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Abstract

A series of recent studies on large-scale networks of signaling and metabolic systems revealed that a certain network
structure often called ‘‘bow-tie network’’ are observed. In signaling systems, bow-tie network takes a form with diverse and
redundant inputs and outputs connected via a small numbers of core molecules. While arguments have been made that
such network architecture enhances robustness and evolvability of biological systems, its functional role at a cellular level
remains obscure. A hypothesis was proposed that such a network function as a stimuli-reaction classifier where dynamics of
core molecules dictate downstream transcriptional activities, hence physiological responses against stimuli. In this study, we
examined whether such hypothesis can be verified using experimental data from Alliance for Cellular Signaling (AfCS) that
comprehensively measured GPCR related ligands response for B-cell and macrophage. In a GPCR signaling system, cAMP
and Ca2+ act as core molecules. Stimuli-response for 32 ligands to B-Cells and 23 ligands to macrophages has been
measured. We found that ligands with correlated changes of cAMP and Ca2+ tend to cluster closely together within the
hyperspaces of both cell types and they induced genes involved in the same cellular processes. It was found that ligands
inducing cAMP synthesis activate genes involved in cell growth and proliferation; cAMP and Ca2+ molecules that increased
together form a feedback loop and induce immune cells to migrate and adhere together. In contrast, ligands without a core
molecules response are scattered throughout the hyperspace and do not share clusters. G-protein coupling receptors
together with immune response specific receptors were found in cAMP and Ca2+ activated clusters. Analyses have been
done on the original software applicable for discovering ‘bow-tie’ network architectures within the complex network of
intracellular signaling where ab initio clustering has been implemented as well. Groups of potential transcription factors for
each specific group of genes were found to be partly conserved across B-Cell and macrophage. A series of findings support
the hypothesis.
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Introduction

Understanding the logic behind complex mammalian signaling

networks is both a scientifically and medically significant issue.

Recent efforts to depict signaling networks using extensive

experimental techniques have begun to reveal the nature of some

of these signaling networks [1–5]. These studies typically use a

variety of ligand stimuili and measure cellular responses, such as

changes in gene expressions, the phosphorylation of proteins in the

signaling networks, changes in second messengers, and cellular

physiology, such as secretions of cytokines and apoptosis.

Statistical methods like principal component analysis are often

used to identify the principal contributing features and possible

novel interactions. This is a data-driven approach and has proven

to be effective. A rich data set from Alliance for Cellular Signaling

(AfCS) provides furtile ground for extensive analysis to depict

logics behind cellular signaling. Studies published to date focused

on a clustering-based approach to identify salient correlation

between stimuli and gene expressions, discovery of possible

unknown interactions, and identifications of key molecules for

signaling processes [1,5,6].

In this work, we took a different approach. We used clustering

analysis to examine whether ‘‘bow-tie’’ architecture of signaling

network plays any functional role in cellular signaling and, if so,

what role does it play. ‘‘Bow-tie’’ network is a kind of networks

that its pictorial representation often resembles a bow tie and its

concept is shown in Figure 1. It consists of sub-networks with

diverse inputs converting into a conserved core sub-network (an

input wing), another conserved core sub-network (a bow-tie core),

and an output sub-network that enables diverse responses to the

input stimuli (an output wing). There have been an increasing

number of reports on a ‘‘bow-tie’’ network architecture in

metabolic and signaling networks [7–9], and arguments have

been made that this is a critical feature of robust yet evolvable

systems [11,12] that can be also applied for network structure of

the Worldwide Web[13]. Studies of metabolic network structures

in bacteria [8] and in human [7], inter-cellular communications in

immune system [1], epidermal receptor signaling networks [10],

and Toll-like receptor signaling networks [9] demonstrates such

networks seems to exists in various aspects of biological systems.

