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Validation and refinement of 
cropland data layer using a spatial-
temporal decision tree algorithm
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Space-based crop identification and acreage estimation have played a significant role in agricultural 
studies in recent years, due to the development of Remote Sensing technology. The Cropland Data 
Layer (CDL), which was developed by the U.S. Department of Agriculture (USDA), has been widely 
used in agricultural studies and achieved massive success in recent years. Although the CDL’s accuracy 
assessments report high overall accuracy on various crops classifications, misclassification is still 
common and easy to discern from visual inspection. This study is aimed to identify and resolve 
inaccurate crop classification in CDL. A decision tree method was employed to find questionable pixels 
and refine them with spatial and temporal crop information. The refined data was then evaluated with 
high-resolution satellite images and official acreage estimates from USDA. Two validation experiments 
were also developed to examine the data at both the pixel and county level. Data generated from this 
research was published online in two repositories, while both applications allow users to download the 
entire dataset at no cost.

Background & Summary
Monitoring agricultural activities can provide valuable information to farmers, investors, and decision makers1,2, 
and crop identification and mapping is the fundamental basis to support agricultural studies3–6. Many applica-
tions and systems were created to classify land use land cover in recent decades due to developments in Remote 
Sensing and Geographic Information Science (GIS)6–9. Furthermore, the U.S. Department of Agriculture 
(USDA) has published the annual Cropland Data Layer (CDL), which covers the contiguous United States, since 
20082,10–12. The data was widely adopted in various agricultural studies after it was deployed to the CropScape 
system because of its state-of-the-art system architecture and adoption of geospatial Web services standards in a 
publicly accessible web environment7,8,13–15.

Since the production of CDL mainly relies on remote sensing datasets, criticisms have arisen in past years 
regarding the quality of CDL products16,17. To address this concern, the USDA National Agricultural Statistics 
Service (NASS) has published an accuracy assessment for the CDL since 200812. The document contains detailed 
accuracy evaluations for each crop at the state level using ground truth validation data from other agencies (e.g., 
the USDA Farm Service Agency (FSA)). The annual CDL accuracy assessment reports provide valuable uncer-
tainty measurements for scientific communities18. Although the confidence layers cannot be used directly to 
represent the accuracy of the CDL, the accuracy assessments are crucial in evaluating the quality of classification 
results for the CDL at the pixel level16. By combining the pixel-level confidence layer and state-level crop accu-
racy metrics, scientists can better understand the spatial variance of the classification accuracy of the CDL16. We 
acknowledge the usage and importance of both measurements; however, such an assessment cannot be utilized 
in this paper because the accuracy assessment and confidence layer are byproducts of the CDL production pro-
cess, and this research is designed to conduct an independent review on CDL17,19.

Studies in recent years have demonstrated the possibility of refining existing crop mapping and predict-
ing future or past planting information9,20. These studies utilized the historical archived remote sensing data 
and machine learning approaches, and results indicated the feasibility of improving the accuracy of CDL9,20–23. 
However, these methods usually only focus on a few crop types and are not scalable to border categories due to 
the shortage of training samples and labeled datasets9. In addition, although machine learning approaches could 
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achieve high accuracy results, the training models used in machine learning are highly localized and often lose 
functionality when the study area is changed24. Thus, most of these studies concentrated on small regions.

This paper is aimed at evaluating CDL data and improving the accuracy of all crop types using spatial and 
temporal information with decision tree approaches. We developed a post-classifying algorithm for correcting 
false classified pixels in CDL using surrounding pixels and historical CDL information. The algorithm can be 
divided into two sections. The first section is devoted to identifying potential pixels of misclassification, and the 
second part of the algorithm predicts the correct classification for the pixels. More specifically, the proposed 
algorithm evaluated the classification types (crop or non-crop) of a pixel, the land use land cover types for the 
neighborhoods of a candidate pixel, historical appearance, and other reference data. The details of the proposed 
algorithm are further explained in the following sections.

When evaluating the proposed algorithm, two experiments were designed to validate the refined CDL 
(R-CDL) at both pixel-level and county-level. From visual comparisons, a significant reduction of false classi-
fication can be observed from our product (Fig. 1). Validation results have shown that the proposed algorithm 
has dramatically improved the classification accuracy with minor errors caused by mix-pixels at boundaries. 
We statistically compared the county level acreage estimates of two major crops (corn and soybean) for refined 
CDL (R-CDL) and CDL. We also calculated the acreage difference for both products with the official acreage 
estimates provided by NASS (https://quickstats.nass.usda.gov/). From the comparison experiment, we found 
that R-CDL has very similar R2 metrics with CDL compared to NASS acreage estimates, which indicates the 
R-CDL is reducing the classification noises. Still, it retains the high accuracy of acreage estimation for different 
crops at the county-level.

