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Abstract: From a previous collection of lipopeptides derived from BP100, we selected 18 sequences
in order to improve their biological profile. In particular, analogues containing a D-amino acid
at position 4 were designed, prepared, and tested against plant pathogenic bacteria and fungi.
The biological activity of these sequences was compared with that of the corresponding parent
lipopeptides with all L-amino acids. In addition, the influence of the length of the hydrophobic
chain on the biological activity was evaluated. Interestingly, the incorporation of a D-amino acid
into lipopeptides bearing a butanoyl or a hexanoyl chain led to less hemolytic sequences and, in
general, that were as active or more active than the corresponding all L-lipopeptides. The best
lipopeptides were BP475 and BP485, both incorporating a D-Phe at position 4 and a butanoyl group,
with MIC values between 0.8 and 6.2 µM, low hemolysis (0 and 24% at 250 µM, respectively), and
low phytotoxicity. Characterization by NMR of the secondary structure of BP475 revealed that the
D-Phe at position 4 disrupts the α-helix and that residues 6 to 10 are able to fold in an α-helix. This
secondary structure would be responsible for the high antimicrobial activity and low hemolysis of
this lipopeptide.

Keywords: acylation; hemolysis; secondary structure; NMR

1. Introduction

Agriculture is currently facing major challenges in terms of food production and
conservation. It is expected that the world population will rise to more than 10 billion
by 2100 according to the United Nations [1]. One of the main threats are plant diseases
caused by bacteria and fungi that bring about important economic losses every year [2,3].
A strategy to overcome this problem relies on employing copper compounds, antibiotics,
and fungicides. Even though these compounds are efficient, they are regarded as serious
environmental contaminants and their use is restricted by the current regulations. For
instance, antibiotics are banned in Europe because they prompt the appearance of resistant
strains. Therefore, the development of safer compounds to fight these diseases is of
paramount importance.

Antimicrobial peptides have received much attention as alternative pesticides [4–7].
They display a broad spectrum of activity and their mechanism of action generally involves
the perturbation of the cell membrane which limits the induction of resistance [8–14].
Despite these excellent properties, research has been conducted to design new antimicrobial
peptides with improved biological activity profiles [15–18]. Towards this end, a large
number of synthetic lipopeptides have been described [19], mainly prompted by the
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presence of a fatty acid chain in many natural active peptides and by the essential role of this
chain for their antimicrobial activity [20,21]. In fact, acylation is recognized as an effective
peptide modification to increase antimicrobial activity and proteolytic stability [22–30]. The
fatty acid chain confers lipophilicity, enhances the peptide ability to either adopt a specific
secondary structure or oligomerize upon interacting with the bacterial membranes, and,
therefore, facilitates the hydrophobic interaction between peptides and membranes [30].

One important limitation associated with antimicrobial lipopeptides that precludes
their use is their low cell selectivity, probably due to their hydrophobicity, which results in
high hemolytic activity [31]. A strategy to overcome this drawback is the incorporation
of D-amino acids. This approach has been applied to antimicrobial peptides providing
sequences that are not only less hemolytic, but also similarly active and more stable than
their counterparts with all L-amino acids [32–41]. In previous studies on cyclic lipopeptides,
we observed this trend when the residue bearing the fatty chain was replaced with its
D-enantiomer [26]. The resulting cyclic lipopeptides with a D-amino acid were as active as
their L-counterparts and, interestingly, they were not hemolytic at concentrations 10- to
80-fold higher than their MIC values. Other studies have also shown that the combination
of D-amino acids and a lipidic chain in a peptide constitutes an effective strategy to obtain
sequences with improved biological activity [29,42–45].

In this context, we recently described a library of 36 lipopeptides derived from the
linear antimicrobial undecapeptide H-Lys-Lys-Leu-Phe-Lys-Lys-Ile-Leu-Lys-Tyr-Leu-NH2
(BP100) [46]. These lipopeptides were designed by incorporating a butanoyl, hexanoyl or
lauroyl chain at the N-terminus or at the side chain of a Lys residue. Lipopeptides with high
antimicrobial activity and different degrees of hemolysis and phytotoxicity were identified.
Taking into account the advantages of incorporating D-amino acids into the structure of
lipopeptides, in the present work, we decided to evaluate the improvement of the biological
profile of 18 selected lipopeptides through the replacement of one amino acid with its D-
enantiomer. Thus, we prepared these 18 D-amino acid-containing lipopeptides and tested
their in vitro antimicrobial activity against six plant pathogenic bacteria and two plant
pathogenic fungi as well as their hemolysis and phytotoxicity. Moreover, the secondary
structure of one of the best D-amino acid-containing lipopeptides was characterized by
NMR spectroscopy.

