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Lateralized antennal control of 
aggression and sex differences in 
red mason bees, Osmia bicornis
L. J. Rogers1,2, E. Frasnelli1,3 & E. Versace1

Comparison of lateralization in social and non-social bees tests the hypothesis that population-level, 
directional asymmetry has evolved as an adjunct to social behaviour. Previous research has supported 
this hypothesis: directional bias of antennal use in responding to odours and learning to associate 
odours with a food reward is absent in species that feed individually, such as mason bees, whereas 
it is clearly present in eusocial honeybees and stingless bees. Here we report that, when mason bees 
engage in agonistic interactions, a species-typical interactive behaviour, they do exhibit a directional 
bias according to which antenna is available to be used. Aggression was significantly higher in dyads 
using only their left antennae (LL) than it was in those using only their right antennae (RR). This 
asymmetry was found in both males and females but it was stronger in females. LL dyads of a male and 
a female spent significantly more time together than did other dyadic combinations. No asymmetry 
was present in non-aggressive contacts, latency to first contact or body wiping. Hence, population-
level lateralization is present only for social interactions common and frequent in the species’ natural 
behaviour. This leads to a refinement of the hypothesis linking directional lateralization to social 
behaviour.

Research on vertebrate species has shown that it is beneficial to have a lateralized brain so that information can be 
processed differently and simultaneously on the left and right sides. For example, chicks with lateralized processing 
of visual information can attend to two tasks at the same time (viz., searching for grains of food while monitoring  
overhead for a potential predator), whereas chicks not lateralized in this way perform poorly on both aspects of 
the task1. A similar result has also been found in a comparison of lateralized and non-lateralized fish2. Pigeons, 
also, are more efficient at finding grain amongst non-food items (grit) if they are more strongly lateralized3.  
Hence, cognitive/behavioural efficiency can be enhanced by having a lateralized brain.

It remains less clear, however, what advantage might ensue from the majority of individuals in a population 
or a species displaying the same direction of lateralization when increased neural efficiency and capacity could 
be achieved by lateralization at the individual level alone. Indeed, since the left eye detects predators and controls 
escape and attack responses, it seems disadvantageous for the majority of individuals to have the same direction 
of lateralization: predators could take advantage of this bias by approaching their prey on the right. Nevertheless, 
evidence of a population directional bias in anti-predator responses has been found also in sheep4 and in shoaling 
fish5. Another potential disadvantage of a population-level bias concerns foraging behaviour: some prey or other 
food items on the left side could be overlooked since it is the right eye (and left hemisphere) that is specialized to 
pursue prey and direct feeding responses (summarized in ref. 6).

To explain the widespread existence of population-level biases, it has been hypothesized that functional later-
alization at the population level might have arisen as an Evolutionary Stable Strategy when lateralized individuals 
interact7,8. In other words, when individually asymmetric organisms must interact with conspecifics and coor-
dinate their activities, asymmetry aligns in the majority of individuals in a population (i.e., directionality)9,10. If 
so, population-level lateralization should be more common for social interactions frequently encountered dur-
ing the course of evolution. With the discovery of functional lateralization in invertebrate species (see ref. 11),  
and bees in particular12, it has become possible to test this hypothesis. Different species of bees have been cat-
egorized as having different degrees of sociality13,14, from solitary to subsocial, quasisocial and eusocial, mainly 
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according to reproductive strategies and behaviour such as sharing a nest, cooperation in parental care, role divi-
sion in reproduction between sterile members of the colony and reproducers, and an overlap of generations in 
the colony. However, other types of interactions, such as aggressive and sexual displays, have not been taken into 
account in the categorisation of social behaviour in bees.

Some evidence in support of the hypothesis concerning population-level lateralization has already been 
obtained by comparing lateralization in the strongly eusocial honeybee, Apis mellifera, in which workers interact 
during foraging and feeding, with lateralization in a species of bee considered to be solitary and that forages and 
feeds individually, the mason bee Osmia bicornis, known previously as Osmia rufa (the red mason bee, hereafter 
referred to in this paper simply as ‘mason bee’). The studies showed that, whereas worker honeybees exhibit a 
strong population bias for using a preferred antenna in recalling a learnt memory of an association between a 
particular odour and a food reward15, this is not the case for mason bees16. A crucial difference in the ecology 
of these species is that honeybees, but not mason bees, exchange information based on memories about food. 
Furthermore, electroantennographic responses to an alarm pheromone and a volatile floral compound were 
found to be lateralized in worker honeybees but not in female mason bees16. Consistent with this, seasonally 
eusocial bumblebees also have a population-level lateralization of antennal use in associating an odour with a 
food reward17 and three species of social Australian stingless bees, the lineage of which emerged much earlier 
than that of honeybees18,19, also present the same population-level lateralization as do honeybees20.

