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Abstract

Congenital metabolic diseases are a group of hereditary disorders caused by the

deficiency of a single specific enzyme activity. Without appropriate therapy, affected

patients suffer severe neurologic disability and eventual death. The current mainstays of

management attempt to slow disease progression, but are not curative. Several of these

diseases have demonstrated significant benefits from liver transplantation; however, this

approach is limited by the morbidity associated with this invasive procedure and a short-

age of donor organs. Therefore, there is a need to establish a new strategy for improving

the quality of a life for these patients. One potential solution is regenerative therapy

using hepatocytes generated from stem cells. Herein, we discuss pertinent issues neces-

sary for clinical application of the human amniotic epithelial cell, a type of placental stem

cell. Focusing on maple syrup urine disease as an example, where liver replacement is an

effective therapy, we explore this approach from a clinician's perspective.
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1 | INTRODUCTION

Congenital metabolic diseases are a group of rare hereditary disorders

caused by the deficiency of a single specific enzyme activity. Included

in this group are organic acidurias, disorders of amino acid catabolism,

urea cycle disorders, and lysosomal storage diseases. Most diseases of

this class are autosomal recessive with identified causative genes. Left

untreated, patients suffer multiple sequelae including intellectual dis-

ability, developmental delay, seizures, and eventual death. Although

there is a low prevalence of each individual disorder, the number of

overall patients has been increasing. The incidence rate of congenital

metabolic diseases is estimated to be approximately 1 in 800 to 2500

individuals globally.1-3

The mainstay of treatment is diet therapy. For example, patients

with amino acid disorders need to take low protein medical meals free of

the specific amino acid.4-7 Oral medications8-10 and enzyme replace-

ment/substitution therapies have been attempted.11,12 However, none

of these therapies are curative, and lifelong treatment is required. Cur-

rently, the only curative therapy for most of the congenital metabolic dis-

eases is liver transplantation (LT). Although many successful cases of LT

have been reported, this treatment carries significant disadvantages

including the high morbidity associated with the invasive surgical proce-

dure, and the need for lifelong immunosuppression.13 These limited

treatment options represent a critical unmet medical need for these

patients. To overcome some of these impediments, hepatocyte trans-

plantation (HT) has emerged as an alternate to LT. Clinical studies have
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demonstrated that replacement of as little as 5% to 10% of the theoreti-

cal liver mass is sufficient to demonstrate a therapeutic benefit.14-16

Therefore, the less invasive cell replacement approach is suitable to treat

congenital metabolic disorders; however, the limited source and quality

of hepatocytes remains a problem.17,18 In search of an alternative cell

source to human hepatocyte, regenerative therapy using stem cells has

thus become a focus in order to develop treatment options.19-22

Although embryonic stem cells and induced pluripotent stem cells

carry this potential, applications are limited by: the associated ethical

issues, the risk of tumorigenicity, immune mediated rejection of

transplanted cells, and difficulties with cell expansion to a number

needed to anticipate a therapeutic effect.23 Among of the available

stem cell types, human amniotic epithelial cells (hAECs) have attracted

attention as an alternative to HT. hAECs are not encumbered by these

issues with their unique properties including nontumorigenic, multi-

potency, immune privilege, and ability of immunomodulation.24 In

addition, several preclinical studies using murine models have demon-

strated the therapeutic potential of hAECs for congenital metabolic

diseases.25-27 A number of review papers focusing on these character-

istics of hAEC have been published24,28,29; however, there are no arti-

cles discussing the clinical use of hAEC transplantation from the

clinicians' perspective. Herein, we discuss and explore the practical

application of hAEC in the setting of a congenital metabolic disorder,

maple syrup urine disease (MSUD: OMIM #248600), as the classical

type of MSUD carries a high mortality rate without rapid intervention

as will be described later, and LT is considered as a curative therapy.