2. Results
2.1. Design and Solid-Phase Synthesis of the Lipopeptides

Taking into account the advantages of incorporating a D-amino acid into a peptide
sequence, we selected a set of 18 lipopeptides derived from BP100, previously reported by
our group [46], and replaced the amino acid at position 4 for the corresponding enantiomer.
This position was chosen because in previous studies we had observed that the substi-
tution of L-Phe4 in BP100 (H-Lys-Lys-Leu-Phe-Lys-Lys-Ile-Leu-Lys-Tyr-Leu-NH2) with
a D-Phe resulted in peptide BP143 (H-Lys-Lys-Leu-D-Phe-Lys-Lys-Ile-Leu-Lys-Tyr-Leu-
NH2), which was more active and less hemolytic [32]. The selected lipopeptides displayed
high activity but most of them were also highly hemolytic. Thus, the aim of this study was
to obtain peptides with an improved biological activity profile. The sequence of the 18
lipopeptides bearing a D-amino acid is depicted in Table 1.
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Table 1. Sequences, retention times and purities on HPLC, and mass spectrometry data of lipopeptides.

Peptide Sequence 1 Code
tR

(min) 2
Purity
(%) 3

HRMS (ESI)

Calcd. Found

BP472 C5H11CO-KKLfKKILKYL-NH2 C5H11CO-D-F4 6.14 >99 C78H137N17O13 [M + 2H]2+ 760.0285 760.0260
BP473 Ac-KKLfKK(COC3H7)ILKYL-NH2 D-F4-K6(COC3H7) 5.99 >99 C78H135N17O14 [M + 2H]2+ 767.0182 767.0158
BP474 Ac-KKLfKKIK(COC3H7)KYL-NH2 D-F4-K8(COC3H7) 5.36 >99 C78H136N18O14 [M + 2H]2+ 774.5236 774.5208
BP475 Ac-KKLfKKILKK(COC3H7)L-NH2 D-F4-K10(COC3H7) 5.69 >99 C75H138N18O13 [M + 2H]2+ 749.5340 749.5343
BP476 Ac-KKLfKKILKYK(COC11H23)-NH2 D-F4-K11(COC11H23) 6.67 >99 C86H152N18O14 [M + 2H]2+ 830.5862 830.5839
BP484 Ac-KKLk(COC5H11)KKILKYL-NH2 D-K4(COC5H11) 6.45 >99 C77H142N18O14 [M + 2H]2+ 771.5471 771.5477
BP485 C3H7CO-KKLfKKILKYL-NH2 C3H7CO-D-F4 6.79 >99 C76H133N17O13 [M + 2H]2+ 746.0129 746.0097
BP486 Ac-KK(COC3H7)LfKKILKYL-NH2 D-F4-K2(COC3H7) 6.17 >99 C78H134N17O14 [M + H]+ 1533.0291 1533.0266
BP488 Ac-KKLk(COC11H23)KKILKYL-NH2 D-K4(COC11H23) 6.80 >99 C83H153N18O14 [M + H]+ 1626.1808 1626.1787
BP489 Ac-KKLfKKK(COC11H23)LKYL-NH2 D-F4-K7(COC11H23) 6.76 >99 C86H152N18O14 [M + 2H]2+ 830.5862 830.5825
BP490 Ac-KKLfKKIK(COC11H23)KYL-NH2 D-F4-K8(COC11H23) 7.12 >99 C86H151N18O14 [M + H]+ 1660.1652 1660.1635
BP494 Ac-KKLfKKK(COC5H11)LKYL-NH2 D-F4-K7(COC5H11) 5.42 >99 C80H139N18O14 [M + H]+ 1576.0713 1576.0683
BP495 Ac-KKLfKKILKYK(COC5H11)-NH2 D-F4-K11(COC5H11) 5.44 >99 C80H139N18O14 [M + H]+ 1576.0713 1576.0683
BP496 Ac-KKLfKKILKYK(COC3H7)-NH2 D-F4-K11(COC3H7) 5.11 >99 C78H135N18O14 [M + H]+ 1548.0400 1548.0367
BP497 Ac-KKLfKKILK(COC11H23)YL-NH2 D-F4-K9(COC11H23) 7.21 >99 C86H150N17O14 [M + H]+ 1645.1543 1645.1516
BP498 Ac-KKLfK(COC3H7)KILKYL-NH2 D-F4-K5(COC3H7) 6.12 >99 C78H135N17O14 [M + 2H]2+ 767.0182 767.0147
BP499 Ac-KKLfKKILK(COC3H7)YL-NH2 D-F4-K9(COC3H7) 5.89 >99 C78H134N17O14 [M + H]+ 1533.0291 1533.0269
BP500 Ac-KKK(COC11H23)fKKILKYL-NH2 D-F4-K3(COC11H23) 6.80 >99 C86H151N18O14 [M + H]+ 1661.1684 1661.1667

1 COC3H7, butanoyl; COC5H11, hexanoyl; COC11H23, lauroyl; lower case letters correspond to D-amino acids. 2 HPLC retention time.
3 Percentage determined by HPLC at 220 nm after purification.

These lipopeptides were synthesized on solid phase following a standard
9-fluorenylmethoxycarbonyl (Fmoc)/tert-butyl (tBu) strategy as previously described [46].
A Fmoc-Rink-MBHA resin was used as solid support. In the case of lipopeptides incor-
porating a Lys residue acylated at the side chain, this amino acid was incorporated as
Fmoc-Lys(ivDde)-OH or Fmoc-D-Lys(ivDde)-OH. After 1-(4,4-dimethyl-2,6-dioxocyclohex-
1-ylidine)-3-methylbutyl (ivDde) group removal, the Nε-amino group was derivatized with
butanoic, hexanoic or lauric acid. For the synthesis of BP472 and BP485 the N-terminus
amino group was acylated with hexanoic and butanoic acid, respectively. Lipopeptides
were cleaved from the support using trifluoroacetic acid (TFA)/H2O/triisopropylsilane
(TIS) and purified by reverse-phase column chromatography (HPLC). They were obtained
in >99% HPLC purity and their structure was verified by mass spectrometry (Table 1).