These results are consistent with the hypothesis outlined above7, that social interactions experienced in the 
course of evolution might lead to evolution of directional lateralization at the population-level, or might co-evolve 
with it. In fact, although mason bees are solitary in the sense that every female is fertile and makes her own nest21 
and they forage as individuals without social contact, the species is not entirely devoid of social behaviour. Males 
emerge from their nests before the females and tend to cluster at the nest site and on flowers while they await 
the emergence of the females. During this time and during mating itself at least some degree of social behav-
iour occurs (e.g., female mason bees often compete for nest sites and this involves agonistic interactions22). The 
question we addressed here was, therefore, whether mason bees would exhibit lateralization in performing social 
interactions, particularly in competition between females.

Previously we tested dyads of honeybees in Petri dishes, and demonstrated lateralization of social behaviour23. 
In encounters between dyads of honeybees in which both bees had only the right antennae (the left ones having 
been removed) appropriate social behaviour was observed: if both honeybees were from the same hive, contact 
was made after a short latency, proboscis extension (positive) responses were high and C-responses (aggressive 
responses used in stinging) were almost absent, whereas latency to contact was longer and C-responses were com-
mon when each bee was from a different hive. In contrast, when both bees had only the left antennae, C-responses 
between bees from the same hive were high and proboscis extension responses were low, and C-responses were 
lower for dyads from different hives than they were for dyads from the same hive. The latter is inappropriate social 
behaviour, because it shows no adjustment of agonistic behaviour as a function of the social context. In summary, 
worker honeybees display asymmetry of antennal use in important aspects of social behaviour and they do so 
with a population-level bias.

In the present study we were interested to see whether mason bees might show population level lateralization 
of any aspect of behaviour when tested in a similar apparatus as used in23 and with one or the other antenna 
removed (i.e. to test whether population level lateralization is behaviour- rather than species- specific). As mason 
bees are either male or female, we tested dyads of females, dyads of males and dyads of a male and a female. This 
experimental design permitted us to investigate possible lateralized responses that might differ between males 
and females, which we considered might be important since male-female differences in patterns of agonistic 
behaviour have been found in other insects, such as the fruitfly24. A difference in size was another reason for 
expecting possible differences in behaviour: female mason bees are considerably larger than males (Fig. 1).

We adopted the method of testing immediately after surgical removal of one or other of the antennae because 
(1) this method has been used successfully to reveal lateralization in other experiments with bees and (2), 
although the method of coating one or the other antenna with a silicone compound has been used to block sen-
sory perception and reveal lateralization in harnessed bees15,25, it cannot be used effectively in free-moving bees 
since they persistently try to remove the silicone rather than perform other behaviour. Removal of an antenna 
does not lead to repetitive wiping responses of the head region that interfere with interactions between bees. We 

Figure 1.  Photograph of a female and a male mason bee. Note the size difference and the longer antennae in 
the male. Photograph by M.L.C. (Nia) Iurilli.
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also preferred to test the immediate effects on laterality after removal of an antenna rather than any longer-term 
effects that may involve neural adjustments.

Results
We scored different behaviours of dyads of mason bees located in two interconnected dishes (see Fig. 2). Dyads 
differed in Sex (male +​ male; female +​ female; male +​ female pairs) and antennae in use (left-left, right-right, both 
antennae-both antennae, left-right).

Latency to first contact.  These results are presented in Fig. 3. Analysis of the log10-transformed data 
revealed a significant effect of Sex (F2,104 =​ 4.902, p =​ 0.009): female-female pairs contacted after shorter latency 
than did male-male pairs (p =​ 0.015) and female-male pairs (p =​ 0.041). However, there was no significant effect 
of Dyad-type (F3,104 =​ 0.897, p =​ 0.445) and no significant interaction between these two factors (F5,104 =​ 1.357, 
p =​ 0.247).

