) or sequence and structure information combined (referred to

as structure model). A detailed description of the algorithm can be

found by Maticzka et al. (2014).

For the 22 RBPs, we trained 20 sequence and 8 structure models

based on various CLIP-Seq data sources (Table 1). Models for each

RBP were selected based on their performance in 10-fold-cross vali-

dation, preferring models with higher area under the receiver operat-

ing characteristic and mean average precision values. The trained

models were then used to predict nucleotide-wise binding score pro-

files (GraphProt setting: -action predict_profile) on two different

reference transcriptomes (described in the previous section).

Nucleotide-wise profile scores were further averaged with a sliding

window approach, taking all scores up to 5 nt up- and downstream

of the score position to calculate the new average score. Peaks were

extracted from the average score profiles, where a peak is defined as

the maximum score in a contiguous region of positive scores. In

order to estimate score significances and to make scores comparable

between models, P-values for each peak score were calculated

(details in Supplementary Section 2.2).

2.4 Correlation data from TCGA protstate tumor

samples
If screening mode is selected, correlation data are also incorporated

for all RNA–RNA and RNA–protein pairs predicted in the previous

stages. To obtain correlation data, we used the GeneNet R package

(Schafer and Strimmer, 2005). This approach first computes partial

correlations for every pair of genes. The partial correlation is the

correlation when the effects of all other variables (genes) are

negated. These partial correlations are then used to create a graph

where each edge is assigned a P-value. We used default parameters

and a FDR cutoff of 0.2 to obtain the final correlation network. We

deliberately allow a false discovery rate of 20% since the main infor-

mation will be provided by the RNA–RNA and RNA–protein

interactions.

The gene expression data used for correlation computation were

derived from TCGA (Weinstein et al., 2013) patient samples.

Specifically, this includes 551 RNA-Seq samples, 499 tumor and 52

normal. Only the tumor samples were used in the analysis. The raw

read counts were normalized using DeSeq2 (Love et al., 2014). All

genes with an average read count <1 were removed, resulting in

32 709 genes (coding/non-coding).

2.5 Combining evidence
At this stage, we incorporate the RNA–RNA and RNA–protein pre-

dictions in order to infer a potential mechanism for the lncRNA. For

each target transcript, all combinations of RNA–RNA and RNA–

protein interactions are classified into candidate mechanisms as

shown in Figure 3. The number of combinations is reduced by con-

sidering the a priori information provided by the user and known

functions of the RBPs [for example, HuR is primarily known to
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Fig. 2. Example execution of the splitting algorithm with a max sequence

length of 1000 nt, where the red interval is the one being processed. (i) The

first iteration starts with the entire sequence which is longer than the thresh-

old. (ii) The first split occurs at the position with max ED at �1700 nt. (iii) The

interval is still too long, so a second split is made at the next position of max

ED at �250 nt. (iv) The interval is now below the threshold so the iteration

continues to the next interval. (v) This interval is over the threshold and is

split at �800 nt. (vi) and (vii) The next two intervals are below the threshold.

(final) The end result is four intervals, all below the length threshold and

more accessible than their split positions
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stabilize its bound RNA (Srikantan and Gorospe, 2012)]. In screen-

ing mode, the correlations are also used at this stage to determine

whether a candidate mechanism is valid. For example, let a target

RNA has a peak for RBP A and B, a lncRNA has a peak for C and

the RNA–RNA interaction between the two overlaps at the A peak.

A is positively correlated with the target, B, C, and the lncRNA are

negatively correlated with the target. Then the following tuples

would be generated, where ð½target peak�; ½lncRNA peak�; ½mechanis

m type�Þ and a dash indicates absence of binding:

• ð�;�;direct downregulationÞ
• ðA;�; competitive downregulationÞ
• ð�;C; localization downregulationÞ
• ðB;�; destabilizationÞ

• ðA;C; competitive downregulationÞ
• ðB;C; complex downregulationÞ

An explanation of each mechanism type with known examples is

shown in Table 2. Decoy and direct RBP mechanisms are not

included in the predictions since they do not include RNA–RNA

interactions, making target prediction too non-specific (fully

dependant on correlations). Double-stranded RNA binding mecha-

nisms are not predicted either since the CLIP-Seq protocol does not

capture such interactions.