2 | MAPLE SYRUP URINE DISEASE

MSUD is a metabolic disorder of amino acids caused by a deficiency in the

activity of the branched-chain α-keto acid dehydrogenase (BCKDH) com-

plex. This results in plasma accumulation of the branched-chain amino acids

(BCAA): leucine, isoleucine, and valine. The corresponding branch-chain

α-keto acids also increase in the urine, leading to the namesake odor.30,31

Dysfunction of any of the catalytic subunits of BCKDH including E1α, E1β,

E2, and E3 can cause MSUD. The classical type of MSUD has less than 2%

of normal BCKDH activity, whereas the intermediate type may have up to

30% of normal BCKDH activity.5 BCAAs, particularly leucine, play an

important role in the maintenance of glutamate levels in the brain.32 As the

CNS of neonates and infants are sensitive to leucinemia, neurological

symptoms can develop, including irritability, poor feeding, lethargy, intermit-

tent apnea opisthotonos, “bicycling” movement, and severe encephalopa-

thy. Without prompt treatment, death is common.5,30,31

Controlling plasma concentrations of BCAA while maintaining

adequate caloric intake is essential for the medical management

of MSUD. Patients must adhere to a special medical diet, which

requires lifetime careful adjustments with BCAA-free formula

along with supplementation of small amounts of natural pro-

tein.5,33 Even well-controlled classical MSUD patients cannot avoid

periodic metabolic crises due to infection or starvation. Neonates

and infants are at particularly high risk for decompensation, and

once exposed to high leucine concentrations, irreversible CNS

damage can occur. Therefore, therapy must be initiated immedi-

ately upon diagnosis.34

LT has been performed for classical MSUD and can restore 9% to

13% of whole-body BCKDH oxidation capacity.35 Mazariegos et al

reported the long-term follow-up in 37 patients who had undergone

LT.36 Patients and graft survival ratios were 100% with successfully

corrected BCAA metabolism. These clinical data demonstrate the sig-

nificant benefits of LT; however, the major complications which go

along with this invasive procedure cannot be ignored.

HT avoids the morbidity associated with LT, and preclinical studies

have shown cell replacement ratios up to 5% in rodent models37 and

up to 10% in a primate model.38 The cell replacement ratio following

clinical transplantation was evaluated in a case of argininosuccinate

lyase deficiency. This patient received sex-mismatched HT, and at

12-month follow-up, the cell replacement and the enzyme restoration

ratios were 12.5% and 2.6%, respectively.16 Other clinical studies have

shown the therapeutic potential of HT for various congenital metabolic

diseases including Crigler-Najjar syndrome type 1,39 glycogen storage

disease type 1,15 and urea cycle disorders.40

The therapeutic benefit for MSUD has been also shown with a

murine model of intermediate MSUD (iMSUD),41,42 whereas HT has

never been attempted in MSUD patients. It must be noted that once the

leucinemia-induced brain damage is established, it cannot be reversed.

Thus, it is essential to treat the patients before the development of neu-

rological injury. Although the less invasive HT may be suitable to treat

patients in the earlier phase of the disease with comparable results to LT,

the limited availability of primary human hepatocytes prohibits supplying

the needed cells in a timely manner. Therefore, alternative cell sources

must be identified to overcome this significant barrier.17

3 | PRECLINICAL AND CLINICAL STUDIES
OF hAEC

Preclinical studies using murine models have revealed the therapeutic

efficacy of hAEC for the treatment of several congenital metabolic

Significance statement

This article discusses practical issues that might be raised

when conducting a clinical trial of stem cell-based cell ther-

apy for congenital metabolic disorders. In order to generate

practical discussion on this topic, this review focused on

maple syrup urine disease, for which there are limited treat-

ment options. This is the first review from the perspective

of clinicians who provide clinical care to the congenital met-

abolic disease patients. This review will help expedite the

translation of a promising amniotic stem cell into clinical tri-

als and elicit similar discussions pertaining to other stem cell

types and diseases beyond congenital metabolic disorders.
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diseases including MSUD.25-27 Skvorak et al reported that hAEC

transplantation improved survival and normalized the bodyweight of

iMSUD mice. Treated iMSUD mice were euthanized at 100 days for

analysis, whereas untreated iMSUD mice died within 28 days of birth.