Methods
identifying potential misclassifications in CDL. As scholars suggested, most misclassifications in the 
CDL were identified at places with mixed land features (e.g., gaps between crop fields)16. For instance, a boundary 
pixel containing different crops may produce distinctive spectral signatures and lead to misclassification depend-
ing on the thresholds used in the production of CDL10. This error is mainly because the mapping unit (30 m) is 
too coarse to capture the variation within a pixel9,16. To identify false classifications, we proposed a spatial-tem-
poral decision tree algorithm. Spatial-temporal patterns have been extracted, evaluated, and utilized in decision 
tree algorithms to solve scientific questions in the past studies25–27. The proposed decision tree algorithm first 
evaluates each pixel with their surrounding neighborhoods and puts them into different groups. The model uses 
all connected eight neighborhoods in this step, since linear features exist in the data. As shown in Fig. 2, all pixels 
can be grouped into two major categories: (A) a candidate pixel is the same as all eight connecting neighborhoods 
(all nine pixels are in the same class); and (B) the candidate is different from the surrounding connecting neigh-
borhoods. Pixels in group A will be removed from our algorithm as it requires no further investigation. The sec-
ond group (B) will be divided into three classes (the second row in Fig. 2): (Bα) isolate pixels, defined as when all 
eight connected pixels are in the same class; (Bβ) boundary pixel, defined as when there are more than four (but 
less than eight) same contiguous neighbor pixels; (Bχ) mix pixel, defined as all remaining pixels with no adjacent 
(more than four) neighborhoods.

Using spatial neighborhoods is an effective tool for spotting isolated and boundary pixels. However, it is not 
sufficient to conclude that these pixels are false classification. In fact, it is common to see farmlands contain 
non-agricultural landcover such as ponds or forests due to the nature of the earth. For this reason, historical 
CDL information is then extracted. The temporal information is then supplied to the decision tree model for 
providing historical information for each pixel. We decided to process CDL information from 2017 to 2020, as 
four years of data would produce sufficient output for nationwide validation, and since the CDL has provided 
national coverage since 2008, there would still be enough historical information for the proposed model. This 

Fig. 1 Comparing classification results for fields in Queen Anne’s County, Maryland, in 2019. The left image 
shows landcover data from USDA CDL, and the right image shows data from Refined CDL. The legend was 
adapted from the official CDL color map (https://nassgeodata.gmu.edu/CropScape).

https://doi.org/10.1038/s41597-022-01169-w
https://quickstats.nass.usda.gov/
https://nassgeodata.gmu.edu/CropScape


3Scientific Data |            (2022) 9:63  | https://doi.org/10.1038/s41597-022-01169-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

research evaluated the nine years of CDL data before the study periods. For instance, CDLs from 2011 to 2019 
were extracted for assessing the classification in 2020. The temporal ranges are the same for all four study years 
to ensure the outputs are generated under the same algorithm.

Based on all nine historical observations, dominating historical classifications for each pixel were identified. 
A dominating historical classification is defined as a pixel that was frequently classified as one category in the 
past nine years. Different thresholds were arbitrarily implemented for two different types of features: constant 
feature and non-constant feature. Constant features include natural elements such as bodies of water, forests and 
artificial features such as roads and buildings. Non-constant features are regions where the land use land cover 
is constantly changing, such as rotating planted croplands. Table 1 presents the CDL codes and class names for 
all constant classifications. Two arbitrary thresholds were defined: historical appearances needed to be higher 
or equal to seven out of nine years for constant features, and higher or equal to five out of nine years for regular 
features. The tie threshold for constant features is based on the hypothesis that the classification for a constant 
feature will not change. Based on this hypothesis, the historical classification will always be the same, while 
misclassifications are tolerable up to a few years. We have a loose threshold designed to accommodate chang-
ing/rotating land use, such as crop rotation. The value is set at five for two reasons: five out of nine is a good 
cutoff representation for rotating crops, and there is a possibility for multiple historical dominating classes for 
a pixel if the threshold drops below five (e.g., a pixel might have two historical dominating class if the threshold 
set at four). Candidate pixels can be grouped into two types based on whether there is a dominating historical 
classification (I); or no historical dominating class (II). For all pixels that have historical dominating classes, we 
further grouped them into the following: (a) the classification of the current year and historical dominating for 
a candidate pixel is the same; (b) the classification of the current year and historical dominating for a candidate 
pixel is different. The overview of the proposed decision tree model to identify false classification is illustrated 
using these symbols in Fig. 3.