Number of contacts without aggression.  These data were normally distributed (Shapiro test, p =​ 0.151). 
As for latency, the only significant effect was for Sex (F2,104 =​ 19.771, p <​ 0.001): dyads of females made signifi-
cantly more contacts than did dyads of males (p =​ 0.006) or dyads of male +​ female (p <​ 0.001), see Fig. 4. There 
was no significant effect of Dyad type (F3,104 =​ 0.568, p =​ 0.637) and no significant interaction between these two 
factors (F5,104 =​ 1.216, p =​ 0.307).

Number of aggressive interactions.  Non-parametric analysis of these data revealed an overall effect 
of Dyad-type (H3 =​ 20.95, p =​ 0.001) and also one of Sex (H2 =​ 13.30, p =​ 0.001): see Fig. 5. To consider the 
sex difference first, overall females with only one antenna were more aggressive than males with one antenna 

Figure 2.  The test apparatus consisted of two adjacent Petri dishes. When the experimenter aligned the small 
openings cut on the side of each dish (coloured black in the figure), the test period started. The arrows indicate 
the possibility for the bees to move from one dish to another.

Figure 3.  Latency to first contact. Since there was no effect of dyad-type, only data showing the sex difference is 
plotted. Note the significantly shorter latency scores in dyads of 2 females (black bar) compared to dyads of 2 males 
(white bar) and male plus female dyads (grey bar). Means (+​/−​1 standard error) of the log10 scores are plotted.
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(W =​ 789.5, p =​ 0.001). This was the case also in female LR versus male LR (W =​ 97, p =​ 0.003). However, this sex 
difference was not apparent in dyads of bees with both antennae, BB, in which condition aggression was relatively 
low in all dyads.

Figure 4.  Number of contacts without aggression. As for Fig. 3, these data are plotted to show the sex 
difference only because there was no significant effect of dyad type. Dyads of 2 females contacted each other 
fewer times than did dyads of two males or mixed-sex dyads. The labelling is as in Fig. 3.

Figure 5.  Aggressive contacts, in which one bee rammed the other, which responded by chaotic buzzing 
while overturned. Means +​/−​ 1 standard error are plotted for the following dyads: both bees using left 
antennae, LL (red bars), both bees using right antennae, RR (green bars), both bees intact, BB (grey bars) and 
one bee using the left antenna and the other the right antenna, LR (yellow bars). The sex combinations are 
plotted separately: from left to right, 2 females, 2 males and male plus female. Note, in particular, the significant 
difference between LL and RR in both females and males.
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Aggressive contacts were lateralized. As can be seen in Fig. 5, there were much higher scores of aggression in 
females in LL dyads than in RR dyads (W =​ 99.5, p =​ 0.002), and also significantly higher than in dyads of intact 
females, BB (W =​ 99.5, p =​ 0.0002).

Aggressive contacts were also elevated in LR dyads of females. These scores were significantly higher than in 
dyads of intact females, BB (W =​ 99.5, p =​ 0.0002). The difference between female LL and female LR dyads was 
not significant (W =​ 73.5, p =​ 0.203) and nor was the difference between female LR dyads and female RR dyads 
(W =​ 87, p =​ 0.0857).

In male-male dyads, aggression in LL was significantly higher than in RR (W =​ 93, p =​ 0.030) but the effect 
was not as marked as in females (see Fig. 5). Differing from females, aggressive contacts were not elevated in male 
LR dyads: the difference between female LR and male LR dyads was significant (W =​ 97, p =​ 0.0032). In males, 
aggressive contacts in LL were significantly higher than in BB (W =​ 97, p =​ 0.014) and in LL versus LR the p-value 
was p =​ 0.057 (W =​ 89).

In dyads of male +​ female, there was no left-right asymmetry and no difference between groups (Fig. 5).

Bouts of wiping behaviour.  Analysis of wiping behaviour, a self-directed individual behaviour, revealed 
no significant effect of Dyad (Kruskal-Wallis chi-squared3 =​ 5.543, p =​ 0.136) but a significant effect of Sex 
(Kruskal-Wallis chi-squared2 =​ 19.053, p <​ 0.001): see Fig. 6. The occurrence of wiping behaviour was lower in 
female-female dyads, regardless of antennal condition, than in male-male and female-male dyads (i.e., in B +​ B, 
L +​ L and R +​ R): female-female vs. male-male, W =​ 405.5, p <​ 0.001; female-female vs. female-male, W =​ 423, 
p =​ 0.010; male-male vs. female-male, W =​ 778.5, p =​ 0.155.

