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Abstract

Locomotion provides superb examples of cooperation among neuromuscular systems, environmental reaction forces, and
sensory feedback. As part of a program to understand the neuromechanics of locomotion, here we construct a model of
anguilliform (eel-like) swimming in slender fishes. Building on a continuum mechanical representation of the body as an
viscoelastic rod, actuated by a traveling wave of preferred curvature and subject to hydrodynamic reaction forces, we
incorporate a new version of a calcium release and muscle force model, fitted to data from the lamprey Ichthyomyzon
unicuspis, that interactively generates the curvature wave. We use the model to investigate the source of the difference in
speeds observed between electromyographic waves of muscle activation and mechanical waves of body curvature,
concluding that it is due to a combination of passive viscoelastic and geometric properties of the body and active muscle
properties. Moreover, we find that nonlinear force dependence on muscle length and shortening velocity may reduce the
work done by the swimming muscles in steady swimming.
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Introduction

Most fish swim by rhythmically passing neural waves of muscle

activation from head to tail, alternating left and right. This yields

travelling waves of local muscle shortening, which in turn produce

travelling waves of body curvature. These mechanical waves

interact with the water, developing reactive thrust that pushes the

animal forward. Breder [1] divided this type of swimming into two

classes, depending on the proportion of the body undergoing

undulations. In the anguilliform mode, as exhibited by, e.g. lampreys

and eels, most or all of the body is flexible and participates in the

propulsive movement. In carangiform swimming, as exhibited by,

e.g. mackerel, the amplitude of lateral motion is concentrated near

the tail. See [2] for an overview of animal locomotion, and [3–5]

for vertebrate swimming in particular.

At any point on the body, rhythmic cycles of muscle activation

alternate with silence, causing cycles of muscle shortening and

lengthening (see Figure 1A). However, in all species which have

been studied [8] except the leopard shark [9], delays between the

onsets of activation and of shortening increase along the body from

head to tail (see Figure 1C), i.e., the wave of shortening travels

more slowly than the wave of activation. In consequence, near the

tail the greater portion of the activation phase occurs during

muscle lengthening, giving rise to negative work during part of the

cycle. There are a number of possible functions assigned to this

change in timing (e.g., providing stiffness as the tail moves laterally

through the water, thereby contributing to power transmission, or

tuning the resonant body frequency to match tailbeats [10]), but

the mechanism or mechanisms responsible for it are not known

[11]. In this paper, we throw light on this phenomenon.

Previous computational models of anguilliform swimming have

incorporated the known timing of muscle activation within a

mechanical representation of the body and water [12,13], resulting

in a travelling mechanical wave. In [13] no phase delay was seen

between the waves of activation and curvature, and in [12], none

was reported. However, both models assumed specific scalings of

muscle density with body location, and that muscle force was

simply proportional to activation. In reality, the force developed

by activated muscle takes time to develop. Furthermore, because

of the changing relative timing of activation and curvature, the

patterns of muscle length and velocity vary significantly along the

body length. This results in changing patterns in the developed

muscle force, and such variation is further complicated by the

body taper.

In the present study we investigate this phenomenon by

incorporating a revised version of a kinetic muscle force model,

originally due to Williams et al. [14], in the continuum mechanical

model for anguilliform swimming of [13]. The resulting integrated

neuromechanical system models the swimmer as an elastic rod

with time-dependent preferred curvature arising from interactions

of muscles with the body configuration. The model’s modular

structure—coupled sets of differential equations—allows us to
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selectively ‘‘lesion’’ it to probe the sources of its collective behavior.

We find that the wave speed difference results primarily from the

body’s tapered geometry and passive viscoelastic damping, and

that it does not require prioprioceptive sensory feedback.

Depending on force density, the nonlinear dependence of force

on muscle length and shortening velocity can also contribute to the

wave speed difference, although it is not necessary for it. In a

preliminary study, however, we find that length and velocity

dependence can reduce the mechanical work output during

swimming. When further coupled with a central pattern generator

and motoneurons, this integrated muscle-body-enviroment model

will also allow us to examine proprioceptive feedback, cf. [15].

This paper is organized as follows. In the methods section we

review the equations of motion of the actuated rod and the fluid

loading model. We show that the discretized rod equations are

equivalent to equations describing a chain of interconnected links.

This allows us to relate torques at the joints, and the forces

responsible for them, to the preferred curvature and elastic

properties of the rod. The model for muscle forces is developed in

the penultimate subsection and in the final subsection we combine

the muscle and body models to produce an integrated computa-

tional model. Simulations of the model are presented in Results

and a discussion ensues in the concluding section, in which some

larger implications of the work are noted.

Methods

An Integrated Model and Its Computational Realization
We model the swimmer’s body as an isotropic, inextensible,

unshearable, viscoelastic rod that obeys a linear constitutive

relation and is subject to hydrodynamic body forces. We assume

that passive material properties such as density and bending

stiffness remain constant in time, but allow them to vary along the

rod. We endow the rod with a time-dependent preferred curvature in

the form of a traveling wave, representing muscular activations.

We adopt the conventions of [16,17], and use an elliptical cross

section to compute hydrodynamic reaction forces, although we

restrict to planar motions, since lampreys and eels in ‘‘normal’’

steady swimming flex their bodies primarily in the horizontal plane

[18,19]. The calcium kinetics and muscle force model, which

produces the preferred curvature, is described in the penultimate

subsection and the integrated model is summarized in the final

subsection of this section. The material of the first three

subsections below is drawn from [13], to which the reader should

Figure 1. Relative timing of activation and movement. (A) Passage toward the tail of the waves of activation (EMG) and curvature. Speed of
activation wave (gradient of dotted line), 1.0 body lengths/cycle. Solid lines show curvature toward left side; speed of mechanical wave (gradient of
solid line), 0.72 body lengths/cycle. Arrows indicate time periods over which the muscle on the left side is lengthening and shortening. Abscissa, time
(cycles); ordinate, position on body. (B) Lamprey outline from above. Arrows show electrode placement on left side only; dashed lines show active
region on each side at approx 0.6 cycles in panel A; (C) Phase delay (fraction of cycle) from onset of activation to onset of shortening (time of
maximum convex curvature), plotted against position on body. Data replotted from [6,7].
doi:10.1371/journal.pcbi.1000157.g001

Author Summary

In this article we develop a computationally tractable
model for swimming in animals such as eels, lampreys, and
aquatic snakes. The model combines motoneuronal
activation, muscle dynamics, passive elasticity and damp-
ing in the spinal cord and body tissues, and simplified
hydrodynamic reaction forces, thus allowing us to probe
how neuromechanical interactions give rise to body
shapes and, ultimately, motion through the water. We
use it to investigate the sources of an interesting
experimental observation in freely swimming fish: that
waves of curvature propagating along the body lag behind
and travel more slowly than the muscular activation waves
measured by electromyography. By selectively ‘‘lesioning’’
components of the model, we deduce that the speed
difference, at least in this type of fish, is largely due to
passive viscoelasticity and body geometry. We also find
that nonlinear muscle properties are responsible for a
significant reduction in energy expenditure and that they
can also contribute to the wave speed difference. This
work is a key step in a general program to build integrated
‘‘whole animal’’ models of locomotion and other behaviors
that will also allow us to incorporate proprioceptive and
exteroceptive neural feedback. Such integrated models
can contribute both to our understanding of how living
systems work and to the further development of robot
systems.