2.2. Antimicrobial Activity

Lipopeptides were screened for in vitro growth inhibition of the plant pathogenic
bacteria Erwinia amylovora, Pseudomonas syringae pv. syringae, Pseudomonas syringae pv.
actinidiae, Xanthomonas arboricola pv. pruni, Xanthomonas fragariae and Xanthomonas ax-
onopodis pv. vesicatoria, and the plant pathogenic fungi Penicillium expansum and Fusarium
oxysporum, at 0.8, 1.6, 3.1, 6.2, 12.5 and 25 µM (Figure 1, Table S1).

This set of 18 lipopeptides showed high antimicrobial activity (Figure 1). Concerning
the antibacterial activity, 13 sequences exhibited MIC < 12.5 µM against the six bacteria
tested. The results showed that they were more active against the three Xanthomonas strains
than against E. amylovora or the Pseudomonas species. Twelve lipopeptides displayed MIC <
6.2 µM against the three Xanthomonas strains, among which nine showed MIC < 3.1 µM.
Remarkably, an MIC between 0.8 and 1.6 µM against one of these strains was observed for
three sequences.

Regarding the Pseudomonas species, they displayed higher activity against P. syringae
pv. actinidiae (15 sequences with MIC < 6.2 µM) than against P. syringae pv. syringae (10
sequences with MIC < 6.2 µM). Interestingly, five lipopeptides showed MIC between 1.6
and 3.1 µM against P. syringae pv. actinidiae. E. amylovora was the least sensitive bacterium
towards these lipopeptides. However, 16 sequences exhibited MIC < 12.5 µM with five of
them showing MIC values between 3.1 and 6.2 µM. Regarding the influence of the fatty
acid chain, no correlation was observed between the antibacterial activity and the length
of this chain. However, those incorporating a lauroyl group were more active against
the Xanthomonas strains. The lipopeptides with the highest antibacterial activity were
BP472 (C5H11CO-D-F4), BP473 (D-F4-K6(COC3H7)), BP475 (D-F4-K10(COC3H7)), BP476
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(D-F4-K11(COC11H23)), BP485 (C3H7CO-D-F4), BP488 (D-K4(COC11H23)), and BP500 (D-
F4-K3(COC11H23)).

In the case of the antifungal activity, the lipopeptides were, in general, more active
against F. oxysporum than against P. expansum (13 vs. 8 sequences with MIC < 6.2 µM,
respectively) (Figure 1). Interestingly, MIC values between 0.8 and 1.6 µM were observed
for six and two sequences, respectively, which incorporate a butanoyl or a hexanoyl group.
In particular, BP495 (D-F4-K11(COC5H11)), BP498 (D-F4-K5(COC3H7)) and BP499 (D-F4-
K9(COC3H7)) were the most active, with MIC between 0.8 and 3.1 µM against both fungi.Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 5 of 18 
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Figure 1. Antimicrobial activity of lipopeptides against the bacteria E. amylovora (Ea), P. syringae
pv. syringae (Pss), P. syringae pv. actinidiae (Psa), X. fragariae (Xf ), X. arboricola pv. pruni (Xap) and
X. axonopodis pv. vesicatoria (Xav), and the fungi P. expansum (Pe) and F. oxysporum (Fo). The type
of acyl group is indicated below the lipopeptides. Antimicrobial activity is given as the minimal
concentration that inhibits growth (MIC). The MIC axis is in logarithmic scale, and for each sequence,
the lowest values of the MIC range is represented. Data can be found in Table S1 (Supplementary
Materials).
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2.3. Toxicity

The toxicity of lipopeptides to eukaryotic cells was determined as the ability to lyse
erythrocytes in comparison to melittin, which was used as a reference peptide (Table 2
and Table S2). Lipopeptides were assayed at 50, 150, 250 and 375 µM. The results showed
that 10 lipopeptides displayed ≤ 24% hemolysis at 250 µM. Among them, six sequences
exhibited ≤ 10% hemolysis at this concentration, which incorporate either a butanoyl or a
hexanoyl chain.

Table 2. Hemolytic activity and size of the lesion in infiltrated tobacco leaves of lipopeptides.