Proportion of time in the same dish.  These data were normally distributed (Shapiro test, W =​ 0.980, 
p =​ 0.07) and there was no significant main effect of Dyad type (F3,104 =​ 0.293, p =​ 0.83) or Sex (F2,104 =​ 1.125, 
p =​ 0.33) or interaction (F5,104 =​ 0.69, p =​ 0.63): see Fig. 7. Overall the dyads of our sample spent significantly 
more time in the same dish than expected by chance, as revealed by a one-sample t-test against chance level 
(0.5) (t114 =​ 2.24, p =​ 0.027) but the preference to be in the same dish was only mild (54% of the total time). 
Visual inspection of the data revealed that the male +​ female dyads with left antennae (LL) spent more time 
together than any other dyad (mean of 67%). Contrasting male +​ female LL dyads against all other dyads we 
observed a trend for more time spent together in these dyads but the difference was not quite statistically signifi-
cant (t16.99 =​ −​2.08, p =​ 0.053; p-value not corrected for multiple comparisons).

Number of approaches by L and R bees in L + R dyads.  In L +​ R dyads of females, the contacts made 
by L approaching R did not differ significantly from those made by R approaching L, regardless of whether the 
contact was non-aggressive (2-tailed paired test, t10 =​ 0.821, p =​ 0.431) or aggressive (t10 =​ −​1.870, p =​ 0.091). 
Male L +​ R dyads made fewer contacts (see above) than did their equivalent female dyads and again there was 
no difference between contacts made by L approaching R or vice versa (for non-aggressive contacts, t9 =​ −​1.354, 
p =​ 0.209; for aggressive contacts, t9 =​ −​0.958, p =​ 0.363).

Figure 6.  Bouts of wiping behaviour of the head or abdomen. The data are presented as in Fig. 3. Note the 
lower scores in female dyads.
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Discussion
Lateralization was found in aggressive contacts. Scores of aggressive contacts, in which one bee rammed the other 
and caused the latter to adopt chaotic circling behaviour on its back and with buzzing, were significantly higher in 
dyads of bees with their left antennae only (LL). This asymmetry was present in both males and females, although 
it was stronger in females than in males, likely because females of this species are more aggressive than males22. 
Aggressive contacts were also elevated above control (both antennae intact, BB) levels in dyads of females in 
which one bee had a left antenna and the other a right antenna (LR) but not in the equivalent dyads of males. This 
result suggests that, in LR dyads of females, the female with its left antenna has a dominant role in social interac-
tions, whereas in LR dyads of males the male with its right antenna assumes this dominant role. In females, the 
presence of just one bee using its left antenna only (i.e., in LR dyads) is sufficient to elevate aggressive interactions, 
although both aggressive and non-aggressive contacts were equally likely to be initiated by the L or R bee.

The chaotic buzzing behaviour following an aggressive interaction appeared to be an attempt to escape attack, 
although it did occur sometimes in other contexts.

Since Osmia spp. females defend their burrows to prevent them being usurped by other females22, we expected 
to see more agonistic behaviour in dyads of intact (BB) females than males. Furthermore, observations of wild 
mason bees report that males do not engage in direct social competition26. However, no such sex difference was 
evident in the testing conditions that we used. In dyads of bees using both antennae (BB), aggressive interactions 
were low in both males and females. It is possible that, when the bees could use either their left or right antenna, 
or both antennae, inputs from the right antenna drive behaviour and as a consequence aggression is inhibited. 
Aggressive contacts were elevated only when bees were forced to use the left antenna because the right antenna 
had been removed. Previous research has shown that laterality in responses driven by the antennae is not due 
to left-right differences in the number of antennal receptors in mason bees29. This suggests that the behavioural 
asymmetry in this species is not related to an asymmetry of the peripheral circuits of the antennae but it is more 
likely due to a different functional specialization of the corresponding side of the brain.