Curvature Wave Production in Anguilliform Swimmers
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refer for further detail, and where the numerical method and

validation tests are also described.

A Continuum Description of the Actuated Rod
The independent variable sM[0,l] denotes arc-length along the

rod, and a configuration of the rod is given at each time t by the

space curve s ¨ r(s,t) = (x(s,t),y(s,t)) describing its centerline in the

inertial (x,y)-plane. Derivatives with respect to s and t will be

denoted by subscripts. The inextensibility condition |hr/hs| = 1,

can be written in terms of the angle Q between the tangent to the

curve t = hr/hs and the inertial x-axis:

Lx

Ls
~cos Qð Þ, Ly

Ls
~sin Qð Þ : ð1Þ

see Figure 2. The normal to r is then given by n = (2sin Q, cos Q).

Each element of the rod is subject to contact forces f = (f,g), a

contact moment M, and body forces W = (Wx,Wy) per unit length,

vector components again being referred to the inertial frame. The

contact forces and moment are those exerted on the region (s,s+ds)

by [0,s), which maintain the inextensibility constraint, and the

body forces arise from interactions with the fluid environment.

Balance of linear and angular momenta yields the equations of

motion (cf. [17,20]):

rA
L2x

Lt2
~Wxz

Lf

Ls
, ð2Þ

rA
L2y

Lt2
~Wyz

Lg

Ls
, ð3Þ

rI
L2Q

Lt2
~

LM

Ls
zg cos Q{f sin Q, ð4Þ

where r is the volumetric material density and A and I the cross-

sectional area and moment of inertia of the rod. For an elliptical

cross-section with semi-axes a and b, as in Figure 2, A = pab and

the moment of inertia for motions in the (x,y)-plane is I~ p
4

ab3.

We assume that r is constant, but allow A = A(s), I = I(s) to vary

(both remaining strictly positive); specifically, we will study a

tapered elliptical cross section based on lamprey body geometry.

In [13] the activation of the rod was determined by an

externally-specified function k(s,t), representing its intrinsic or

preferred curvature. The muscle model developed later in this section

effectively replaces k with a function that depends on neural

activation and the local curvature and its rate of change, but we

retain the usual linear constitutive relation [20] so that moments

are proportional to departures from preferred curvature:

M~EI
LQ

Ls
{k

� �
zd

L2Q

LsLt
: ð5Þ

Here E.0 and d$0 are the Young’s modulus and viscoelastic

damping coefficient and the flexural rigidity EI, with SI units N

m2, determines the overall stiffness. The equations of motion

(Equations 2–4), the constraints (Equation 1), and the constitutive

relation (Equation 5), along with specified body forces and suitable

boundary and initial conditions, form a closed system of evolution

equations. Natural boundary conditions for free swimming are

that contact forces and moments vanish at the head and tail:

M = f = g = 0 at s = 0,l.

Approximation of Hydrodynamic Reaction Forces
In swimming the local body forces are due to hydrodynamic

reactions that depend on the global velocity field of the fluid

relative to the body. To avoid the complexity and computational

expense of solving coupled rod and Navier-Stokes equations, we

adopt the model of G. I. Taylor [21] in which W(s,t) depends only

on the local relative velocity. This approximation accurately

predicts forces on a straight rod in steady flow, but fails to capture

unsteady effects including vortex shedding, which are undoubtedly

important in swimming propulsion [22,23]. We believe that it

suffices as a first approximation for the present purpose, since we

are mainly concerned with the interaction of muscle forces and

configuration dynamics. Unlike the Kirchhoff and Lighthill

theories [24,25], we neglect added mass effects. See [13] for

further discussion.

Taylor models the force on a rod of radius a due to

perpendicular flow of fluid of density rf and dynamic viscosity m
with speed v as

F~CNrf av2zCT v3=2, ð6Þ

where the drag coefficient CN varies between 0.9 and 1.1 for

Reynolds numbers 20,R,105, and CT is closely approximated by

CT&
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8rf am

p
in the range 10,R,105, cf. Figure 1 of [21]. Drag

forces for smooth oblique cylinders can be decomposed into

normal and tangential components in terms of the normal and

tangential velocities vH and vI at (s,t) as:

FN~arf CN v\j jv\z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8rf am v\j j

q
v\, FT~2:7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rf am v\j j

q
vE, ð7Þ

and the body forces are given by

W~{FN n{FT t, ð8Þ

where n and t denote the normal and tangential unit vectors to the

rod’s centerline at s.

In calculating W, we consider only the height 2a of the rod,

assuming that fluid reaction forces are equal to those on a cylinder

of radius a, although the constant CN does change slightly for

elliptical rods. Further, we set CN = 1, since Reynolds numbers for

lampreys and eels lie well within the range 20,Re,105; for

example, in their work on the eel Anguilla rostrata, Tytell and

Lauder cite Re = 60,000 based on body length l = 20 cm for a

Figure 2. A viscoelastic rod with elliptical cross-sections and
variable semi-axes undergoes bending motions in the (x,y)
inertial coordinate plane; s denotes arclength along the body
centerline. (Figure modified from Figure 1 in [13]).
doi:10.1371/journal.pcbi.1000157.g002
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specimen swimming at 1.4l/s. [22], and speeds reported in [23]

range from 0.5 to 2 body lengths per second. In terms of Taylor’s

body-diameter-based Reynolds number, this corresponds to

R<2000–8000.

Discretization of the Actuated Rod
We discretize the rod equations with spatial step size h = l/N in

the arclength variable s, letting xi(t) = x(ih,t), i = 0, …, N, and

similarly for the other field variables yi,Qi and parameters Ai,Ii: see

Figure 3. The inextensibility constraints in Equation 1 are

approximated by

xiz1{xi~
h

2
cos Qizcos Qiz1

� �
,

yiz1{yi~
h

2
sin Qizsin Qiz1

� �
,

ð9Þ

and Equations 2–4 are approximated by the ordinary differential

equations (ODEs):

mi€xxi~hWxizfi{fi{1, ð10Þ

mi€yyi~hWyizgi{gi{1, ð11Þ

Ji€QQi~Mi{Mi{1z
h

2
gizgi{1ð Þcos Qi{

h

2
fizfi{1ð Þsin Q, ð12Þ

where mi = rAih and Ji = rIih. The constitutive relation in

Equation 5 becomes:

Mi~EIi

Qiz1{Qi

h
{ki

� �
zdi

_QQiz1{ _QQi

h

� �
: ð13Þ

The force and moment free boundary conditions M = f = g = 0 at

s = 0,l become:

M0~f0~g0~0~MN~fN~gN : ð14Þ

The finite-difference discretization of Equations 10–13 is closely

related to representions of the body as a planar chain of rigid links

subject to forces and moments. In modeling lamprey Bowtell and

Williams [26,27] take a chain of N massless rigid rods each of

length h, with mass mi at each pivot and at both free ends. The

pivots are actuated by passive springs, dashpots, and active force

generators. Ekeberg [12,28] adopts a similar configuration but in

place of time-dependent force generators, the spring constants

vary with time, and instead of point masses at the pivots, the center

of mass of each link is placed at its midpoint. Here we adopt the

mass distribution of [12], and include active muscle elements, to be

described in succeeding subsections, in the force-generating

components. The configuration of the ith link is described by its

midpoint (xi,yi) and the angle Qi between its centerline and the

inertial basis vector êx (Figure 3). Equaions 9 then express the

constraint that links remain connected at the joints. Letting (fi,gi)

and Mi denote the components of contact force and the torque at

the joint connecting link i to link i+1 and (hWxi,hWyi) be the body

force acting on the midpoint of link i (Figure 4a), balances of linear

and angular momenta yield Equations 10–12 above with mass

mi = rAih and moment of inertia Ji~rh Iiz
p
12

abh2
� �

of the ith

link. The discrepancy between the discretized rod equations and

the equations for the chain of N pivoted rods thus consists only in

the O h3
� �

terms in the moments of inertia, and the two models

coincide in the limit h R 0. We employ the exact formula above

for the moments of inertia Ji in all the calculations below, although

the approximation Ji = rhIi yields results (not shown) that are

nearly identical, even for quite large values of h<1.

As shown in section 4.3.4 of [13], for the large segment numbers

N~O 100ð Þ typical of eels and lampreys, the behaviors of the

discrete and continuum models are very close. Additionally, the

discretization reveals how activation determines preferred curva-

ture k(s,t) and affects bending stiffness EI of the continuum model.

As in [26], the joint connecting each pair of links of length h is

actuated by a pair of spring-dashpot-actuators in parallel, with

spring constant n and damping coefficient c, anchored to arms of

length w that project normally from the links’ midpoints

(Figure 4b). These arms represent myosepta, the connective tissue

layers to which the muscle fibres connect. The linear springs and

dashpots represent passive tissue viscoelasticity, and the actuators

generate prescribed contractile muscle forces fLi and fRi on the

right and left sides of the body respectively. Suppressing the

dependence on i and denoting the relative extensions CD{h
� ��

h
and AB{h

� ��
h of the spring-dashpot-actuators as DR and DL

(Figure 4c), the total forces on the right and left sides may be

written

GR tð Þ~fR tð ÞznDRzc _DDR and GL tð Þ~fL tð ÞznDLzc _DDL: ð15Þ

Since the relative extensions are dimensionless, stiffness n and

damping c have the units N and N s. respectively. The springs are

in tension (and hence generating contractile forces) when DR,

DL.0. The forces are applied at a distance w from the centerline

of the rod, so elementary trignometry gives:

DR~
CD{h

h
~

2d cos a0ð Þ{h

h

~cos yi=2ð Þ{1{2
w

h
sin yi=2ð Þ

and DL~
AB{h

h
~

2d cos að Þ{h

h

~cos yi=2ð Þ{1z2
w

h
sin yi=2ð Þ,

ð16Þ

where yi = Qi+12Qi is the angle between neighboring links and

d~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2=4zw2

p
. Finally, computing the moment arms LR,LL to

the joint along normals from the lines AB and CD on which the

forces act (Figure 4c):

Figure 3. Representation of the swimmer as a chain of
interconnected links.
doi:10.1371/journal.pcbi.1000157.g003
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LR~d sin a0ð Þ~d cos b{yi=2ð Þ

~w cos yi=2ð Þz h=2ð Þsin yi=2ð Þ

and LL~d sin að Þ~d cos bzyi=2ð Þ

~w cos yi=2ð Þ{ h=2ð Þsin yi=2ð Þ,

ð17Þ

we find that, for small angles yi, the resulting torque at joint i is

given by

Mi~{ GRiLRi{GLiLLið Þ

~ fL{fR½ �w cos yi=2ð Þ

z hn{ hn{
4w2n

h

� �
cos yi=2ð Þ{ h

2
fLzfRð Þ

	 

sin yi=2ð Þ

z
2cw2

h
_yyi cos2 yi=2ð Þz h2

4w2
sin2 yi=2ð Þ

� �

& fLi tð Þ{fRi tð Þ½ �w

z 2nw2{
h2

4
fLi tð ÞzfRi tð Þð Þ

	 

Qiz1{Qi

h

� �

z2cw2 _QQiz1{ _QQi

h

� �
:

ð18Þ

Comparing the linearized moment in Equation 18 in the limit h

R 0 with the discretized constitutive relation in Equation 13 we

see that the link and discretized rod models coincide if the stiffness

EIi, intrinsic curvature ki and viscoelastic damping d are

interpreted as follows:

EIi~2nw2, ki~
fRi{fLi

2nw
, d~2cw2: ð19Þ

We propose that the stiffness n and damping c are proportional

to cross-sectional area A(s). Thus we set

n~abn, c~abc, ð20Þ

so that the stiffness n and damping c have units N/m2 and N s./m2

respectively. To approximate a uniform distribution of the muscle,

we set w = b/2, where b is the half-width of the body. Equations 19

now become

EIi~
1

2
nab3, ki~

fRi{fLi

nab2
, d~

1

2
ab3c: ð21Þ

In particular, using I = pab3/4 we can write Young’s modulus in

terms of the spring stiffness as E~2n=p. One of the questions we

address is the influence of force density as a function of arclength.

We take up this question after a discussion of force generation in

muscle fibers.

Muscle Activation and Force Generation
Recordings such as those of [29] show that waves of

motoneuronal activity consisting of bursts of closely-spaced action

potentials (APs), separated by near-silent interburst periods, travel

the length of the lamprey spinal cord (see Figure 1A and 1B). The

waves are generated spontaneously by a distributed central pattern

generator (CPG) within the spinal cord [30], which has been

modelled as a chain of coupled oscillators [31–33]. The waves are

in antiphase contralaterally and maintain approximately constant

duty cycles (burst/cycle period ratios) and segment-to-segment

ipsilateral phase lags, regardless of overall frequency. This activity

pattern is transmitted via nerves that enter the myotomes through

the ventral roots [34], producing muscle activation with similar

phasing, evident in electromyograms (EMGs) [7]. Each myotome

corresponds to a segment of the spinal cord.