It was noticed that the structure of the bow tie networks found

in metabolic and signaling networks are very different. In a
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metabolic network, the core forms a giant cluster, where the nodes

are densely interconnected. On the other hand, the bow tie

network found in signaling networks has fewer nodes with sparse

interconnections even if such connections exist. Naturally, the

roles of the cores in metabolic and signaling networks differ. In

metabolic networks, the core provides a robust central processing

factory where various nutrients flow in and produce ATP, amino-

acids, and other essential metabolites [8,11]. The question is: what

is the functional role of the core in signaling networks?

A hypothesis has been proposed that claims that small numbers

of molecules in the core of bow tie signaling networks may

constitute an evolutionary acquired learning layer that takes on

various stimuli, generalizes the stimuli into a few separate classes,

and relays them to transcription factors [2]. This hypothesis was

inspired by neural network research that indicates that the

generalization and learning of various stimuli-reaction is best

accomplished when there are fewer middle layer nodes than input

and output layers in three-layer feed-forward networks, because

middle layers with limited nodes are forced to generalize the

information to accomplish accurate reactions for a broad range of

stimuli [14]. Given the similarity in network structures, although

signaling networks are more complicated and less organized, it is

reasonable to ask the question of whether similar phenomena in

the generalization capacity can be observed in the core of signaling

networks. In other words, we can test the hypothesis that nodes in

the core of a bow tie network form a classifier of reactions against

stimuli are predictable if the dynamics of such molecules are

observed. This question is both scientifically and practically

significant because it not only depicts the logic behind the network

architecture, but also helps us uncover the potential control points

of signaling networks for drug design.

In a GTP-coupled protein receptor (GPCR) signaling network,

calcium and cAMP are considered to be the nodes in the core of a

bow tie network in which a variety of signals from the GPCR

converge and are relayed downstream of the network. Previous

works using clustering approach on AfCS data also argue critical

role of calcium and cAMP [5,6]. Therefore, the hypothesis can be

tested by investigating following two points. First, whether ligand

induced dynamics Ca2+ and cAMP can form distinct clusters that

categorize the ligands into corresponding clusters. Second, can

behaviors of ligand induced dynamics of calcium and cAMP

predict which groups of genes may be up-regulated by the stimuli.

In order to test this hypothesis, a publicly accessible open

dataset from the Alliance for Cellular Signaling (AfCS) [3] has

been used for this study. Both B-cell and macrophage datasets

were used in the analysis of this paper. The AfCS dataset enabled

us to cluster the calcium elevation and cAMP production into four

clusters, and each cluster corresponds to a group of genes involved

in distinct cellular processes. A transcription analysis revealed that

the transcription factors activated for each Calcium-cAMP cluster

are partly conserved between B-cells and macrophages.

Results and Discussion

Data
A publicly available data set from the Alliance for Cellular

Signaling (AfCS) was used for analysis in this paper. In particular,

a set of expression profile data, calcium level data, and cAMP level

data for single ligand assay in both B-cells and macrophages was

used. Expression profiles data for 32 B-Cell ligands (0.5, 1, 2, and

4 h) and 5 macrophage ligands (1, 2, and 4 h) was available. In the

case of B-Cells, 2937 differentially expressed features (feature were

cDNA) [5] were used. We then selected features using log(treated/

control) $0.2 and #20.2 for the macrophage, and 778 features

were obtained for clustering.

Ligands grouping by cAMP and Ca2+ response to stimuli
Ca2+ and cAMP are elevated within a cell upon stimuli, and the