The free energies of the RNA–RNA interactions and the peak

scores of the RNA–protein interactions both have associated P-val-

ues. As mentioned before, each lncRNA-target and protein-target

pair of correlations also has a P-value. These P-values can be used to

quantitatively assess whether one mechanism is more likely than

another. This requires the combining of up to six P-values (depend-

ing on the number of interactions involved) into a single P-value for

each candidate. The intuitive way to accomplish this is to multiply

the P-values together, however this is not correct since the product

of P-values is not uniform under the null model. To solve this prob-

lem, we use the Stouffer’s Z-score method (Stouffer, 1949), which

involves computing the sum of the inverse of a normal distribution

of each P-value, followed by normalization. This approach also

allows for weighting P-values, but we set all weights to be equal.

The final output of the pipeline is the list of potential mechanisms

sorted and filtered by the joint P-values.

3 Results and discussion

We selected eight lncRNAs to analyze using MechRNA, as summar-

ized in Table 3. 7SL (Abdelmohsen et al., 2014), PCAT1 (Prensner

et al., 2011) and ARlnc1 (Accepted in principle, Zhang et al. Nature

Genetics 2018) recently investigated lncRNAs with known roles in

prostate cancer and mechanistic hypotheses are used to test the

hypothesis-driven mode. The remaining five lncRNA are used to test

the screening mode. PCA3 (Bussemakers et al., 1999) and PCAT29

(Malik et al., 2014) are well-studied prostate cancer related

Table 1. List of RBPs used in the analysis including the source CLIP-Seq data and model type

Gene ID Gene symbol Protein Model type Protocol Reference

ENSG00000092199 HNRNPC hnRNP C Sequence eCLIP (Van Nostrand et al., 2016)

ENSG00000165119 HNRNPK hnRNP K Sequence eCLIP (Van Nostrand et al., 2016)

ENSG00000066044 ELAVL1 HuR Sequence PAR-CLIP (Mukherjee et al., 2011)

ENSG00000102081 FMR1 FMR-1 Structure eCLIP (Van Nostrand et al., 2016)

ENSG00000121774 KHDRBS1 Sam68 Structure eCLIP (Van Nostrand et al., 2016)

ENSG00000172660 TAF15 TAF15 Sequence PAR-CLIP (Hoell et al., 2011)

ENSG00000092847 AGO1 argonaute Structure PAR-CLIP (Hafner et al., 2010)

ENSG00000123908 AGO2 argonaute-2 Structure PAR-CLIP (Hafner et al., 2010)

ENSG00000126070 AGO3 argonaute-3 Structure PAR-CLIP (Hafner et al., 2010)

ENSG00000134698 AGO4 argonaute-4 Structure PAR-CLIP (Hafner et al., 2010)

ENSG00000182944 EWSR1 EWS Structure eCLIP (Van Nostrand et al., 2016)

ENSG00000089280 FUS FUS Sequence PAR-CLIP (Hoell et al., 2011)

ENSG00000159217 IGF2BP1 IGF2BP1 Structure PAR-CLIP (Hafner et al., 2010)

ENSG00000073792 IGF2BP2 IGF2BP2 Structure PAR-CLIP (Hafner et al., 2010)

ENSG00000136231 IGF2BP3 IGF2BP3 Structure PAR-CLIP (Hafner et al., 2010)

ENSG00000155363 MOV10 MOV-10 Sequence PAR-CLIP (Sievers et al., 2012)

ENSG00000055917 PUM2 Pumilio-2 Sequence eCLIP (Van Nostrand et al., 2016)

ENSG00000112531 QKI Hqk Structure eCLIP (Van Nostrand et al., 2016)

ENSG00000120948 TARDBP TDP-43 Sequence eCLIP (Van Nostrand et al., 2016)

ENSG00000116001 TIA1 TIA-1 Sequence eCLIP (Van Nostrand et al., 2016)

ENSG00000090905 TNRC6A TNRC6A Structure eCLIP (Van Nostrand et al., 2016)

ENSG00000197157 SND1 SND1 Structure eCLIP (Van Nostrand et al., 2016)
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lncRNAs without a known mechanism. SSTR5-AS1 is one of the

highest expressed lncRNAs in neuroendocrine prostate cancer

(NEPC) and LINC00514 is one of the highest persistently expressed

lncRNAs identified in the neuroendocrine transdifferentiation proc-

ess, which is shown to cause NEPC (Ramnarine et al., 2018). Finally

we selected TINCR (Kretz et al., 2013) as a well-known regulator of

cell differentiation mediated by interaction with target mRNAs.