BCKDH activity doubled following hAEC transplantation and was

maintained long-term in these immunocompetent iMSUD mice with-

out signs of hAEC rejection.26 One of the proposed mechanisms of

this approach was that some of the transplanted hAECs differentiated

into functional hepatocytes and expressed BCKDH enzymes, resulting

in improved BCAA metabolism.

The safety of hAEC implantation has been clinically proven in

young patients with Niemann-Pick disease type B treated by hAEC

transplantation.43 Despite repeated subcutaneous implantations, no

signs of graft rejection or changes in lymphocyte subsets, including

NK cells, were observed. Recently, in 2018, a first-in-human clinical

trial of allogeneic hAEC infusion in premature infants with bron-

chopulmonary dysplasia was reported.44 After the 2-year follow-up,

no adverse events including tumor formation were observed.45

Although these reports targeted the lungs via a different cell adminis-

tration route, the results strongly support the safety of hAEC

transplantation.

4 | CLINICAL APPLICATION

4.1 | Recipient criteria

In order to avoid the lifelong sequelae of acute metabolic decompen-

sation, the ideal recipient for hAEC transplantation is an infant diag-

nosed with classical MSUD by newborn screening (Table 1). Those

with the classical type of MSUD will likely demonstrate acute neuro-

logical symptoms in the neonatal period secondary to high leucine

levels. hAEC transplantation might be beneficial in arresting symptom

progression if performed immediately following recovery from this

acute phase. This therapeutic approach might also benefit adult

patients with uncontrolled intermediate MSUD (iMUSD), as repetitive

episodes of metabolic crisis increase the risk of further clinical

deterioration (Table 1).

Although infants would most benefit from the hAEC transplanta-

tion, during the development stages of this cell therapy, adult iMSUD

patients would be better candidates to confirm safety, cell doses, and

delivery routes both because of the technical difficulty of cannulation

in infants, and the potential ethical issues with introducing unproven

therapies in neonates.

A major exclusion criterion for cell transplantation would be the

presence of liver cirrhosis, as the presence of collateral circulation

might increase the risk of cell embolism.46 Additional exclusion criteria

would include advanced cardiopulmonary disease, severe pulmonary

hypertension, and active extra-hepatic malignancies.

4.2 | Patient recruitment

A well-designed randomized double blinded-controlled trial should be

performed to provide evidence of therapeutic benefit; however, this

would be difficult based on the small number of MSUD patients. Con-

ducting a large-scale clinical trial would likely be impossible given the

prevalence of MSUD is estimated to be only 1 in 185 000 infants

worldwide.4 In addition, it is an ethical dilemma to conduct a random-

ized trial which requires a control group undergo a sham invasive pro-

cedure without anticipated benefit. Importantly, medical institutions

that have established close and trusting relationships with the disease

advocacy groups should take the lead in any such trial.

4.3 | Risks and benefits for recipients

Appropriate informed consent for any intervention includes a clear dis-

cussion of risks, benefits, and alternatives. Clinical trial consents tend to

focus on potential benefits rather than risks, particularly for life-

threatening diseases.47 Even if a trial is burdensome and unlikely bene-

ficial, some patients might prefer to receive it rather than waiting for

deterioration. Therefore, when obtaining informed consent, clinicians

need to be careful to avoid “therapeutic misestimation.” As iMSUD

patients are often asymptomatic, they usually do not prefer to receive

additional treatment if they can tolerate the strict diet therapy. It would

TABLE 1 Criteria of recipients for hAEC therapy

Type
of MSUD

BCKDH activity, % of
normal

Plasma leucine
concentration
(μmol/L)

Episode of metabolic
decompensationa Notes

At
birth Usual

Classical 0-2 >760 Any None or any The patient's condition and the hemodynamics

must be stabilized prior to the cell

transplantation

Intermediate 3-30 <760 >380 More than once The recipients will be patients who cannot control

with diet therapy

Abbreviations: BCKDH, branched-chain α-keto acid dehydrogenase; hAEC, human amniotic epithelial cell; MSUD, maple syrup urine diseases.
aEpisodes of medical care with neurological symptoms accompany with high leucinemia/ketosis including nausea, vomiting, anorexia, unconsciousness, and

anxiety.
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be unethical to mislead the iMSUD patients by overemphasizing the

future risks of the disease. Particularly in the early phase of a clinical

trial, it must be clarified that the patient bears potential risk with

participation, and not guaranteed promise of therapeutic benefit.