Bundles of myofibrils make up the muscle fibres within the

myotomes. The AP bursts cause calcium release from the

sarcoplasmatic reticulum (SR) that surrounds the myofibrils and

is encircled by T-tubuli at repeated intervals. The resulting muscle

contraction occurs in three phases. (i) A motoneuronal AP arrives

at the neuromuscular junction, producing an AP at the motor end

plate which spreads along the surface and T-tubular membranes

of the muscle fiber. (ii) This depolarization opens gates in the SR

x

M

M
W
W

fi

gi

gi-1

fi-1

i

i-1

yi

xi

A B

C

ψ  = ϕ   − ϕ

GR

GL

β
C

D

B

A

w
h/2

i i+1 i

f

f f

f

f

f

β
α

α'

d

y

Figure 4. Forces and moments acting on link i (A), bending moments are determined by muscles on both sides of the body
modeled by springs and dashpots with additional active elements (B), and forces and moments associated with a single joint (C).
doi:10.1371/journal.pcbi.1000157.g004
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and releases Ca2+ ions into the muscle protein filaments. (iii) Ca2+

causes conformational changes in the thick filaments which form

cross-bridges to the thin filaments; a subsequent conformational

change then develops a force tending to slide the thin filaments

over the thick ones [35], shortening the muscle (unless overcome

by opposing force via the muscle attachments). This is followed by

resequestering of Ca2+ by the SR, resulting in relaxation of the

muscle. The force developed during muscle activation is

dependent upon both the length of the muscle and the velocity

of its shortening [36]. Traditionally, shortening is taken as positive,

but here we use the opposite convention, referring to the time

derivative of muscle length as velocity, which is negative for

shortening.

To describe the forces fR(t) and fL(t) in Equations 15, 18, and 19,

we adapt the model developed by Williams et al., who carried out

experiments on portions of single myotomes of lamprey muscle

[14]. Intermittent tetanic stimulation was applied during isometric

and constant-velocity movements, and analysis and modelling of

the resulting force trajectories were used to predict the trajectories

recorded during applied sinusoidal movement. Experimental data

are reproduced in Figure 5 below (for details of experimental

protocol, see [14]). We follow a modified form of the simple kinetic

model used in that study, including calcium ions, SR sites and

contractile filaments (CF). The rates at which calcium ions are

bound and released approximately follows the principle of mass

action (see Figure 6). For example, the rate of binding of calcium

ions to the CF is proportional to the product of concentrations of

free calcium ions and unbound filaments, with rate constant k3.

The resulting equations for the kinetics of the calcium,

sarcoplasmic reticulum sites and bound filaments are as follows:

d c½ �=dt~k1 cs½ �{k2 c½ � s½ �{k3 c½ � f½ �zk4 cf½ � f½ �, ð22Þ

d cs½ �=dt~{k1 cs½ �zk2 c½ � s½ �, ð23Þ

d s½ �=dt~k1 cs½ �{k2 c½ � s½ �, ð24Þ

d cf½ �=dt~k3 c½ � f½ �{k4 cf½ � f½ �, ð25Þ

d f½ �=dt~{k3 c½ � f½ �zk4 cf½ � f½ �, ð26Þ

where brackets denote concentrations of the relevant quantity.

When the muscle is activated, k1.0 and k2 = 0; in the absence of

activation k1 = 0 and k2.0.

We assume that the total number of calcium ions, SR binding

sites and filament binding sites per liter remain constant so that
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Figure 5. Least squares fit of model to isometric data at three muscle lengths (left), and sinusoidal forcing data with predictions
from isometric data fit (right). Tetanic stimuli applied periodically for 0.36 s, while length of preparation varies sinusoidally with various phase
offsets Q. The sine waves show the length of the preparation as a function of time. Solid lines, simulation; dashed lines, data.
doi:10.1371/journal.pcbi.1000157.g005

Figure 6. The model of calcium kinetics. c, free calcium ion; s,
unbound SR calcium-binding sites; cs, calcium-bound SR sites; f,
unbound contractile filament calcium-binding sites; cf, calcium-bound
filament sites; k1–k4, rate constants of binding and release.
doi:10.1371/journal.pcbi.1000157.g006
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[cs]+[c]+[cf] = CT, [cs]+[s] = ST, and [cf]+[f] = FT. This allows us to

reduce the five Equations 22–26 to a system of two in [c] and [cf].

We further scale by the number of filament sites FT, writing

Caf = [cf/FT], Ca = [c]/FT and introducing the new constants

C = CT/FT and S = ST/FT. Since the number of bound filament

sites cannot exceed FT, Caf#1, Ca#C, and Caf = 1 when all of the

filaments are bound. Although appropriate values for C and S are

not known, general knowledge of skeletal muscle indicates that C is

large enough for the filament binding sites to be saturated during

tetanic stimulation and that S is large enough to reduce free

calcium to a negligible amount during rest. We obtain similar data

fits over a range of values for these constants, so we arbitrarily set

C = 2 and S = 6. Thus twice as much calcium is available than is

necessary to bind all of the filaments and thrice as many binding

sites are available in the SR than are required to bind all the

calcium.

Following Hill [37], each myotome is modeled as a contractile

element (CE) in series with an elastic element (SE). (The Hill

model includes a second elastic element in parallel [38], but for

our purposes this can be included in the linear spring of Figure 4b.)

Because they are in series, the CE and SE experience equal forces

at steady-state. We begin by describing them separately, as a force

P exerted by the SE, and a force Pc developed by the active

element CE.

The SE is modelled as a linear spring and hence P is

proportional to the length ls of this element minus its resting

length ls0: P = ms(ls2ls0). This force is never negative. The total

length L of the segment is the sum of ls and the length lc of the

contractile element. The length and velocity vc = l̇c of the

contractile element are therefore given in terms of the length

and velocity V = L̇ of the segment and the force P as follows:

lc tð Þ~L tð Þ{ls0{P tð Þ=ms, ð27Þ

vc tð Þ~V tð Þ{ dP=dtð Þ=ms: ð28Þ

We assume that the the force Pc exerted by the contractile

element can be described by independent multiplicative factors of

its length lc and velocity vc,

Pc~P0l lcð Þa vcð ÞCaf , ð29Þ

where the constant P0 is the force exerted in isometric tetanic

contraction (Caf = 1) at the optimum length lc0. The functions l(lc)

and a(vc) are estimated from force measurements (described

below), from which we obtain a piecewise linear function for a

and a quadratic for l:

a vcð Þ~1z
amvc if vcv0

apvc if vc§0

�
, ð30Þ

l lcð Þ~1zl2 lc{lc0ð Þ2: ð31Þ

We additionally restrict these functions such that 0#a(vc)#amax

and 0#l(lc)#1. The fact that ap.am.0 (see Table 1) reflects the

ability of muscle fibers to exert progressively greater forces during

lengthening than in shortening.

If we set Pc = P, the calculation suffers from instability, and in

reality the stretch of the SE due to activation of the CE is not

instantaneous. We therefore model the transfer of force from the

CE to the SE by simple linear kinetics:

dP

dt
~k5 Pc{Pð Þ: ð32Þ

Combining Equations 22–32 and using the three conserved

quantities CT, ST, and FT, we obtain three ODEs for the

concentrations of free calcium, bound calcium and the force

exerted by the preparation:

dCa

dt
~ k4Caf {k3Cað Þ 1{Cafð Þ

z
k1 C{Ca{Cafð Þ, stimulus on

k2 Ca C{S{Ca{Cafð Þ, stimulus off

( ð33Þ

dCaf

dt
~{ k4Caf {k3Cað Þ 1{Cafð Þ ð34Þ

dP

dt
~k5ms

P0l lcð ÞCaf 1za1V tð Þð Þ{p

mszk5P0l lcð Þa1Caf
, a1

am, vc§0

ap, vcv0

�
: ð35Þ

The parameters of the model are determined from analysis of

the data of [14], as follows. ms and ls0 are determined from quick-

release experiments [37]. The maximum values of force P0 in the

three isometric experiments (Figure 5) are used in Equations 27,

29, and 31 to determine the values of l2 and lc0. The results of

constant-velocity ramp experiments are then used with Equa-

Table 1. Muscle model parameters used in simulations.