level of elevation can be classified into several clusters depending

upon the combinations of elevation levels. The degree of elevation of

Ca2+ and cAMP upon ligand stimuli has been mapped onto a two-

dimensional Ca2+-cAMP space. When a group of ligands stimuli

Figure 1. Bow-tie network for signaling. Bow-tie networks generally have diverse inputs and outputs with conserved core nodes. It is called
‘‘bow-tie’’ as its pictorial representation resembles bowtie. Fig 1(a): In a three layer feed forward neural networks, a hidden layer (a middle layer)
provides generalization capability and the neural network can function as classifier of diverse inputs mapping into diverse output patterns. It is
essential that numbers of nodes in the hidden layer is smaller than numbers of nodes in inputs and output layers in order to achieve high level of
generalization. This is an example of 6:3:6 feed forward network with 6 input nodes, 3 hidden nodes, and 6 output layer nodes. Fig 1(b): In signaling
networks, receptors corresponds nodes in an input layer, molecules such as cAMP and calcium corresponds nodes in a hidden layer, and transcription
factors corresponds to nodes in an output layer (Left). Looking at this from a stimuli-response viewpoint, it shall be viewed as a process that diverse
ligands activate variety of receptors forming distinct activation patterns and results in patterns of activations at transcriptional level (Right). An
intermediate layer (core nodes) that corresponds to the hidden layer in the feed forward neural network shall provide generalization capability to the
signaling network. In GPCR pathway, cAMP and calcium are key molecules constituting this layer. Thus, diverse stimuli are classified into several
groups that have similar calcium and cAMP elevation. Ligands that are classified into the same group shall activate similar subset of genes, hence
invoking similar physiological responses, if generalization is actually taking place.
doi:10.1371/journal.pone.0004189.g001
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elevate Ca2+ and cAMP to a similar level, these ligands are mapped

onto closer within the hyperspace and may be categorized as a sub-

region. Thus, Ca2+ and cAMP elevations by different groups of

ligands are mapped into different sub-regions within the network

space and a conceptual view of this is represented in Figure 1.

To attribute these differences to the levels of elevation, we used

‘YES’ nomenclature to indicate elevated states and ‘NO’ to

indicate those that were non-elevated. An increase in cAMP

synthesis or Ca2+ mobilization when ligands were added was

assigned ‘YES’, and an unchangeable state was assigned ‘NO’.

Thus, 32 ligands for B-Cell ligands and 23 macrophage ligands

were simply classified into four groups: ‘YES/NO’, ‘NO/YES’,

‘YES/YES’, and ‘NO/NO’, where the former refers to the cAMP

state and the latter specifies the Ca2+ status. The ‘YES’ and ‘NO’

assessments that were conducted based on the experimental

annotations provided with the data and the ligands mapped on the

different sub-regions on two cells are shown in Figures 2 and 3.

Ligands names are listed in Supplementary Tables S1 and S2.

From Figure 2 we can notice that although S1P was annotated as a

Ca2+ - inducing ligand it has cAMP level similar to Dimaprit, and

according to the clustering results was further considered a

candidate for the ‘YES/YES’ group. Lysophosphatidic acid (LPA)

induced cAMP stronger than Ca2+ and Anti-Ig (AIG) was the top

Ca 2+-inducing ligand.

cAMP and Calcium-induced sub-regions control
proliferation and chemotaxis of B-Cell

We avoided clustering together NO/NO, YES/NO, YES/YES

and NO/YES groups, and clustered NO/NO group separately.

The reason was that NO/NO group included 4 ligands (CD40,

LPS, CpG, IL4) with the strongest effect on gene expression that

are unrelated to cAMP and calcium, and their simultaneous

clustering with YES/NO, YES/YES and NO/YES groups could

shade meaningful changes in the expression induced by other

ligands. By the same reason the Anti-Ig (AIG) strongest NO/YES

ligand was analyzed in correlation with NO/NO ligands, with

which it had the most similarity shown by the previous study [5].

The clustering results for the YES/NO, YES/YES and NO/

YES groups of the B-Cell ligands are shown in Figure 4. PCA

correlation balls are used to plot in three dimensions both ligands,

like in conventional correlation circles for PCA, but also clusters’

principal components (see Method). This shows both the groups of

ligands and their correlations, and also the regulations of gene

clusters from the projections of nearby ligands.