Risks of hAEC transplantation include rejection of the cells, cell dif-

ferentiation failure, post procedural infection, and bleeding from the liver

parenchyma or puncture site. The potential for cell embolism should also

be mentioned although it should be avoided by precise cell preparation.

In cases of mild engraftment failure, increased risk would not be antici-

pated, as the procedure would not alter the patient's basal liver structure,

and its baseline function would not be compromised. This would be one

of the unique merits of hAEC transplantation in terms of the “opportu-
nity cost,” which should be discussed when designing clinical trials for

cell therapy in general.47 As the patients can continue with the basic diet

therapy during this clinical trial, they would not have to forego the

standard treatment while undergoing the clinical trial.

The proposed benefit of the cell transplantation is that the

increased BCKDH enzyme activity following hAEC therapy could

ease the restriction of protein intake, although the amount of protein

a recipient could tolerate would depend on the basal BCKDH

enzyme activity prior to the therapy. The procedure would be mini-

mally invasive without laparotomy and would not carry the morbidity

associated with orthotopic transplantation. As hAECs are readily

available, in the future, patients could be treated immediately

without waiting for a deceased donor or incurring the risks for a liv-

ing donor.

4.4 | Donor eligibility

Potential donors (birth mothers) would have to meet specific eligibility

criteria. In the United States, the criteria are outlined by the US

Department of Health and Human Services Food and Drug Adminis-

tration (FDA), Center for Biologics Evaluation and Research (CBER) in

Title 21 Code of Federal Regulations (21 CFR part 1271 Subpart C).

The donors must be screened for “relevant communicable disease

agents or diseases (RCDADs).” Furthermore, in order to avoid con-

tamination by normal vaginal flora, donor placentas must be collected

at the time of Caesarean section under sterile conditions.

Although the prevalence of MSUD is extremely low (1:185000),

the possibility that a donor is the heterozygote cannot be ruled out. It

has been reported that the enzyme activity of heterozygotes is about

50% of healthy donors.35 Therefore, it would be ideal to exclude het-

erozygous donors by genetic screening prior to the cell transplanta-

tion. However, the current state of genetic analysis would not allow

the detection of all of the asymptomatic inherited heterozygotes.

Thus, routine genetic screening for donors would not be suitable as a

standard pretransplantation evaluation.

F IGURE 1 Clinical hAEC transplantation. The number of hAECs per infusion will be 30-100 × 106 cells/kg of body weight. There are two
possible routes of hAEC transplantation: (A) transplantation through a portal catheter percutaneously and (B) transplantation into the splenic
artery by the transfemoral approach. The infusion rate should be 5-10 mL/kg per hour, with a concentration of 1-10 × 106 hepatocytes/mL. The
transplanted hAECs will be trapped in the peripheral portal vein and migrate into the liver tissue through the sinusoid. AO, aorta; CV, central vein;
HA, hepatic artery; hAEC, human amniotic epithelial cell; Li, liver; PV, portal vein; Sp, spleen
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4.5 | Practical considerations

The protocol for hAEC isolation has been described previously.48 Cell

characterization (identity and stability) and safety tests would be per-

formed at a GMP-grade cell processing facility with FDA approved

GMP-grade reagents in compliance with the requirements under

21 CFR part 1271.

Prior to hAEC transplantation, a general medical evaluation of the

recipient would need to be performed, including whole amino and

organic acid analysis, as well as a hepatic ultrasound and a portal

venous system Doppler examination to identify the presence of cir-

rhosis or any other risk factors. Suspected infectious disease is an

indication for postponement of the transplantation.