3.1 Hypothesis-driven mode results on prostate cancer

lncRNAs
We first tested our hypothesis-driven mode with three prostate can-

cer lncRNAs. The first lncRNA is 7SL, which we use as a validation

case since it has a good deal of evidence supporting the proposed

mechanism. The next two lncRNAs, PCAT1 and ARlnc1, are less

understood and so we aim to build a more complete picture of their

potential mechanisms.

3.1.1 7SL downregulation of TP53 through competitive binding

with HuR (ELAVL1)

Abdelmohsen et al. (2014) provided the first experimental evidence

supporting a competitive lncRNA mechanism. 7SL is a housekeep-

ing ncRNA that is part of the signal recognition particle ribonucleo-

protein complex, but also leads to increased cell proliferation when

over-expressed in cancer cells. It was demonstrated that 7SL binds

to the transcript of the tumor suppressor TP53 near HuR binding

sites, preventing HuR from binding and subsequently reducing the

stability of TP53. The experimentally validated RNA–RNA interac-

tion was between nucleotide positions 10–56, 256–298 of 7SL and

positions 2167–2300 of TP53 (ENST00000269305). Using PAR-

CLIP data, they determined that HuR binds at positions 2125–

2160, 2452–2472 and 2531–2556.

For this case, we ran MechRNA with 16 protein-coding TP53

transcripts as targets, all downregulatory mechanisms and all RBP

models. For all 16 transcripts, ‘competitive downregulation’ with

HuR was predicted to be the most likely mechanism (P < 10�15�

for the combined P-value as described in Section 2.5). The pre-

dicted binding locations of 7SL and HuR for each transcript are

shown in Supplementary Table S2. The IntaRNA2 interaction pre-

diction was in agreement with the crude BLAST search done in the

experimental study. The 10–56 (actually 10–96 is more energeti-

cally favorable) interaction was also predicted but not included in

the final results since it is not close enough to the HuR binding site

to have an effect. In terms of RBP binding, GraphProt only pre-

dicts the 2125–2160 as significant when compared to all HuR

binding across the transcriptome. This demonstrates the superior-

ity of using GraphProt over raw PAR-CLIP data. We also show

here that this mechanism appears to be ubiquitous across splice

variants of TP53.

Another RBP, EWS, was included in this prediction. GraphProt

detected a binding site for EWS on 7SL at 140–161, in between the

two RNA–RNA interaction sites. EWS is best known for its role in

Ewing sarcoma through its translocation with other genes.

However, wild-type EWS also acts as a translation repressor by

causing mRNA to be retained in the nucleus (Huang et al., 2014). It

may be that EWS is aiding in the displacement of HuR and further-

ing the downregulation of TP53.

3.1.2 PCAT1 downregulation of BRCA2 through competitive

binding with HuR (ELAVL1)

PCAT1 was identified by Prensner et al. (2011) as the most differen-

tially expressed lncRNA in prostate cancer. Shortly afterward it was

discovered that this lncRNA regulates the important tumor suppres-

sor BRCA2 (Prensner et al., 2014). Specifically, it was shown that

PCAT1 reduces BRCA2 mRNA stability and that the first 250 nt of

PCAT1 were essential for this process. Furthermore, they demon-

strated that this regulation was occurring via the BRCA2 30 UTR.

Since mRNA stability was decreased, our hypothesis is that a similar

Table 2. Descriptions of known lncRNA mechanisms

Mechanism Description Example

Direct RBP RBP interaction directly impacts the target or lncRNA hnRNPL binding to DSCAM-AS1 (Niknafs et al., 2016)

Direct RNA RNA–RNA interaction directly impacts the target with

no RBP involvement

TINCR stabilization of various mRNAs (Kretz et al., 2013)

(De-)stabilization RNA-RNA interaction increases/decreases the affinity

of RBP binding nearby

iNOS stabilization by AS via HuR (Matsui et al., 2007)

Localization RBP bound to the lncRNA is brought into the vicinity

of the target through RNA-RNA interaction

MALAT1 localization of splicing factors (Bernard et al.,

2010)

Decoy RBP is sequestered from the target by the lncRNA Gas5-AS binding transcription factors (Kino et al., 2010)

Competitive RBP and lncRNA compete for the same binding loca-

tion on the target

7SL disrupts HuR stabilization of TP53 (Abdelmohsen

et al., 2014)

dsRNA binding A dsRNA binding protein interacts with stems created

from lncRNA interaction

STAU1-mediated decay (Kim et al., 2007)

Complex The lncRNA facilitates the formation of a complex

between multiple proteins

HOTAIR and the polycomb complex (Zhang et al., 2014)

Note: Mechanisms in italics are not included in the predictions.