Peptide Code Hemolysis (%) 1

250 µM
Size of the Lesion (mm) 2

250 µM

BP472 C5H11CO-D-F4 78 ± 5 4 ± 1
BP473 D-F4-K6(COC3H7) 84 ± 11 5 ± 2
BP474 D-F4-K8(COC3H7) 0 ± 0 4 ± 2
BP475 D-F4-K10(COC3H7) 0 ± 0 10 ± 1
BP476 D-F4-K11(COC11H23) 94 ± 10 5 ± 0.5
BP484 D-K4(COC5H11) 10 ± 2 7 ± 1
BP485 C3H7CO-D-F4 24 ± 9 12 ± 1
BP486 D-F4-K2(COC3H7) 14 ± 5 17 ± 2
BP488 D-K4(COC11H23) 86 ± 14 13 ± 5
BP489 D-F4-K7(COC11H23) 100 ± 6 11 ± 1
BP490 D-F4-K8(COC11H23) 100 ± 6 11 ±3
BP494 D-F4-K7(COC5H11) 0.2 ± 0.2 8 ± 1
BP495 D-F4-K11(COC5H11) 0.6 ± 1 11 ± 2
BP496 D-F4-K11(COC3H7) 1 ± 1 10 ± 3
BP497 D-F4-K9(COC11H23) 100 ± 2 18 ± 0
BP498 D-F4-K5(COC3H7) 21 ± 3 6 ± 1
BP499 D-F4-K9(COC3H7) 11 ± 1 8 ± 2
BP500 D-F4-K3(COC11H23) 71 ± 8 9 ± 3

1 Percent hemolysis plus confidence interval (α = 0.05). 2 Effect on the size of the lesion in infiltrated tobacco
leaves plus confidence interval.

Lipopeptides were also assayed for their toxicity in tobacco leaves by infiltrating a
solution of each peptide at 50, 150 and 250 µM into the mesophylls of the leaves (Table 2
and Table S3). For comparison purposes, melittin was also included in this experiment,
causing a necrosis of 18 mm at 250 µM. Most lipopeptides were less toxic than melittin. In
particular, 11 sequences caused a necrotic area ≤ 10 mm at 250 µM.

Interestingly, lipopeptides BP475 (D-F4-K10(COC3H7)) and BP485 (C3H7CO-D-F4),
which displayed the highest antibacterial activity, and lipopeptides BP495 (D-F4-K11

(COC5H11)), BP498 (D-F4-K5(COC3H7)) and BP499 (D-F4-K9(COC3H7)) exhibiting high
antifungal activity were also low toxic at concentrations around the MIC.

2.4. Structural Characterization by NMR Spectroscopy

The structure of lipopeptide BP475 (D-F4-K10(COC3H7)), which displayed high antimi-
crobial activity, was characterized by 1H, 1H-13C and 1H-15N-NMR. In order to evaluate
the influence of incorporating the D-amino acid, its analog with all L-amino acids Ac-
KKLFKKILKK(COC3H7)L-NH2 (BP389) was included in this study.

1D 1H-NMR and 2D 1H-1H TOCSY, 2D 1H-13C HSQC, 2D 1H-15N HSQC and 1H-
1H NOESY spectra were first recorded at 10 ºC in phosphate buffer at pH = 6.5 in
H2O/D2O (9:1). These experiments allowed the assignment of the 1H, 13C and 15N sig-
nals (Tables S4–S7). 1D 1H and 2D 1H-1H NOESY experiments revealed that these two
lipopeptides are completely unstructured in these conditions (Figure 2).
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Figure 2. Overlay of HN-HN and HN-Hα TOCSY (red) and NOESY (blue) correlations for
(a) BP389 and (b) BP475 in phosphate buffer; (c) BP389 and (d) BP475 in phosphate buffer with
30% CF3CD2OD.

Next, the above experiments were conducted in the presence of 30% CF3CD2OD [47].
After the assignment of all the 1H, 13C and 15N signals, the primary structure of the peptides
was confirmed based on the NOE correlation in the HN-Hα fingerprint region (Figure 2).
Compared to the spectra recorded in H2O/D2O (9:1), in this case, all the HN-Hα cross-
peaks could be unambiguously assigned and the analysis of the NOESY showed sequential
correlations between amide protons. In addition, the “sequential walk” was achieved with
the combination of NOESY Hα(i)-HN(i+1) inter-residue correlations and TOCSY Hα(i)-HN(i)
intra-residue correlations. All these results pointed out that these lipopeptides adopt a
secondary structure in the presence of CF3CD2OD.

Subsequent chemical shift index analysis was employed to identify the secondary
structure of these lipopeptides (Figure 3). It was observed that while residues 2 to 10 in
BP389 form α-helical structure, in BP475, only residues 6 to 10 adopt this conformation. The
disruption of the α-helix in BP475 could be attributed to the presence of a D-Phe at position 4.
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3. Discussion

Lipopeptides are a subfamily of antimicrobial peptides that have attracted attention
due to their biological activity [20,23,24,27]. However, their use has been hampered by
the high hemolysis that they generally display. One strategy to address this issue is the
incorporation of a D-amino acid in their sequence [32–37,39,48]. In fact, natural lipopeptides
bearing D-amino acids with an interesting biological activity profile have been reported,
such as polymyxins, daptomycin, surfactins, iturins and fengycins [20,24,27]. In addition,
synthetic D,L-amino acid-containing lipododecapeptides and ultrashort lipopeptides with
high antimicrobial activity have also been described [22,42,49]. Moreover, in a previous
study on cyclic lipopeptides, we observed that the replacement of an L-amino acid by its
D-enantiomer led to sequences with lower hemolysis and similar antimicrobial activity [26].
Based on these reports, in this work, we describe 18 lipopeptides derived from the lead
peptide BP100 containing a D-amino acid with activity against plant pathogenic bacteria
and fungi.