We did see an overall sex difference in the number of non-aggressive contacts: the scores were significantly 
higher in females overall than in males. It is notable that no lateralization was apparent in scores of the number of 
non-aggressive contacts. Therefore, asymmetric bias for higher aggressive behaviour when the left antenna is in 
use is a specific asymmetry and not merely an artefact of a left-right difference in number of contacts generally. 
Furthermore, it was not related in any way to differences in latency to the first contact or the amount of time spent 
in the same dish. Females made their first contact after shorter latency than did males but there was no significant 
difference between dyads with different antennae in use. Although there were no significant effects of sex or dyad 
type on scores for time spent in the same dish, we observed that dyads of one male and one female both with the 
left antenna in use were more likely to spend time together in the same dish than any other dyad. This suggests a 
role of functional lateralization for dyadic non-aggressive interactions between sexes, which could be a speciali-
zation for sexual behaviour.

Figure 7.  Percentage of time spent in the same dish. The bars are coloured in the same way as in Fig. 5. Note 
the higher scores of male +​ female dyads with left antennae (LL, red bars) in use.
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The other sex difference that we observed was a reduced incidence in females of head or abdomen wiping with 
the legs. Since the wiping bouts, of the abdomen at least, may have involved release of pheromone, we suspect that 
this difference might be due to a sex difference in pheromone release but further experiments will be necessary 
to test this.

It is interesting that dyads of male +​ female performed in general more similarly to male +​ male dyads than to 
female +​ female dyads. Females were more active in contacting other females than they were in contacting males, 
which supports the observation in wild mason bees that agonistic social behaviour is more actively performed 
between females.

Our finding of lateralized antennal use in aggressive interactions between mason bees is important in com-
parison to the absence, in this species, of antennal laterality in olfactory memory recall and the absence of lat-
erality in electroantennographic responses to particular odours16. Hence, we can conclude that mason bees show 
population-level lateralized antennal responses specifically when they engage in agonistic social behaviour. Given 
that the lateralization is observed in a specific functional context (aggressive interactions), it is most likely that 
it is a result of “higher” neuronal processes and is not simply induced by any peripheral asymmetry between the 
left and right antennae.

The presence of population-level asymmetries of motor performance in aggressive displays of so-called sol-
itary insects, such as tephritid flies27 and mosquitoes28 may be explained in the same way as that of mason bees. 
Similar to mason bees, these flies have limited social behaviour but in both examples population-level lateraliza-
tion is manifested in social competition.

This leads us to refine the original hypothesis, which predicted that population-level lateralization would 
be present in social but not non-social species7. Mason bees have limited social behaviour but they do exhibit 
directional laterality when they engage in that social behaviour. Competition between females for nest sites and 
between males for access to females would provide a context for aggressive behaviour and each antenna has a 
specialized role in this behaviour. Use of the left antenna stimulates aggression towards competitors and, possibly, 
attraction towards members of the opposite sex, and use of the right antenna suppresses these behaviours. Our 
results highlight the role of social demands in the evolution of population-level functional asymmetry and they 
suggest that not only does general sociality generate directional laterality but also that it involves engagement in 
specific social interactions. This may support the idea that the pattern of neuronal lateralization does not develop 
as a mere left-right dichotomy but depends on the specific requirements of different functions. Our findings could 
be interpreted as an example of dynamic regulation of behavioural asymmetry within the social context, meaning 
that lateralization is not necessarily a static feature of neuronal organization but it is modulated by the functional 
context.

Methods
Subjects.  Cocoons of Osmia bicornis (Megachilidae) were obtained from WAB - Mauerbienenzucht, 
Germany, in early May, 2015. After they had been delivered to the laboratory, they were kept at 2 °C for 2 days 
until just before the experiments were to commence. At this time they were moved to insect tents at 25 °C and 
60% humidity, separate ones for males and females. Hatching from the egg capsules began a few hours later and 
continued for 2 days in the case of males and for 7 days in the case of females. The tents were furbished with pots 
of flowering marigold plants and small roses, on which the bees could feed. They were also supplied with honey-
bee pollen (brand, Cuor di Miele, Italy) and 50% sucrose solution. The latter was presented as a shallow solution 
in Petri dishes or on crumpled absorbent paper.