Table 3. Selected LncRNAs for MechRNA analysis

LncRNA Length Target Protein

binding

Mechanism Cancer type

7SL 299 TP53 HuR Competitive Prostate

PCAT1 1992 BRCA2 HuR Competitive? Prostate

ARlnc1 2786 AR Unknown Unknown Prostate

PCA3 3922 Unknown Unknown Unknown Prostate

PCAT29 694 Unknown Unknown Unknown Prostate

LINC00514 3385 CLDN9 Unknown Unknown NEPC

SSTR5-AS1 2864 SSTR5 Unknown Unknown NEPC

TINCR 3733 STAU1 Many Stabilization Various

Note: The lncRNAs vary in terms of what is known about their mecha-

nisms, allowing MechRNA to be tested with various amounts of a priori data.

PCAT1 has a question mark indicating that competitive binding is the hypoth-

esis not been validated yet.
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mechanism to 7SL exists for PCAT1 and BRCA2, so we used the

same parameters of all downregulatory mechanisms and all RBP

models. For this analysis, we used the BRCA2 30UTR from the

RefSeq transcript as it was used by Prensner et al. (2011).

Figure 4 summarizes the interaction predictions by showing the

frequency of interaction for each position of PCAT1 and the signifi-

cant RBP binding peaks. Our findings appear to support that the

first 250 nt play an important role due to high frequency of interac-

tion with targets an no significant binding with RBPs. The predicted

mechanism was ‘competitive downregulation’ (combined P-value

P < 10�4Þ involving HuR on the 30UTR. The RNA–RNA interac-

tion is between 11204–11237 on BRCA2 and 65–90 on PCAT1

(�12.493 kcal/mol), with a HuR peak at 11216–11236 on BRCA2.

There are also two other HuR binding sites predicted by GraphProt

downstream and upstream of the interaction site with similar bind-

ing affinity.

To validate this mechanism experimentally, we first confirmed

that HuR indeed binds to BRCA2 30UTR. As shown in Figure 5A,

immunoprecipitation of HuR in LNCaP cells pulled down more

BRCA2 mRNA than the IgG control. Next, we conducted a compet-

itive binding assay in RWPE cells. This assay immunoprecipitated

HuR using an anti-HuR antibody and the bound RNA (BRCA2)

was detected by qPCR. In the presence of unmodified PCAT1, the

amount of bound BRCA2 RNA was reduced. When using a modi-

fied PCAT1 construct with the first 250 nt deleted, there was no

affect on the amount of bound BRCA2. This suggests that an inter-

action involving the 50 end of PCAT1 is competitively reducing the

amount of HuR bound to BRCA2 (Fig. 5B).

3.1.3 ARlnc1 upregulatory feedback loop with androgen receptor

ARlnc1 has recently been identified as an upregulator of androgen

receptor (AR) in prostate cancer (Zhang et al. 2018). In turn, AR

upregulates ARlnc1, leading to a positive feedback loop contribu-

ting to cancer progression. The mechanism was identified with the

aid of the first stage of MechRNA, which predicted an RNA–RNA

interaction between ARlnc1 and the 30UTR of AR. However, how

exactly ARlnc1 upregulates AR remains unclear. Similarly to 7SL,

we ran MechRNA with all RBPs on all AR protein coding tran-

scripts but with all upregulation mechanisms.

The most common and important AR transcript, ENST00000374690,

as well as two other splice variants (ENST00000612452 and

ENST00000396044) had predicted mechanisms involving the experimen-

tally validated interaction at 815–851 on ARlnc1 (�35.8kcal/mol). In all

three cases, a ‘stabilization’ mechanism was predicted (respectively,

P < 10�6, P < 10�5, P < 10�4 for the combined P-values) involving

the protein Sam68, which has a strong binding site upstream of the

ARlnc1 interaction on the AR 30UTR. In agreement, Sam68 30UTR inter-

action has been shown to enhance target translation (Paronetto et al.,

2009). Sam68 is known to increase AR-V7 (ENST00000504326) expres-

sion (Stockley et al., 2015), but the authors observed that upregulation of

AR-V7 (and full-length) was still present when using a mutated exonic

splicing enhancer site. They suggested a synergistic stabilization mechanism

via the 30UTR. Although the 30UTR of AR-V7 and full-length AR is not

shared, a similar binding pattern is observed for Sam68 and ARLnc1 in

the AR-V7 30UTR. Our findings appear to support the additional stabiliza-

tion mechanism they observed and that all major AR isoforms are regu-

lated in the same manner.