These 18 D-amino acid-containing lipopeptides displayed high antimicrobial activ-
ity against the pathogens tested (13 sequences with MIC < 12.5 µM against at least six
pathogens). In general, the highest activity was observed against Xanthomonas strains and
F. oxysporum. The length of the hydrophobic chain influenced the antimicrobial activity.
Whereas lipopeptides bearing a butanoyl or a hexanoyl group were active against all
bacteria and fungi, those incorporating a lauroyl group displayed high activity mainly
against Xanthomonas species. These results and those obtained for lipopeptides with all
L-amino acids [46] differed from the general trend described for the antimicrobial activity
of lipopeptides [19,22,23,42,49–52]. The presence of a long acyl chain is, in general, related
to high antimicrobial activity. In the present work, lipopeptides containing a lauroyl group
were poorly active against fungi and, in contrast, an acyl chain of four and six carbons
endowed these compounds with activity.

The length of the fatty acid also influenced the cytotoxicity against red blood cells.
Lipopeptides incorporating a butanoyl or a hexanoyl group were, in general, low hemolytic,
those with a 12-carbon atom lauroyl group being the ones with the highest hemolysis. The
presence of a long fatty acid chain has been associated with a high cytotoxicity due to an
increase of peptide hydrophobicity, which in turn results in a high erythrocyte membrane
affinity [26,53,54]. In contrast, in the case of the effect of lipopeptides on the size of the
lesion in infiltrated tobacco leaves, no correlation between the length of the hydrophobic
chain and this effect was observed. All lipopeptides were less phytotoxic than melittin at
250 µM, concentration generally between 20 and 156-fold higher than the MIC. Similar
results have been described for other lipopeptides, such as cyclolipopeptides and ultrashort
cationic lipopeptides [26,55].

The biological activity of the D-amino acid-containing lipopeptides was compared to
that of the corresponding parent lipopeptides with all L-amino acids [46] in order to analyse
the influence of incorporating a D-amino acid (Figures 4–6). Regarding the antimicrobial
activity, a different trend was observed depending on the fatty acid length (Figure 4). In
the case of the lauroyl derivatives, the antimicrobial activity was maintained or improved
against all the pathogens, except for F. oxysporum. The lipopeptides bearing a D-amino
acid and a butanoyl or a hexanoyl chain were similarly active or even more active than
the corresponding all L-lipopeptides against the two Pseudomonas species, X. arboricola
pv. pruni and the two fungi. As expected, the incorporation of a D-amino acid resulted
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in a decrease of the hemolysis for all peptides bearing a butanoyl or a hexanoyl moiety
(Figure 5). Remarkably, in some cases, this decrease was considerable. In contrast, the
hemolysis did not improve for peptides incorporating a lauroyl group. Probably, the benefit
of incorporating of a D-amino acid was not able to counteract the hydrophobicity of a
12-carbon atom lauroyl group. Concerning the phytotoxicity, a smaller size of the lesion
compared to that of the L-lipopeptides was observed for the sequences bearing a butanoyl
or a hexanoyl moiety (Figure 6).Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 10 of 18 
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P. syringae pv. syringae (Pss), P. syringae pv. actinidiae (Psa), X. fragariae (Xf ), X. arboricola pv. pruni (Xap) and X. axonopodis pv.
vesicatoria (Xav), and the fungi P. expansum (Pe) and F. oxysporum (Fo). The x axis includes the code for each lipopeptide. The
residue that can be a L- or a D-amino acid is indicated in italics. Antimicrobial activity is given as the minimal concentration
that inhibits growth (MIC). The MIC axis is in logarithmic scale and for each sequence the lowest values of the MIC range is
represented. Black symbols correspond to the activity of lipopeptides with a D-amino acid, white symbols to the activity of
lipopeptides with all L-amino acids, and grey symbols indicate that both lipopeptides display the same activity. Data can be
found in Table S1 (Supplementary Materials).
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Figure 5. Hemolytic activity of the lipopeptides incorporating all L-amino acids or a D-amino acid.
The x axis includes the code for each lipopeptide. The residue that can be an L- or a D-amino acid is
indicated in italics. Hemolytic activity was measured at 250 µM and is expressed as a percentage
compared to melittin as a standard. Black squares correspond to the hemolysis of lipopeptides with
a D-amino acid, white squares to the hemolysis of lipopeptides with all L-amino acids, and grey
squares indicate that both lipopeptides display the same hemolysis. Data can be found in Table S2
(Supplementary Materials).
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Figure 6. Effect of the lipopeptides incorporating all L-amino acids or a D-amino acid on the size
of the lesions in infiltrated tobacco leaves at 250 µM. This effect was compared to melittin. Vertical
bars within each column indicate confidence interval at the mean. The x axis includes the code for
each lipopeptide. The residue that can be a L- or a D-amino acid is indicated in italics. Black bars
correspond to lipopeptides with a D-amino acid and white bars to lipopeptides with all L-amino
acids. Data can be found in Table S3 (Supplementary Materials).