post-classifying decision tree algorithm. The post-classifying decision tree algorithm proposed in this 
study adjusts misclassifications using spatial and temporal information. Details of the workflow are illustrated in 
Fig. 4. In this workflow, all pixels were classified into three types (good CDL pixels, isolate/boundary CDL pixels, 
and mixed CDL pixels) compared with connected cells using a spatial filter. We kept the majority class classifica-
tion in system memory for isolate and boundary pixels and then compared this info with the historical classifica-
tions of candidate pixels. We extracted the temporal features and calculated the temporal frequencies for historical 
classifications. A pixel would then be refined when there was no conflict between their majority neighborhood 

Fig. 2 Separating all CLD pixels into different categories based on connecting neighborhoods (Pixels with 
different colors indicating different CDL codes).

CDL Code Classification Name

63 Forest

82 Developed

83 Water

87 Wetlands

111 Open Water Perennial

121 Developed/Open Space

122 Developed/Low Intensity

123 Developed/Med Intensity

124 Developed/High Intensity

141 Deciduous Forest

142 Evergreen Forest

143 Mixed Forest

Table 1. CDL codes and class names that were labeled as constant features in the algorithm9,13.
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and historical classification. When the candidate was different from its historical dominating or had no historic 
domination, it would be discarded from the post-classification process. In the algorithm’s post-processing, we 
utilized the annually updated road data acquired from the U.S. Census to reconstruct some misclassified road 
features28. We rasterized and resampled major roads to a 30-meter spatial resolution and masked them with the 
CDL. Then we checked all candidate pixels, which were not refined by the decision tree algorithm, to see if these 
locations have been classified as roads in the past. A post-classification operation was then performed based on 
the historical appearance of road features and the U.S. Census TIGER reference data. The refined pixels were then 
thrown back into the workflow and repeated for several runs until the output raster was stabilized (no further 
refinement). Some pixels only require one iteration, and others require up to four iterations before existing the 
workflow. The workflow ends when there is no further refinement for input pixels.
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Fig. 3 Proposed post-classification decision tree algorithm.
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Final maps. To create the Refined Cropland Data Layer (R-CDL), we first prepossessed the USDA CDL data 
in ESRI ArcGIS Pro (v2.7.0) software (https://www.esri.com/) to ensure all data was projected into the same 
spatial reference system. Equal area projection was used to preserve the accuracy of area calculation. We also 
rasterized and resampled (nearest neighborhood) road and rail shapefiles into 30 meter to match the resolution 
and extend it with CDL using ArcGIS Pro and the Python GDAL library (https://gdal.org/). The nearest neighbor-
hood resampling method is ideal for discrete data (e.g., land use) since it does not create new values29. Next, we 
processed the historical CDL for extracting dominating classifications for each candidate pixel. Then all data was 
injected into our decision tree algorithm for identifying misclassification and making corrections. Four annual 
R-CDL maps were produced for the contiguous United States from the year 2017 to 2020.

evaluation metrics. To evaluate the R-CDL data, we designed the following two evaluation experiments. 
First, high-resolution images (Google Earth and Sentinel-1 images) were used as references for examining the 
accuracy of R-CDL classifications. Google Earth’s historical imagery archive is ideal for identifying fine objec-
tions such as small ponds or field houses30,31, and Sentinel-1 multi-band combinations provide a good reference 
when validating vegetation cover32. After overlaying the R-CDL with Google Earth and Sentinel images, visual 
inspections were conducted by remote sensing experts who manage and publish the CDL. We only validated the 
result of one year (2019) for two reasons: (1) all four years of data were processed with the same algorithm, so the 
result of a single year could represent the accuracy and performance for the proposed algorithm; (2) validating 
multiple-year would require acquiring more reference data which is a challenge for computer storage, especially 
with high-resolution images. The confusion metrics contain four classes: a false classified CDL pixel that was 
corrected in R-CDL, a false classified CDL pixel that was inaccurately refined in R-CDL, and third, a correct CDL 
pixel that was incorrectly refined in R-CDL. The last group includes correct CDL pixels that remained unchanged 
in R-CDL, which is not considered in our evaluation since the evaluation goal is to understand the accuracy of the 
refined pixels. The metrics are designed to delineate the success and errors of the refined results.