Testing began as soon as the bees started to hatch and continued for two weeks. The bees were tested in dyads 
of the following combinations: two males, or two females, with both antennae intact (BB), both using the left 
antenna only (LL), both using the right antenna only (RR) or one using the left antenna and the other using the 
right antenna (LR). Male plus female dyads were also tested in the following combinations: both antennae intact 
(BB), both using the left antenna (LL) or both using the right antenna (RR). There were a total of 11 different 
types of dyad and between 10 and 12 dyads of each type. A total of 115 dyads was tested. Use of one antenna was 
achieved by removing the other antenna just prior to testing. The bee was held gently and briefly between the 
experimenter’s gloved fingers, during which time one antenna was sectioned at segment 1 or 2. Neither of these 
segments have sensillae, judging by research on Osmia cornuta29. Vannas micro-scissors (0.5 mm tips) were used 
to cut the antennae. Wearing rubber gloves largely prevented the females from stinging the experimenter. Males 
of this species do not sting. Once the antenna had been removed, the bee was placed in the testing apparatus. 
Intact bees were held between the fingers in the same manner but no antenna was cut.

Testing apparatus.  The apparatus was essentially the same as that used to test social interactions between 
honeybees and described in23. Two aerated Petri dishes (9 cm diameter and 1.5 cm in depth) were placed upside 
down and side-by-side. At the place of contact the lids had small openings (0.7 cm ×​ 1.3 cm) and they were 
secured by clear adhesive tape on the underside, touching the floor. A similar opening was cut into the upper 
(previously the lower) lid of each dish so that, when all openings were aligned, the bees could move freely 
between the dishes. The bees were prevented from escaping from the apparatus by a small, clear plastic arch over 
the region of the adjoining openings. By turning the upper lids so that the openings were no longer aligned, the 
bee’s access from one dish to the other was prevented. Small pieces of clear plastic (approx. 1 cm squared) were 
slipped into place next to each opening to ensure that the bees could not escape when the openings were not 
aligned. This apparatus was placed inside a light blue bowl (26 cm diameter ×​ 15 cm depth) with white washable 
plastic on the bottom. A web-cam (Lifecam Studio) placed directly above the dishes recorded the behaviour of 
the bees.
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Behavioural testing.  Testing commenced with the upper dishes rotated so that their openings were blocked. 
A bee was placed in each of the dishes and remained thus for 5 minutes. Then the upper lids were rotated so that 
the openings were aligned and a further 10 minutes of testing took place. The bees in their Petri dishes were 
video-recorded.

In the 10-minute testing session (openings aligned) the following behaviour was scored from the videos: (1) 
latency to first physical contact, (2) number of physical contacts not involving high aggression (here referred to 
as ‘contacts’), (3) number of highly aggressive interactions, in which one bee rammed the other causing the latter 
to overturn followed by buzzing and moving in a “frantic” and chaotic manner (here referred to as ‘aggressive 
interactions’), (4) bouts of wiping, in which either of the bees wiped its abdomen or its head with the hind- or 
fore-legs, respectively, (5) time during which both bees were present in the same dish as a proportion of the total 
time recorded during a test – bees were scored as being in the same dish when (a) both bees were entirely in the 
same dish, (b) one had at least its head in the same dish as the bee or (c) when both bees spent at least 5 seconds 
in contact in the region connecting the two dishes, (6) in LR dyads the number of approaches made by the L bee 
to the R bee and vice versa in both non-aggressive contacts and aggressive contacts.

Inter-rater reliability was assessed by comparing the scores of two experimenters (LJR and EF) for all but 
number (5), in which case two independent observers, blind to the experimental hypotheses, scored. Considering 
12 dyads selected at random across treatments, the following correlations between the two experimenters’ scores 
were as follows: r =​ 0.998 for latency, r =​ 0.925 for contacts and r =​ 0.911 for aggressive contacts. For the scores 
of number (5) data recorded from 73 bees were recorded by two observers and the correlation between observers 
was r =​ 0.922.

Data analysis.  Each type of behaviour measured was analysed separately. First, the data were checked for 
normality (Shapiro test) and in the case of latency they were normalised by log10 transformation. Hence, latency 
scores could be analysed by ANOVA using the factors Dyad type (LL, RR, BB and LR) and Sex (2 females, 2 males, 
male +​ female). The scores for non-aggressive contacts and proportion of time in the same dish were normally 
distributed and did not need to be transformed. Post hoc Tukey tests or two-tailed Welch-corrected t-tests were 
applied. Since the other data could not be normalised they were analysed using the non-parametric one-way test 
Kruskal Wallis for the factors Dyad-type and Sex. If significance was found, this analysis was followed by post hoc 
two-tailed Wilcoxon tests.
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