All these results led us to identify BP475 (D-F4-K10(COC3H7) and BP485 (C3H7CO-D-
F4) as the D-amino acid containing lipopeptides with the best biological activity profile.
Both sequences contain a butanoyl group and a D-Phe at position 4. These peptides
exhibited MIC values between 0.8 and 6.2 µM against 7 out of the 8 pathogens tested, were
significantly less hemolytic (0 and 24% at 250 µM, respectively) than the corresponding all-
L derivatives (22 and 93% at 250 µM, respectively), and were low phytotoxic. Interestingly,
these lipopeptides are comparable in terms of activity to antibiotics used in agriculture for
bacterial disease control, such as streptomycin, which is effective in vitro at 2 to 9 µM.

Characterization by NMR of the secondary structure of BP475 in the presence of
CF3CD2OD evidenced that, as expected, the D-Phe at position 4 disrupts the α-helix,
whereas the incorporation of an acyl lysine at position 10 has no effect. Accordingly,
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chemical shift index analysis pointed out that residues 6 to 10 of this lipopeptide fold
into an α-helix. In contrast, the whole sequence of the L-Phe-containing analog BP389
adopts an α-helical structure. The high antimicrobial activity displayed by these two
lipopeptides stresses the importance of the C-terminal α-helix in this activity. These results
are in accordance with the carpet mechanism reported for the parent peptide BP100, which
involves the insertion of its C-terminus into the hydrophobic core of the bilayer, resulting
in membrane permeabilization [56]. Assuming a similar mechanism for lipopeptides
BP389 and BP475, the presence of the acyl group in the C-terminal α-helix region would
favour their insertion into the membrane, thereby leading to a higher antimicrobial activity
than BP100. Regarding the hemolysis, the disruption of the α-helical structure of BP475
due to the presence of the D-Phe could explain the low hemolytic activity displayed by
this peptide compared to its L-counterpart BP389, which is in agreement with previous
reports [33].

4. Materials and Methods
4.1. General Methods

Manual peptide synthesis was performed in polypropylene syringes (2 or 5 mL)
fitted with a porous polyethylene disk. Solvents and soluble reagents were removed
by suction. Most chemicals were purchased from commercial suppliers Merck (Madrid,
Spain), Iris Biotech GmbH (Marktredwitz, Germany), Scharlab (Sentmenat, Spain), Carlo
Erba Reagents (Sabadell, Spain) or Panreac (Castellar del Vallès, Spain), and used without
further purification.

Peptides were analyzed under standard analytical HPLC conditions with a Dionex
liquid chromatography instrument composed of a UV/Vis Dionex UVD170U detector,
a P680 Dionex pump, an ASI-100 Dionex automatic injector, and CHROMELEON 6.60
software. Detection was performed at a wavelength of 220 nm. Solvent A was 0.1% aqueous
TFA and solvent B was 0.1% TFA in CH3CN. Analyses were carried out with a Kromasil
100 C18 (4.6 mm × 40 mm, 3 µm) column with a linear gradient of 2 to 100% B over 7
min at a flow rate of 1 mL/min. Peptides were also analysed with a 1260 Infinity II liquid
chromatography instrument (Agilent Technologies) composed of a Diode Array Detector
HS, a Quaternary Pump VL, a 1260 Vial sampler and OpenLab CDS ChemStation software.
Analyses were carried out with a Kromasil 100 C18 (4.6 mm × 40 mm, 3 µm) column with
a linear gradient of 2 to 100% B over 12 min at a flow rate of 1 mL/min.

All purifications were performed on a CombiFlash Rf200 automated flash chromatogra-
phy system using RediSep Rf Gold reversed-phase column packed with high performance
C18 derivatized silica.

ESI-MS analyses were performed at the Serveis Tècnics de Recerca of the University of
Girona with an Esquire 6000 ESI ion Trap LC/MS (Bruker Daltonics) instrument equipped
with an electrospray ion source. The instrument was operated in the positive ESI(+) ion
mode. Samples (5 µL) were introduced into the mass spectrometer ion source directly
through an HPLC autosampler. The mobile phase (80:20 CH3CN/H2O at a flow rate
of 100 µL/min) was delivered by a 1200 Series HPLC pump (Agilent). Nitrogen was
employed as both the drying and nebulising gas.

HRMS were recorded on a Bruker MicroTof-QIITM instrument using ESI ionization
source at the Serveis Tècnics de Recerca of the University of Girona. Samples were in-
troduced into the mass spectrometer ion source by direct infusion using a syringe pump
and were externally calibrated using sodium formate. The instrument was operated in the
positive ion mode.