From data From best fits

Parameter Value Parameter Value Parameter Isometric Sine

ms 600 mN/mm am 0.40 s/mm k1 9.6 s21 10 s21

lis 2.7 mm ap 1.33 s/mm k2 5.9 s21 12 s21

ls0 0.234 mm amax 1.8 k3 65 s21 49 s21

l2 22.23 mm22 k5 100 s21 k4 45 s21 40 s21

lc0 2.6 mm P0 60.86 mN/mm2 72 mN/mm2

doi:10.1371/journal.pcbi.1000157.t001
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tions 27–31 and the parameters l2 and lc0 to determine am and ap.

The limiting value of amax was not determined in [14], so amax is

taken from results in dogfish [39]. In practice, results vary little

over a range of values for amax.

We set the time constant k5 = 100 s21, so that Pc closely tracks P.

The remaining time constants k1, k2, k3, and k4 are found by fitting

force trajectories from the experimental data, using the least-

squares curve-fitting facilities in the software XPPAUT devised by

G. Bard Ermentrout and available at http://www.pitt.edu/

,phase/.

The parameters k1–k4 are fit in two different ways. The isometric

fit follows the approach in [14] by using only data from the

isometric experiments at the three lengths L = 2.7 and 2.760.125.

The main aim of [14] was to show that a model based on isometric

and constant-velocity experiments could be used to approximately

predict forces that occur during swimming, even though it

excludes known properties such as the observation that the

length-tension and force-velocity relationships change during

muscle activation and relaxation [36]. Such secondary features

cause discrepancies between the predictions and the data seen in

the sinusoidal traces of Figure 5, but the model nonetheless

produces forces during sinusoidal movement that capture the

overall behavior well.

The present study demands our best estimate of force

development during swimming, and for this reason we have made

a second, dynamic fit of the time constants k1–k4 based not on

isometric data but on muscle force data during sinusoidal

movement at 1 Hz. To best match swimming behavior, we chose

the experiment with a delay of 0.1 from onset of stimulation to

onset of shortening (cf. Figure 1), and as the upper panels of

Figure 7 show, the resulting force trace is much closer to the data

than the fit to isometric data. The discrepancy between the

isometric data and the prediction using these parameters is

primarily in the repolarisation phase (Figure 7, lower panel),

reflecting the model’s inadequacy during this phase of the force

trajectory. Values for both fits, along with the other muscle

parameters, are given in Table 1. The most striking difference is in

the rate constant k2 (uptake of free Ca2+ by the SR), which

doubles. Using this, the dynamic fit captures the rapid force decay

seen in the sinusoidal data at low phase delays.

Sinusoidal forcing data were only available at 1 Hz [14] and in

most of the simulations described below we retain this frequency,

but we also briefly investigate swimming behavior at 2 Hz. The

muscle parameters are listed in Table 1. It is worth noting that

neither set of time constants is unique: in both cases it was possible

to find more than one set of time constants that gave a good fit, by

starting from different initial guesses. The primary goal of this

study is not to discover accurate parameters, but to find a good

prediction of muscle behaviour for use in our neuromechanical

model.

The Integrated Model
Muscle dynamics is incorporated into the discretized rod model

as follows. The forces PRi and PLi generated by the right and left

myotomes associated with the ith link are modeled by two sets of

the three Equations 33–35, with maximal force P0 scaled by cross-

sectional body area at that location. Thus, if the entire body length

is actuated, 6(N21) first order ODEs describe the muscle forces in

the N-link chain, and with the 3N second order ODEs in

Equations 10–12 they jointly determine the body dynamics.

Unlike in the simplified model of [13], the time course of force

development now depends on the proportion of activated

filaments (Caf) and on the lengths and velocities of the muscle

fibers, via appropriately scaled versions of Equations 27–32. At

joint i the lengths and velocities are

LRi tð Þ~h cos
Qiz1{Qi

2

� �
{2wi sin

Qiz1{Qi

2

� �
,

VRi tð Þ~ {
h

2
sin

Qiz1{Qi

2

� �
{wi cos

Qiz1{Qi

2

� �	 

_QQiz1{ _QQi

� �
,

LLi tð Þ~h cos
Qiz1{Qi

2

� �
z2wi sin

Qiz1{Qi

2

� �
,

VLi tð Þ~ {
h

2
sin

Qiz1{Qi

2

� �
wi cos

Qiz1{Qi

2

� �	 

_QQiz1{ _QQi

� �
ð36Þ

(see Figure 4 and the discussion in the preceding subsections).
Equations 36 provide the explicit coupling between the muscle
and body equations. As in [13] the preferred curvature at joint i is

given by ki!
fRi{fLi

ab2 , and the force at each segment is given as a

scaled multiple of the force PR,L of the fibers on either side of the

joint. Since the number of fibers typically depends on cross-

sectional area, our first approach was to take fR,L/abPR,L, giving a

preferred curvature ki/(PR2PL)/b, but simulations with such a

relation exhibited much greater motions toward the tail than those

seen in the swimming animal. After extensive simulations with

various scalings (not shown), we found that scaling the preferred

curvature as ki/b2(PR2PL) and the stiffness as EI/ab2 provides the

best qualitative match to behavior. This suggests that the Young’s

modulus, and hence n, increases along the length of the body, while

not only the magnitude, but also the density of muscle forces

decreases. The former is consistent with the fact that the notochord

takes up a proportionally greater portion of the cross-section of the

animal toward the tail. This scaling thus corresponds to n!1=b,

and fR,L/ab3PR,L, cf. the middle equation of Equation 21.

Table 2. List of major symbols.

Symbol Definition Symbol Definition

r Centerline of rod Q Angle between
tangent and x-axis

a Semi-major axis (height)
of rod

b Semi-minor axis
(width) of rod

r Volumetric density of rod A Area of cross-section

I Moment of inertia of
cross-section

M Moment

W = (Wx,Wy) Body (fluid) forces E Young’s modulus

d Viscoelastic damping k Preferred curvature

m Dynamic viscosity rf Fluid density

GRi,Li Total force on right/left
of joint i

fRi,Li Active contractile force
on right/left of joint i

n Spring constant c (Spring) damping
coefficient

n Scaled spring constant
(n/ab)

c Scaled damping
coefficient (c/ab)

PRi,Li Force per unit area of
muscle on right/left of
joint i

w Distance from
centerline at which
forces are applied

f Force density LRi,Li Length of muscle on
right/left side of joint i

VRi,Li Velocity of muscle on
right/left side of joint i

doi:10.1371/journal.pcbi.1000157.t002
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In the experiments described above the stimulus applied was

tetanic, which does not occur normally. We assume that during

swimming the muscle is stimulated in such a manner that it can be

scaled linearly with respect to the tetanic stimulus. We thus scale

the forces with a constant f that is chosen ad hoc, so that

ki~fb2
i PRi{PLið Þ: ð37Þ

Equation 37 completes the loop, so that upon imposing a traveling

wave of activation which releases calcium by setting k1 and k2 of

Equation 33 on and off in a piecewise constant square wave

(approximating the EMG recordings [29]), we obtain a closed

system of ODEs.