3.2 Screening mode results on prostate cancer lncRNAs
We ran MechRNA on all eight lncRNAs (three from the hypothesis-

driven analysis and five additional cancer-related lncRNA as

described in Table 3) using the entire transcriptome for potential tar-

gets for a broad, unbiased screen. This yielded several hundred to

several thousand potential targets for each lncRNA. The number of

predictions increased with the length of the lncRNA, since longer

lncRNAs are more likely to have RNA–RNA and RNA–protein

interactions and consequently more viable combinations of interac-

tions, indicating potential mechanisms. Since our focus here is on

cancer, we extracted predicted mechanisms involving known cancer
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genes from the TSGene (Zhao et al., 2015) and ONGene (Liu et al.,

2017) database. These mechanisms are shown in Table 4.

As shown in the table, these prostate cancer lncRNAs generally

act as positive regulators of oncogenes with the exception of the

PCA3–ABI1 and PCAT1–LEFTY2 interaction. Also the most favor-

able RNA–RNA interactions commonly occur in the 50 and 30 UTRs,

as would be expected for post-transcriptional regulation. It is unclear

whether the coding sequence (CDS) interactions have any functional-

ity. TINCR-DAXX falls within a small simple repeat region, which

may indicate non-specific binding. Another observation is that

PCAT1 and PCA3 share the target gene HOXC13 and even bind to

the same location on the HOXC13 transcript. HOXC13 is commonly

dysregulated in prostate cancer (Komisarof et al., 2017). It may be

that the same phenotype is induced by both lncRNAs.

Our most significant result is an interaction involving AKT1, an

important and well-studied prostate cancer gene (Cariaga-Martinez

et al., 2013). LINC00514 binds very strongly to the 50UTR and has

a strong positive correlation, implying a direct upregulatory effect.

No significant protein binding was detected in the region for the

included proteins. This would suggest the lncRNA alone is able to

regulate AKT1. We observed several other cases like this, labeled as

‘direct’ in the table. It may be the case that some other RBP, which

was not included in our analysis due to missing CLIP data, also

interacts with AKT1 in this region. As the number of RBPs with

available CLIP data is ever increasing, it is likely that a future run of

MechRNA with more RBPs might provide additional evidence.

Another significant result was the predicted competitive downre-

gulation of LEFTY2 by PCAT1. This is the most significant result

for PCAT1 involving a known cancer gene. It has a close similarity

to the PCAT1-BRCA2 mechanism, as it involves the same part of

PCAT1 (61–97) binding to a 30UTR overlapping a protein binding

site (in this case IGF2BP2). LEFTY2 is an important tumor suppres-

sor in endometrial cancer (Alowayed et al., 2016). We do not have

data for PCAT1 expression in endometrial cancer, but there is high

expression in ovarian and breast cancer (Iyer et al., 2015).

The PCA3-ABI1 mechanism is an interesting example demon-

strating the importance of sequence accessibility for interaction pre-

diction. ABI1 is known to negatively regulate cell growth and

transformation and is down-regulated in a variety of cancers (Chen

et al., 2010; Cui et al., 2010; Zhang et al., 2015). The gene has 11

annotated protein-coding isoforms in Ensembl, 9 of which have an

identical 50 UTR sequence. However, three of the splice variants

exclude exon three, leading to a much more energetic binding to

PCA3 (�13 kcal/mol difference). This is because the exclusion

affects the accessibility of the 50UTR by reducing the probability

that this region is bound by intramolecular interactions. If PCA3 is

indeed down-regulating ABI1, as the correlation indicates, there

may be selection for these isoforms in cancer cells to increase the

effect of PCA3. Naive approaches to RNA–RNA interaction predic-

tion computing only the hybridization would not capture the differ-

ence in interaction energy between the different splice variants. This

is because the sequence of the best hybridization site is always the

same, the only feature considered when computing the optimal

interaction. However, the accessibility can differ between different

isoforms, which may affect the location of the true optimal interac-

tion site, as we see in the case of PCA3-ABI1.