4.2. Synthesis of Lipopeptides

These lipopeptides were synthesized manually by the solid-phase method using
standard Fmoc chemistry as described previously [46]. The Fmoc-Rink-MBHA resin
(0.56 mmol/g) was used as a solid support. Fmoc-Leu-OH, Fmoc-Lys(Boc)-OH, Fmoc-
Lys(ivDde)-OH, Fmoc-D-Lys(ivDde)-OH, Fmoc-Phe-OH, Fmoc-Ile-OH, Fmoc-D-Phe-OH
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and Fmoc-Tyr(tBu)-OH were used as amino acid derivatives. Peptide elongation was
carried out through sequential Fmoc removal and coupling of the corresponding amino
acid. Fmoc group removal was achieved with piperidine/N,N-dimethylformamide (DMF)
(3:7, 2 + 10 min). Couplings of the Fmoc-amino acids (4 equiv.) were mediated by ethyl
2-ciano-2-(hydroxyimino)acetate (Oxyma) (4 equiv.) and N,N’-diisopropylcarbodiimide
(DIC) (4 equiv.) in DMF at room temperature for 1 h under stirring. The completion of the
reactions was checked with the Kaiser test [57]. After each coupling and deprotection step,
the resin was washed with DMF (6 × 1 min) and CH2Cl2 (2 × 1 min). Once the peptide
elongation was completed, the peptidyl resin was treated with piperidine/N-methyl-2-
pyrrolidinone (NMP) (3:7, 2 + 10 min), washed with NMP (6 × 1 min), and CH2Cl2 (2 ×
1 min), and air dried.

For lipopeptides BP472 and BP485, the N-terminal deprotected resin was acylated by
treatment with the corresponding fatty acid (3 equiv.), DIC (3 equiv.) and Oxyma (3 equiv.)
in NMP under stirring overnight. After this time, the resin was washed with NMP (6 ×
1 min) and CH2Cl2 (6 × 1 min), and air dried. Completion of the reaction was checked
with the Kaiser test [57].

In the case of the side chain acylated derivatives, the N-terminal deprotected resin was
acetylated with acetic anhydride (Ac2O)/pyridine/CH2Cl2 (1:1:1; 2 × 30 min), washed with
NMP (6 × 1 min) and CH2Cl2 (6 × 1 min), and air dried. Completion of the reaction was
checked with the Kaiser test [57]. The resulting resin was treated with NH2NH2·H2O/NMP
(2:98, 10 × 20 min) under stirring and washed with NMP (2 × 1 min), CH2Cl2 (2 × 1 min),
MeOH (2 × 1 min), and NMP (2 × 1 min). Then, the resin was acylated by treatment with
the corresponding fatty acid (3 equiv.), DIC (3 equiv.) and Oxyma (3 equiv.) in NMP under
stirring overnight. The resin was then washed with NMP (6 × 1 min) and CH2Cl2 (6 ×
1 min), and air dried. Completion of the reaction was checked with the Kaiser test [57].

Finally, each resulting peptidyl resin was treated with TFA/H2O/TIS (95:2.5:2.5) for
2 h. Following TFA evaporation and diethyl ether extraction, the crude lipopeptide was
purified by reverse-phase column chromatography, lyophilized, analysed by HPLC, and
characterized by mass spectrometry.

4.3. Bacterial and Fungal Strains and Growth Conditions

The following plant pathogenic bacterial strains were used: Erwinia amylovora PMV6076
(Institut National de la Recherche Agronomique, Angers, France), Pseudomonas syringae pv.
syringae EPS94 (Institut de Tecnologia Agroalimentària, University of Girona, Spain), Xan-
thomonas axonopodis pv. vesicatoria 2133–2, Pseudomonas syringae pv. actinidiae Psa3700.1.1,
Xanthomonas fragariae Xf349-9A (Instituto Valenciano de Investigaciones Agrarias, Valencia,
Spain), and Xanthomonas arboricola pv. pruni CFBP5563 (Collection Française de Bactéries
Associées aux Plantes, Angers, France). All bacteria except for X. fragariae were stored in
Luria Bertani (LB) broth supplemented with glycerol (20%) and maintained at −80 ◦C. For
X. fragariae, Medium B [58] was used instead of LB. E. amylovora, X. arboricola pv. pruni, P.
syringae pv. syringae and P. syringae pv. actinidiae were scrapped from the agar media after
growing for 24 h at 25 ◦C, and X. axonopodis pv. vesicatoria and X. fragariae after growing
for 48 h at 25 ◦C. The cell material was suspended in sterile water to obtain a suspension
of 108 CFU mL−1. The following plant pathogenic fungal strains were used: Penicillium
expansum EPS26 (Institut de Tecnologia Agroalimentària, University of Girona, Spain) and
Fusarium oxysporum f. sp. lycopersici FOL 3 race 2 (ATCC 201829, American Type Culture
Collection, Virginia, EEUU). Strains were cultured on potato dextrose agar (PDA) plates
(Difco). Conidia from P. expansum and microconidia from F. oxysporum were obtained
from five- to seven-day-old PDA cultures after growth at 25 ◦C. Inoculum was prepared
by scraping spore material from culture surfaces with a cotton swab and resuspending
it in distilled water containing 0.5‰ of tween 80. The suspensions were filtered through
Miracloth (Merk, Millipore) and the concentration of conidia was determined using a
hemacytometer and adjusted to 104 conidia mL−1 for F. oxysporum and to 103 conidia mL−1

for P. expansum.
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4.4. Antimicrobial Activity

Lyophilized peptides were solubilized in sterile Milli-Q water to a final concentration
of 1 mM and filter sterilized through a 0.22-µm pore filter. For minimum inhibitory
concentration (MIC) assessment, dilutions of the compounds were made to obtain a stock
concentration of 250, 125, 62, 31, 16, 8 and 4 µM. For antibacterial activity, 20 µL of each
dilution were mixed in a microtiter plate well with 20 µL of the corresponding suspension
of the bacterial indicator, 160 µL of trypticase soy broth (TSB) (BioMèrieux, France) to a
total volume of 200 µL. For antifungal activity, 20 µL of each stock solution were mixed in
a microtiter plate well with 80 µL of the corresponding suspension of the fungal pathogen
and 100 µL of double concentrated potato dextrose broth (PDB) to a total volume of 200 µL
containing 0.003% w/v of chloramphenicol to prevent bacterial contamination. Three
replicates for each combination of strain, compound and concentration were used.