Results

We now explore the behavior of the discretized model actuated

by forces generated by segmental muscles. It is important to note

that the entire body length of a fish is usually not equipped with

swimming muscles. In lamprey the head and part of the gill region

lack such muscles, and we shall henceforth assume they occupy 1/

10 of the total body length, and that their passive material

properties are the same as those of the rest of the body. We shall

refer to the remaining 9/10 of the body that is capable of

activation [40] as the activation region.

Only a fraction of the myotomes are activated on either side of

the body at each instant, in a region that travels from head to tail

during normal swimming. The mean temporal duration of

activation at a given location is <0.36 of the mean cycle duration

[7] (see Figure 1). This defines the square wave referred to above,

and implies that the activated portion on either side also has length

0.36 times the activation wavelength. We will generally assume

that the activation wavelength is one body length [6] (i.e., greater

than the length of the activation region). Unless otherwise stated,

in the simulations reported below we apply a stimulation rate of

1 Hz, and the activation wave thus travels down the body at speed

of 1 body length/s.

The value of the Young’s modulus E (or n, cf. Equation 19) for

the lamprey is not known with any precision. However, the studies

in [10] suggest a value of E<0.1 MPa for the eel, and the

lamprey’s passive stiffness is thought to be much smaller. Indeed,

the stiffness of an anesthetized lamprey is so low that is difficult to

measure, but preliminary studies suggest that values in the range

102321022 MPa are not unreasonable [41]. Other parameters

for which we have no firm lamprey data are the overall scale of the

muscle force f and the damping c. The values specified here are

selected based on extensive exploratory simulations and the studies

of passive elastic and geometric properties in [13].

We take a tapered rod of length l = 21 cm with constant height

2a = 2 cm, to account for the dorsal and anal fins, and width 2b(s)

given by b(s) = 12(4/5)(s/l) cm. Unless otherwise stated, the

following body parameter values are used throughout this section:

Young’s Modulus E = 1023 MPa, damping c~50 N s
�

m2, and

force density f = 0.05 N/m3. Fluid density and viscosity are

rf = 1 g/cm3 and m = 1023 Pa?s – the values for fresh water – and

the body is discretized into N = 21 links. We refer to these as the

standard or control parameters.

We use a numerical method adapted from that of [13], the

appendix of which contains a detailed description. The main

difference is incorporation of two sets of the muscle force

Equations 33–35 at each joint. These are in turn coupled with

the rod equations through the preferred curvature k, explicitly via
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Figure 7. Fit of model to sinusoidal forcing data. The upper left panel is the same as that in Figure 5 for phase offset Q = 0.1; the upper right
panel shows the model behavior under the same conditions but with rate parameters k1–k4 fit to the sinusoidal data. Lower panel shows the model
behaviour under isometric conditions with these parameters. Solid lines, simulation; dashed lines, data.
doi:10.1371/journal.pcbi.1000157.g007

Curvature Wave Production in Anguilliform Swimmers

PLoS Computational Biology | www.ploscompbiol.org 9 August 2008 | Volume 4 | Issue 8 | e1000157



the length and velocity of the muscle as described by Equations 36

above. The method employs discrete versions of the integrated

constraint equations in Equation 1 that express link positions in

terms of that of the head (x1,y1) and the link angles Qi, thus

guaranteeing that the inextensibility constraint is precisely satisfied

for the discrete system in Equations 9–13 and eliminating the need

to solve ODEs for (xi,yi) i = 2, …, N. Since the head region lacks

activation, the number of ODEs required to describe muscle forces

reduces to 6(N21)6(9/10) = 108 in the present case.

Simulations of Swimming and Body Shapes
Simulations readily yield results that are qualitatively similar to

real anguilliform swimmers. For example, Figure 8 compares

tracings from a film of a lamprey in a swimmill that approximate

its body centerline at various times with centerline snapshots from

a model simulation. The characteristic swimming behavior is

clearly captured, in particular the larger amplitude at the tail end.

Figure 9 shows snapshots of the body over one activation cycle.

When the force density magnitude fR,L is the same on both sides,

the center of mass travels in a nearly straight line, with small lateral

oscillations that arise due to slight asymmetries in body shape (see

section 4.3.2 of [13]). The mechanical wave travels down the body

at a speed of 0.78 body lengths/s, producing a forward swimming

speed that rises asymptotically to a value of 0.40 body lengths per

second, giving a speed ratio or slip of 0.51. Slip values are not

available for swimming lamprey, but the expected value for eels

swimming at the same speed is 0.66 [23]. It is likely that eels are

more efficient swimmers than lampreys, since they do not exhibit

the side to side movements of the head seen in lamprey (Figure 8).

Turns can be evoked by reducing the magnitude of force density

on one side, so that the average of the rod’s intrinsic curvatureÐ l

0
k s,tð Þds is nonzero: see Figure 10.

Effects of Muscle, Elastic, and Geometric Properties on
Relative Speeds of Activation and Mechanical Waves

We now attempt to determine the mechanism(s) causing the

difference in wave speeds of activation (EMG) and curvature. In

the simulations of [13], the preferred curvature k = k(s2ct) was

externally prescribed, specifically, as that of a traveling sine wave.

The curvature Qs that emerged depended on the passive elastic

properties of the rod and the hydrodynamic body forces, but in

[13] k itself was independent of the body dynamics and of Qs. In

the present model the ODEs in Equations 33–35 couple the

preferred curvature to the state of the rod, via the length and

contraction speed of muscle fibers (cf. Equation 36) that appear in

the functions a(vc) and l(lc) of Equations 29–31. Hence k now

depends on Qs, and we are able to investigate what role this

dependence plays in wave propagation.

Figure 11 shows the relative timing of activation, muscle force

development, and muscle shortening in a typical simulation.

Activation waves travel the length of the active region with a

frequency of 1 Hz, as in Figure 9. The left panel shows time

courses of muscle length and force in two segments on the same

side of the body; the right panel shows the relative timing of

activation and curvature in the same format as Figure 1. We

calculate the average wave speed of the maximal concave and

convex curvatures by linear regression, first approximating the

angle Q(s) along the rod by a cubic spline interpolant of the joint

angles Qi. This yields a continuous function of arclength s, from

which we estimate the maximal and minimal curvatures. In all

cases the mean speeds of convex and concave curvatures agree to

3 decimal places, so we report a single ratio of curvature speed to

activation wave speed. As in the lamprey (Figure 1), the

mechanical wave is slower than the activation wave, the wave

speed ratio being 0.78, within the range of values 0.7260.07 (SD)

observed in lamprey [6].