Other periprocedural considerations that could contribute to the

overall safety of hAEC transplantation include mechanical ventilation,

arterial line blood pressure/gas monitoring, and heparinization to mini-

mize portal hypertension and hepatocyte thrombi formation. Cells

could either be injected into the portal vein system via a percutane-

ously placed a portal catheter or into the splenic artery by the trans-

femoral approach (Figure 1). Based on current protocol for HT, we

propose the following details: total number of hAECs per infusion

would be 30-100 × 106 cells/kg of body weight, with an infusion rate

of 5-10 mL/kg per hour, using a concentration of 1-10 × 106 cells/

mL.14 Multiple hAEC injections might be required to stabilize the

uncontrolled BCAA levels in treatment of adult patients. The optimal

total cell dose could be determined for each case based on the

patients' baseline BCKDH activity. Therapeutic efficacy would be

evaluated using the measurement of the missing enzymatic activity

(BCKDH) as well as monitoring correction of amino acid (BCAAs)

levels.18 After allowing 7 days for engraftment and differentiation of

the transplanted hAECs, natural protein intake could potentially be

gradually increased if normalization of the serum leucine concentra-

tion had occurred. Following discharge, patients would need to follow

a diet containing the predetermined amount of protein, with careful

stepwise adjustment of leucine intake to maintain the concentration

of leucine under 380 μmol/L. Regular follow-up of liver function,

whole amino acid analysis, and hepatic imaging via ultrasound would

be required to monitor the therapeutic efficacy of the transplanted

hAECs. Once MSUD patients discontinue their diet therapy, it might

become psychologically difficult to restart, so it would be better to

refrain from a completely regular diet during this transitional period.

As hAECs exhibit both immune privilege and immune-

modulatory properties, several studies attempted allogeneic hAEC

implantation without immunosuppressants and showed the absence

of an acute rejection reaction.43,44 However, there is no strong evi-

dence of sufficient cell engraftment in the recipient tissue, and the

mechanism of rejection in cell transplantation has not been fully elu-

cidated. Therefore, like clinical HT, immunosuppressants would likely

be required to improve cell engraftment at the first trial of allogeneic

hAEC transplantation. The doses could potentially be tapered, and a

biobank of hAECs might provide immunocompatible donor cells in

the future.

5 | FUTURE PROSPECTIVE

Establishing a biobanking system based on the precise optimization

using xeno-free cryopreservation media49 would also potentially pro-

vide lifelong immunosuppression-free cell transplantation, which

would enhance the value of hAEC therapy as affordable and effective

treatment. Indications for hAEC transplantation would also likely

expand if a therapeutic benefit was demonstrated. As many of the

potential pitfalls have already been examined in clinical HT, standard-

ized quality control evaluation protocols, cryogenic preservation, and

infusion routes should follow the previous clinical cell transplantation

studies.14

Preclinical studies26,27 showed the reproducibility of the thera-

peutic effects, and these as well as other congenital metabolic dis-

eases should be explored as targets of this therapy. In the future,

prenatally diagnosed metabolic diseases might be treated prior to phe-

notypic changes with in utero hAEC transplantation.50 The immuno-

modulatory properties and antifibrotic effects of the human amniotic

membrane might also alleviate liver fibrosis,51 which would expand

the target pool of hAEC treatment.

In parallel with clinical translation, a number of questions must

be answered. For example, the timing of cell engraftment and

in vivo hepatic differentiation as well as the durability of the treat-

ment need to be determined. As there is no suitable experimental

model to study these questions without the influence of species

differences, these answers could only be obtained through clinical

trials.

6 | CONCLUSION

Cell replacement therapy is a promising approach to treat congenital

metabolic disorders. In this perspective, we simulate a trial of hAEC

transplantation to treat MSUD patients; however, we fully anticipate

that this treatment strategy would be applicable for the treatment of

other liver-based metabolic diseases. This perspective should help to

design further studies toward clinical translation.
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