Microbial growth was determined by optical density measurement at 600 nm (Bio-
screen C, Labsystem, Helsinki, Finland). For antibacterial activity, microplates were in-
cubated at 25 ◦C with 10 s shaking before hourly absorbance measurement for 48 h. For
antifungal activity, microplates were incubated at 22 ◦C with 1 min shaking before ab-
sorbance measurement carried out every 2 h for seven days. The experiment was repeated
twice. The MIC was taken as the lowest compound concentration with no growth at the
end of the experiment.

4.5. Hemolytic Activity

The hemolytic activity of the compounds was evaluated by determining hemoglobin
release from erythrocyte suspensions of horse blood (5% vol/vol) (Oxoid) as previously
described [59]. Blood was centrifuged at 6000 g for 5 min, washed three times with
tris(hydroxymethyl)aminomethane (TRIS) buffer (10 mM TRIS, 150 mM NaCl, pH 7.2) and
diluted 10 times. Compounds were solubilized in TRIS buffer at 750, 500, 300 and 100 µM
and mixed with horse erythrocytes (1:1 v/v). The mixture was incubated under continuous
shaking for 1 h at 37 ◦C. Then, the tubes were centrifuged at 3500 g for 10 min, 80 µL
aliquots of the supernatant transferred to 100-well microplates (Bioscreen), diluted with
80 µL water, and the absorbance measured at 540 nm (Bioscreen). Complete hemolysis
was obtained by the addition of melittin at 100 µM (Sigma-Aldrich Corporation, Madrid,
Spain). The percentage of hemolysis (H) was calculated using the equation: H = 100 ×
[(Op−Ob)/(Om−Ob)], where Op is the density for a given compound concentration, Ob for
the buffer, and Om for the melittin-positive control.

4.6. Effect of Peptide Infiltration on Tobacco Leaves

The lipopeptides were evaluated for their effect upon infiltration on tobacco leaves as
described previously [60]. Peptide solutions of 50, 150 and 250 µM were infiltrated (100 µL)
into the mesophylls of fully expanded tobacco leaves. Infiltrations were carried out in
a single leaf, and for each peptide and dose, at least three leaves randomly distributed
in different plants were infiltrated. Control infiltrations with water (negative control) or
melittin (positive control) at the same molar concentration were performed. The appearance
of symptoms on the leaves was followed for 48 h after infiltration and measured as a
lesion diameter.

4.7. Structural Characterization by NMR Spectroscopy

The structure of lipopeptides BP389 and BP475 was determined by NMR spectroscopy.
NMR spectra were acquired at the Serveis Tècnics de Recerca of the University of Girona
with a Ultrashield 400 MHz spectrometer equipped with an RT BBI. Each peptide was
characterized with the following experiments: 1D 1H-NMR; 2D 1H-1H TOCSY (mixing
time = 80 ms); 2D 1H-1H NOESY (mixing time = 400 ms); 2D 1H-13C multiplicity-edited
HSQC; 2D 1H-15N HSQC; 2D 1H-13C HSQC-TOCSY. Water suppression was achieved with
excitation sculpting or Watergate scheme. NMR spectra were processed and analyzed using
TopSpin 3.6.2. All experiments were conducted at 10 ◦C using a shigemi tube calibrated for
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D2O. Five milligrams of sample were dissolved in 400 µL of 20 mM phosphate buffer at pH
6.5 in H2O/D2O (90:10) or in 400 µL of this buffer containing 30% of 2,2,2-trifluoroethanol-
d3 to induce the formation of the secondary structure. From NMR assignments, the
structural analysis was achieved with Chemical Shift Index 3.0 web server [61,62].

5. Conclusions

In summary, we designed and synthesized D-amino-containing lipopeptides derived
from BP100. These lipopeptides displayed an improved biological activity profile compared
to their L-counterparts. Remarkably, replacement of the L-Phe at position 4 with its
enantiomer provided less hemolytic lipopeptides. The best derivatives—BP475 (D-F4-
K10(COC3H7) and BP485 (C3H7CO-D-F4)—exhibited high antimicrobial activity (MIC
between 0.8 and 6.2 µM) together with a low hemolysis (0 and 24% at 250 µM, respectively).
In addition, the results from the NMR experiments of BP475 demonstrate the importance
of a C-terminal α-helix in the activity of these lipopeptides. This study provides tools for
the design of new agents to control plant pathogens.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22126631/s1: biological activity of lipopeptides; Synthesis of lipopeptides; HPLC of
crude and purified lipopeptides; ESI-MS and HRMS of purified lipopeptides; NMR experiments of
lipopeptides BP389 and BP475.
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