4 Conclusion

Recent discoveries of lncRNA mechanisms indicate that there exists

a complex interplay between RBPs, lncRNAs and their target

RNAs. Until now, RNA–RNA and RNA–protein interaction predic-

tions were carried out independently, failing to capture this com-

plexity. Here we present MechRNA, the first tool to integrate both

kinds of interactions in order to more accurately predict lncRNA

mechanisms. We accomplish this by combining the output of

IntaRNA2 and GraphProt into a novel inference tool, which deter-

mines the most likely combination of interactions. These sets of

interactions are then classified into mechanisms using correlation

data from publicly available patient gene expression samples or

Table 4. Select lncRNA mechanisms predictions for known cancer genes, selected based on rank (joint p-value) and agreement with known

roles of the cancer genes and RBPs

lncRNA Target RNA–RNA interaction RBP–target interaction RBP–lncRNA interaction Mechanism

Gene

symbol

Gene

symbol

Iso. FE Context Cor. Cor.

FDR

RBP Cor. Cor.

FDR

RBP Cor. Cor.

FDR

Type P-value

LINC00514 AKT1 3 �65.97 5’UTR þ 1.3�1013 None NA NA None NA NA Direct 2.6�1020

PCAT1 LEFTY2 2 �31.63 30UTR � 0.001 IGF2BP2 þ 1.3�1013 None NA NA Competitive 1.2�1019

PCAT29 BMPR1A 1 �28.32 30UTR þ 0.182 IGF2BP3 þ 2.3�1010 None NA NA Stabilization 6.6�1016

PCA3 ABI1 5 �44.55 50UTR � 0.023 TAF15 þ 0.111 None NA NA De-stabilization 6.8�1015

PCAT1 HOXC13 1 �26.57 50UTR þ 1.3�1013 None NA NA None NA NA Direct 4.8�1014

LINC00514 FLI1 1 �60.4096 5’UTR þ 0.083 EWSR1 � 0.006 None NA NA Competitive 5.5�1014

SSTR5-AS1 TP53 7 �33.18 30UTR þ 0.006 HNRNPC þ 0.081 None NA NA Stabilization 1.6�1013

SSTR5-AS1 RAC1 1 �32.97 30UTR þ 0.159 KHDRBS1 þ 4.1�1005 None NA NA Stabilization 2.2�1013

SSTR5-AS1 HLF 5 �27.25 30UTR þ 2.4�1007 None NA NA None NA NA Direct 5.6�1013

PCA3 HOXC13 1 �48.02 50UTR þ 0.013 None NA NA None NA NA Direct 1.7�1012

ARlnc1 CAMK1D 1 �27.7706 50UTR þ 1.4�1011 None NA NA None NA NA Direct 2.0�1012

TINCR DAXX 7 �106.10 CDS None NA None NA NA IGF2BP2 þ 0.046 Localization 2.7�1012

PCAT1 CCND1 1 �30.86 30UTR þ 0.007 ELAVL1 þ 0.001 none NA NA Stabilization 1.1�1011

ARlnc1 BRD4 2 �31.95 30UTR þ 0.039 ELAVL1 þ 0.052 none NA NA Stabilization 3.0�1011

LINC00514 CHD4 4 �36.99 CDS þ 0.029 TAF15 þ 0.002 none NA NA Stabilization 7.2�1011

PCAT29 ALK 2 �32.85 CDS þ 4.6�1007 None NA NA none NA NA Direct 8.6�1011

TINCR NAB2 3 �66.93 50UTR None NA None NA NA IGF2BP2 þ 0.045 Localization 5.4 �1009

Note: Genes in boldface indicate oncogenes, italics indicate tumor suppressors and normal text are uncategorized. The first section indicates the target and how

many isoforms (Iso) it interacts with. The next three sections describe the interactions involved. For RNA-RNA, the free energy in kcal/mol (FE) and genomic con-

text are included. For RBP-RNA, the protein name is provided. In all three cases the correlation (þ positive, � negative) and the correlation FDR are shown if

applicable. The final section displays the mechanism categorization and the combined P-value.
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user-defined a priori data. We demonstrated the functionality of

MechRNA by analyzing eight prostate cancer lncRNAs with varying

amounts of information available with respect to their mechanisms.

The results confirm one known mechanism, provide new insights

into poorly understood mechanisms and offer new hypotheses for

the remaining lncRNAs without known mechanisms. Despite the

challenges involved in this kind of analysis (discussed in

Supplementary Section 3), our results show that MechRNA is a use-

ful tool for identifying potential roles of lncRNAs in cancer and for

furthering our understanding on lncRNA mechanisms in general.
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