The second part of the evaluation was devoted to understanding the accuracy across classification categories 
in R-CDL. We compared the acreage data for corn and soybean in R-CDL and the CDL with the NASS estimate 
at the county-level, where NASS estimates are used as “ground truth” data. The official crop planting data has 
been released annually by USDA NASS since 1975. Multiple studies have concluded that the county level crop 
acreage data provided by NASS is one of the most reliable data sources for the entire United States12,33. The 
coefficient of determination (R2) was calculated for R-CDL with NASS estimates and for the CDL with NASS 
estimates. We compared the results to see (1) if the R-CDL had the same correlation to the “ground truth” (NASS 
estimates) compared to CDL; (2) if there were any unbalanced post-classification for different crop classes found 
by checking R2s for major crops (corn and soybean). In addition, using NASS estimates as a reference, we calcu-
lated the acreage differences for CDL and R-CDL with NASS estimates. Since NASS acreage estimation is often 
cited as one of the most accurate sources in terms of evaluating crop acreages10,12,34,35, we calculated and evalu-
ated the planting area percentage variation for corn and soybean of R-CDL and CDL to NASS data.

Data Records
The Refined Cropland Data Layer is available on In-season CROP Mapping Explorer System (iCrop), devel-
oped and operated by the Center for Spatial Information Science and Systems, George Mason University, at 
https://cloud.csiss.gmu.edu/icrop/. The iCrop system allows users to view, operate, and download R-CDL thru 
web-services at no cost.

The annual R-CDL data is also available for download from the Zenodo repository at https://doi.org/10.5281/
zenodo.556703936. Annual R-CDL layers are stored in.tif format, and other files in the folder store supportive 
information about the data. For example, georeferencing information is stored in the.tfw file. The folders of 
annual R-CDL layers are compressed and stored in.zip format to reduce the file size. The data can be viewed 
using various GIS software such as ESRI ArcGIS Pro (https://www.esri.com/) and QGIS (https://qgis.org/).

Technical Validation
Validating R-CDL post-classifications at pixel level using reference satellite observations. The 
first part of the technical validation was designed to provide a pixel-level cross-class assessment of the post-clas-
sification results. We first identified changing pixels by comparing CDL and R-CDL. Five hundred validation 
samples were then randomly selected among all refined pixels based on their geographic locations. Online-only 
Table 1 is the detailed matrix representing R-CDL classification corrections of sampled sites. From Online-only 
Table 1, we can observe that selected samples provided a balanced representation of various crop classes. It is 
worth noting that all non-cropland classes are grouped into one category (labeled as “NC”) to reduce the chart’s 
complexity. In total, 149 sample pixels were non-cropland to non-cropland, and 351 pixels contained at least 
one cropland classification. The confusion matrix of the post-classification accuracy of the validation sample is 
shown in Table 2. The overall accuracy of the post-classification result is about 80%, and if we do not consider 
true negatives, the accuracy is over 90%, indicating that the proposed algorithm yields a huge improvement in 

Classification result

R-CDL

correct incorrect

CDL
correct N/A 35

incorrect 394 71

Table 2. Confusion matrix of the post-classification result of the validation set.
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crop mapping. True negatives are misclassified CDL pixels that were refined in R-CDL, but still have a negative 
result. True negatives are mainly occupied by mix-pixels, and approaches to resolve mix-pixel misclassification 
have been discussed in the final section of this paper.

Comparing spatial and temporal agreement of crop areas for R-CDL with CDL statistics and 
NASS estimates. In addition to the pixel-level accuracy assessment, the research also validated the acre-
age accuracy at the county-level by comparing CDL and R-CDL to NASS acreage estimates. Fig. 5 presents the 
county-level planting area agreement between NASS estimate and CDL or R-CDL for corn and soybean from 
2017 to 2020. Since NASS does not assess planting information for all counties in the United States, it is not 
possible to count all counties in the evaluation. However, counties with NASS estimates for 2017 to 2020 were 
all included in our assessment. 838 and 836 counties were used for planting area comparison for corn and soy-
bean, respectively. The result has shown that the R2 for R-CDL-NASS is very high in acreage estimation at the 
county-level. The high accuracy indicates that the planting area for R-CDL is statistically correlated with acreage 
estimation from NASS. In addition, R2s for corn and soybeans between our algorithm and NASS are almost the 
same compared to CDL-NASS.