The wave speed difference could be due to several separate

effects, or to some combination of them. Ostensibly, any or all of

the following could play roles:

(1) Overall force levels.

(2) Passive viscoelastic forces.

(3) Hydrodynamic reaction forces.

(4) Body geometry (taper).

(5) Muscle length and velocity dependence.

(6) Scaling of muscle forces with body cross section.

We now examine these items individually and in combination.

First we consider the effect of fluid loading. By setting W;0, we

remove fluid forces, a situation approximated in the laboratory by

stimulating a lamprey to ‘‘swim’’ on a slippery bench [26].

Figure 12 (left panel) shows the results of one such simulation. A

difference in wave speeds persists, although in this case the speed

of the mechanical wave tends to decrease slightly midbody and

then increase toward the tail. Eliminating hydrodynamic reaction

forces has the effect of further reducing what is already a very

small body stiffness. Under the same muscle activations the rod

flops around violently.

We varied several parameters, including stiffness, viscoelastic

damping, the length of the activated region and wavelength of the

activation, and body geometry. As noted above, our value of

Young’s modulus, E = 1023 MPa, is extremely small, but simula-

tions with higher values did not yield realistic results. For example,

with E<0.1 MPa and an increase in muscle force density by a

factor of 3, the ratio of curvature to activation speeds is 0.9, mean

swimming speed increases to 0.5 body lengths per second, but the
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Figure 8. Tracings from a swimming lamprey, reproduced from [26] (left), and centerline of the actuated rod at various times
(right). Head is at left in (A) and (B).
doi:10.1371/journal.pcbi.1000157.g008
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phase delay between activation and shortening is approximately

zero throughout the rod.

We found that two further properties are necessary to create the

observed difference in activation and response wave speeds: taper

in the body and the presence of viscoelastic damping. Figure 12

(middle panel) shows results of simulations performed on an

untapered rod (b(s);1), for which the wave speeds become almost

identical. The strongest effect of taper is probably via the reduced

muscle cross section, and hence smaller force generation, toward

the tail (recall that the ‘‘hydrodynamic cross section’’ used in

Equation 7 remains fixed at a = 1 cm, and that a wave speed

difference persists in the absence of hydrodynamic forces.) The

right panel of Figure 12 shows results of simulations performed

without viscoelastic damping (c~0). In this case the speed ratio

also increases significantly, to 0.96.

Next we consider the effects of eliminating the dependence of

muscle force on length and/or velocity, by setting the functions

l(lc) and/or a(vc) of Equations 27 and 28 identically equal to

constants. For the former we choose l(lc);0.86, because this is the

value of l(lc) at the middle length (2.7 mm) used in the isometric

experiments of Figure 5, and it corresponds to the average length

during typical swimming motions [14]. For the latter we take

a(vc);1, corresponding to zero velocity. Removing both effects and

maintaining all other parameter values, including force density

f = 0.05 N/m3, we find that the wave speeds are approximately

equal, but that mechanical wave amplitudes become unrealistically

large (Figure 13, left panels). Upon reducing f to 0.025 N/m3 to

achieve reasonable amplitudes, we obtain the result shown in the

right panels of Figure 13: i.e., a speed ratio nearly equal to the case

in which length and velocity dependence are present, but body

motions are now more pronounced near the head, unlike the

shapes of Figure 8. The swimming speed also drops slightly from

0.40 to 0.39 body lengths per second, and, as reported in the

following subsection, the swimming efficiency is sharply reduced

when length and velocity dependence are removed.

The multiplicative dependence of muscle force on the factors

l(lc) and a(vc) also allows us to separate these effects. In the

simulation illustrated in the left panel of Figure 14, we set

l(lc);0.86 but retain the function a(vc), thus eliminating length
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Figure 9. Snapshots of the muscle-actuated swimming rod over one period of activation at a frequency of 1 Hz. Bolded segments on
either side indicate muscle activation (k1.0). Shaded region represents the unactuated head. Note that curvature lags behind the activation wave.
doi:10.1371/journal.pcbi.1000157.g009
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Figure 10. Setting the force density in activated regions on the
right side half that on the left causes a steady turn. Dashed curve
shows the path traveled by the center of mass.
doi:10.1371/journal.pcbi.1000157.g010
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dependence alone. The resulting speed ratio of 0.79 is almost

unchanged from the control value for the full model (cf. Figure 11).

The right panel of Figure 14 shows the result when only velocity

dependence is abolished, by setting a(vc);1 and retaining l(lc). The

speed ratio 0f 0.77 is again nearly equal to the control value,

although phase lags are reduced over the first half of the body

length. Thus, removing either length or velocity dependence alone

does not significantly affect the difference in wave speeds. In both

these cases, and all those to follow, we retained the standard force

density f = 0.05 N/m3.

The difference in wave speeds changes the relative timing

between muscle activation and shortening as waves travel down

the cord, as shown in Figure 1C. The changes in this relationship

under all the conditions that we have investigated are illustrated in

Figure 15, in which the delay from the beginning of muscle

activation to the time of maximal convex curvature (approximately

the beginning of shortening) is plotted against body position. The

broken line at the top reproduces values from Figure 1C,

experiments of [6] showing that the delay increases from 0.10 of

a cycle at 24% of the body length to 0.23 at 76% body length.

Data from the full control simulation of Figure 11 are shown by

the thick blue line. Although the resulting phase lags are smaller

than those observed in the animal, the phase gradient is

qualitatively correct. Data from the simulations of Figure 12 are

also shown, illustrating that with these changes in mechanical

properties, the phase lag values are very different from normal.

Abolition of length and velocity dependence, as in Figure 13, has

little effect, when accompanied by halving the force density.

Removing only the velocity dependence, as in Figure 14 (right

panel), however, abolishes the phase lag in the most rostral

segment.

The preceding simulations were all done for swimming at 1 Hz,

the frequency for which muscle force data is available. Lampreys

can of course swim over a range of speeds, by varying both

activation levels and frequencies. Ichthyomyzon unicuspis has been

recorded as swimming at frequencies up to <7 Hz., although this

probobaly does not represent steady swimming. To verify that our

model can accomodate frequency variations, we performed

simulations at 2 Hz, keeping all other parameters at their standard

values. Figure 16 shows that body shapes and amplitudes remain

similar to those at 1 Hz, although the wave speed difference is

somewhat magnified, the ratio decreasing to 0.71.