To further break down the crop planting statistics, we divided the comparison by study years. Table 3 
and Table 4 show the average distance (in percentage) from the CDL and R-CDL to NASS estimates, where 

Fig. 5 Comparing NASS county-level planted area with CDL or R-CDL statistics for corn and soybean from 
2017–2020. Correlation is measured by the coefficient of determination, R2. Depending on the data availability 
of NASS estimates, 838 counties were calculated for corn, and 836 counties were calculated for soybean.

Corn 2017 2018 2019 2020

CDL 4.2% 6.7% 6.7% 9.6%

R-CDL −2.1% −0.5% −1.1% 0.6%

Table 3. Average percentage difference for corn planting areas at county level from NASS to CDL and R-CDL in 
different years.

https://doi.org/10.1038/s41597-022-01169-w
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positive distance means it is higher than NASS estimates, and a negative distance means it is lower. On average, 
county-level acreage for R-CDL is closer to NASS estimates than for the CDL. In other words, our algorithm 
improved the acreage statistics for corn estimates for all four study years and improved three out of four years for 
soybean planting area estimates. In addition, the statistics from Table 4 imply that the corn acreage for R-CDL is 
near identical to NASS estimates, especially for the past three years (average net difference less than 1%). On the 
other hand, soybean acreage has a bigger gap (about 3%) between R-CDL and NASS estimates. The result sug-
gests two possibilities: (1) the proposed method is more effective on correct corn misclassification than soybean, 
or (2) NASS overestimated the acreage of soybean for the past years.

A few conclusions were drawn from the two technical validation experiments. The pixel-level validation and 
county-level planting area comparison lead us to conclude that our algorithm is highly effective in removing 
spark misclassifications in CDL while causing minimal damages to correct classifications. Although the valida-
tion sample size is not broad enough, the overall improvement of classification accuracy is dramatic. It is worth 
noting that, in the second experiment, NASS acreage estimates are not ground truth data; however, this estimate 
is the closest acreage estimation for croplands in the United States. Thus, the second experiment quantitatively 
demonstrated that our algorithm has slightly improved the acreage estimation statistically by correcting these 
spark pixels in CDL.

Limitation and future work. In this study, a spatial-temporal decision tree algorithm was developed to 
identify and refine misclassification in the CDL. Although the algorithm successfully identified and corrected 
spark errors, there are a few limitations in the decision tree algorithm and R-CDL. First of all, the validation of 
this research relied on other satellite images and NASS acreage estimates. These data sources are generally reliable, 
but they are not ground observations, and thus could contain errors that could contribute to uncertainties in our 
product. Although this research utilized them as references since historical ground truth data does not exist or is 
classified, as technologies improve, we may have better data sources for future validation purposes. Second, the 
algorithm has limited functionality in correcting mix pixels since their historical and neighborhood classification 
might not provide valuable information based on our model. Most misclassifications in refined CDL are from 
mix pixels according to the observation during technical validation. The ideal solution to this issue is utilizing the 
Common Land Unit (CLU) to precisely identify the boundaries of different land covers. However, this data is no 
longer accessible to the public and only available to certain USDA agencies37,38. Alternatively, other methods such 
as machine learning could be utilized for refining these pixels. Future studies are encouraged to use this novel 
technology for evaluating mix pixels in our product. Third, the evaluation experiments established in this study 
are broad and generalized. On one hand, the metrics captured overall accuracy and thus provided a quick assess-
ment for our algorithm; on the other hand, more thoughtful and detailed evaluations are needed to better under-
stand the spatial-temporal variation for our data compared to CDL. Lastly, similar to the previous statement, this 
research mainly focuses on crop classification correction, and the algorithm’s performance on non-agricultural 
fields is not evaluated, especially for areas that experienced rapid changes, such as expanding/shrinking cities24. 
The accuracy for these areas may be lower and would require future validations.

Usage Notes
Compared with Cropland Data Layer, the results of the refining algorithm developed in this research have bet-
ter accuracy according to our validation. However, although comprehensive validation experiments were con-
ducted for delineating the accuracy for a few crops, we did not validate all pixels and all classification categories. 
We recommend users read the limitations section and consider validating the product before using this data for 
their studies.

Code availability
The scripts used to generate the R-CDL dataset are available in this GitHub repository: https://github.com/llin-
csiss/RCDL.
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