Swimming Efficiency
As noted above, removing the length and velocity dependence

in muscle forces, while simultaneously halving the force density f,

leads to a nearly identical ratio of curvature to activation wave

speeds with only a slight reduction in swimming speed. Since

Figure 11. Forces generated by contractile filaments (solid lines, left axes) and resulting length changes (dashed curves, right axes)
in the right side of segments 10 (top) and 18 (bottom) of a 21-segment tapered rod (left panels), and passage of activation and
curvature waves during one swimming cycle (right panel). (Left) Horizontal bars represent activation period. (Right) Solid curves show
locations of maximal concave and convex curvatures. Horizontal lines represent periods during which a segment is activated and dashed lines
connect activation onsets and terminations. In body lengths/s, activation wave speed = 1 and mechanical wave speed = 0.78, for a speed ratio of 0.78.
doi:10.1371/journal.pcbi.1000157.g011
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nonlinear muscle properties are not required to produce the

observed speed difference, we were prompted to ask what other

differences they make. Here we investigate their effect on

swimming efficiency, by comparing the work done by the muscles

over a full activation cycle with length and velocity dependence

present and absent. We calculate the work done by the muscles on

either side of joint i by computing the integrals

workLi,Ri~{

ðt

0

fRi,Li tð ÞVRi,Li sð Þds,

where fRi,Li and VRi,Li are the right- and left-hand muscle forces

and velocities defined in the last two subsections of Methods (the

negative sign is due to our convention that VRi,Li are lengthening

velocities).

The left panel of Figure 17 shows the work done at each joint,

illustrating that, in spite of the reduced force density used for the

case without length and velocity dependence, 67% more work is

done than when length and velocity dependence are included,

although there is a slight reduction in swimming speed. The

difference is largest near the head; the work done near the tail

being slightly larger for the latter case. The center and right panels
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show time courses of work done over one cycle at specific locations

in these two regions (joints 3 and 18), with activation beginning at

the time on the left axis in both cases. In addition to substantial

differences in magnitudes due to reduced muscle cross section near

the tail, these panels reveal that negative work is done at the tail in

the beginning of the activation phase, while muscles are still

lengthening. As we have noted, this may play a role in stiffening

the tail as it moves laterally through the water.

Overall, these results suggest that the length and speed

dependencies of the muscle fibers may provide a mechanical

advantage to the animal in swimming.

Discussion

This paper is primarily concerned with the role of muscle

activation in the production of anguilliform swimming motions: a
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process that involves multipath coupling among active filaments,

passive body tissues, hydrodynamic reaction forces, and proprio-

ceptive and exteroceptive sensory feedback. To better parse this

complex coupled system, here we address the influence of

‘‘feedforward’’ neuromechanical coupling alone by means of a

mathematical model.

Our model substantially extends previous ones [12,13,42] by its

inclusion of nonlinear muscle dynamics, which is characterised by

known physiological properties with parameters fitted to experi-

mental data. Coupled with appropriate passive viscoelasticity and

geometry of the body, this gives rise to a difference in the wave

speeds of neural activation and mechanical response, as seen in

swimming animals, and the model enables us to investigate the

sources of this difference. We find that three factors are primarily

responsible for it and for the associated lags between activation

and curvature onsets, namely: viscoelastic damping, taper, and the

nonlinear dependence of muscle force on length and shortening

velocity. The first two factors, which are properties of passive

tissues and body geometry, are necessary for the appearance of the

wave speed difference. The third factor, nonlinear muscle

dynamics, contributes to the values of the changing phase lags,

and may also contribute to the efficiency of swimming.

Figure 15 shows that the phase relationship between muscle

activation and shortening produced by the model is similar to that

seen in the lamprey. Significantly better data fits can be obtained

by varying parameters outside the normal ranges, but rather than

explore this systematically, we have instead used parameter values

that best describe the lamprey.

The present study illustrates the power of integrative mathe-

matical models in revealing biological function, by allowing

‘‘experiments’’ which cannot be done on animals. It partially

answers questions posed by Altringham and Ellerby, who

conjectured that the progressive phase lag is associated with

‘‘change in muscle function along the body [11].’’ Our study

shows that, at least for anguilliform swimmers, muscle and

mechanical properties need not vary along the body for wave

speed differences to emerge. It also shows that, during steady

swimming, proprioceptive feedback is not necessary to produce

this basic phenomenon. This supports the suggestion of Brown and

Loeb that, in stereotypical movements, neural feedback (reflexes)

can be partially or wholly replaced by mechanical feedback (called

‘‘preflexes’’ by Brown and Loeb (section 3 of [43]), who define a

preflex as ‘‘the zero-delay, intrinsic response of a neuromusculo-

skeletal system to a perturbation.’’), and therefore might not be

required for stability [43–45]. Further model-based and experi-

mental support for this hypothesis has recently emerged in legged

locomotion studies [15]. However, mechanosensitive ‘‘edge cells’’

exist within the lamprey’s spinal cord, which can influence the

timing of muscle force generation and phase relationships via

feedback to the CPG and motoneurons [46]. This mechanism may

account for the deficit in phase lags produced by the model

(Figure 15), and it is are presumably important during changing

conditions and maneuvers.

The muscle model we described in Methods cannot perfectly fit

both the isometric and the sinusiodal forcing data. We chose to fit

it to sinusoidal data with an activation-to-curvature phase

difference of 0.1, close to values seen in the data and the control

simulations. This is not ideal, and may influence the results

described in the results section. We plan to extend the model to

include secondary muscle properties responsible for the discrep-

ancies in its predictions. Moreover, we have used a linear model

for flexural stiffness (M = EI(Qs2k), Equation 5), although the

lamprey’s body stiffness is nonlinear. More accurate estimates of

body stiffness may also influence the results.

In our discretization the arms to which muscles are attached

project perpendicularly from the center of each link toward the

periphery (see Figure 4). In the lamprey, however, the myosepta to

which the swimming muscles attach project obliquely backwards

from the notochord toward the body wall so that the muscle layers

interleave in a somewhat complicated fashion (albeit considerably

less complicated than in bony fish; see [11]). We have not

examined the consequences of this attachment geometry, but it

can be expected to affect torques at the joints, and we intend to

include it in a future study. It is of interest to note, however, that

Katz et al. [47] have shown that in spite of more more

complicated interleaving of muscle layers in teleost fish, the

swimming muscles undergo length changes similar to those

expected for a homogeneous, continuous beam, and that

curvature of the midline gives a reliable measure of muscle length

at any point along the body.

A further shortcoming of the present study, also noted in the

methods section, is our use of an oversimplified model for fluid

reaction forces. While Taylor’s approximation in Equation 7

suffices for straight rods in uniform steady flow, it does not capture

unsteady effects such as vortex shedding that are characteristic of

swimming. These effects are likely important not only in creating

propulsive thrust [22,23], but the resulting reaction forces on the

animal may also influence the speed at which the mechanical wave

of curvature travels along its body. This would in turn affect the

mechanical waves shown in Figure 11, perhaps changing the
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relative speed of activation and response. A more realistic model of

vortex generation will also be needed to determine if negative work

and tail stiffening are important in thrust generation, and to enable

more definitive studies of swimming efficiency.

We also propose to use the present model, with the further

addition of distributed CPG and motoneuron models [33,48], to

study proprioceptive feedback mechanisms in lamprey. In

particular, it will allow us to investigate the influence of the

aforementioned edge cells on the timing of muscle force

generation. In recent experiments the isolated notochord/spinal

cord preparation is rhythmically bent from side to side and the

resulting edge cell feedback to motoneurons and CPG interneu-

rons studied [49] (cf. [46]). This work complements our model in

that it removes muscle activation, body elasticity and hydrody-

namic forces, to reveal how an isolated sensory pathway can

influence CPG phase and frequency relationships.
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