We observe ligands that separate into two big sub-regions facing

the opposite directions, which included YES/NO (cAMP) and

YES/YES (cAMP-Calcium) ligands, respectively. MIP3a and S1P,

both categlized into NO/YES ligands group, did not form a

distinct sub-region. This might be explained that S1P has cAMP

Figure 2. Peaks of fold changes for 32 B-Cell ligands classified into four groups with observed ‘YES’ and non-observed ‘NO’
elevation of cAMP and Ca2+. Standard deviations (SD) are shown by the vertical bars. Full names for the ligands are listed in Table S1. S1P and LPA
ligands are marked to be visible as they are given more detailed discussion in the manuscript.
doi:10.1371/journal.pone.0004189.g002
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level similar to YES/NO ligands group, although it was annotated

as Ca2+ -activating. MIP3a did not form an independent

downstream cluster.

All the ligands were quite closely located in the YES/YES sub-

region except for ELC. It is interesting to find LPA in the YES/

NO sub-region rather than in the YES/YES sub-region, which it

was classified in, but by looking at Figure 2, we can see it having

the strongest peak for cAMP compared to the other ligands in

YES/YES group. These two big groups of genes included 675

genes for the YES/NO sub-region and 680 for the YES/YES sub-

region. It was interesting to find that 70% of the genes in the YES/

NO clusters were up-regulated and 80% of the genes in the YES/

YES clusters are suppressed. This means that the termination of

activation of cAMP or/and Ca2+ promoted the deactivation of

30% of the genes in the YES/NO sub-region and 80% of the genes

in the YES/YES sub-region. Based on this, we can consider the

combination of cAMP- Ca2+ to be two times more suppressive,

than cAMP alone.

We calculated the functional enrichment of genes in the up-

regulated and down-regulated clusters using the chi-square test

basing on gene ontology (GO) annotations and depicted the genes

with a p-value,0.05 in the pie-graphs functional categories of

Figure 4. The biological meaning of the YES/YES sub-region can

be related to the fact that 3 of the 6 ligands, such as BLC, SLC,

and ELC, induce the localization and migration of B-Cells to the

secondary lymphoid tissue and SDF1 retains the B-Cell in the

bone marrow during B-Cell development [3].

We have found more genes involved in chemotaxis, cell-

adhesion, and cytoskeleton reorganization, for example, Appbp2,

Col14a1, Cdh11, Daam1, Lamc1, Tmsb10, and Tnfrsf12a (12% of

genes categorized to be involved in chemotaxis, cell-adhesion, and

cytoskeleton using Gene Ontology), comparing to YES/NO sub-

region (2% of genes). This supports our conjecture that YES/YES

sub-region is related to cell-trafficking and adhesive function.

Although 8% of genes out of 12% are down-regulated to 4 hours,

activation of them at the early stage contributes their functional role.

It has been reported [15] that intracellular calcium levels can

depolarize the plasma membrane and regulate B-Cell adhesion and

trafficking independent of the expressed B cell receptor (BCR).

There are also more genes involved in translation (24%) than in

transcription (18%) and in larger groups of immune response

genes (10%).

The YES/NO sub-region is notable for containing genes involved

in cell-proliferation (16%), transcription (31%), translation (27%)

and also genes involved in GTP-ase induced signaling and cAMP

biosynthesis (12%), and Atp6v1f, Adcy5, Gnai2, Rgs14, Gnb2-rs1,

Grap, Prkcn, Rangap, Rsu1, 2810441C07Rik are examples that do

this. This region also has 13% higher inclusion of enzymes (52%)

compared to the YES/NO sub-region (39%).

Receptors of YES/NO and YES/YES sub-regions of B-Cell are

listed in Table 1. Although there were a few, we have 3 G-protein

coupled receptors (GTP-bindng) and several immune response

receptors.

NON-responding ligands and Anti-Ig
We checked how tight the correlations are among the NO/NO

ligands when they are clustered together and the results are shown

Figure 3. Peaks of fold changes for 23 macrophage ligands classified into three groups with observed ‘YES’ and non-observed ‘NO’
elevation of Ca2+ and cAMP. Standard deviations (SD) are shown by the vertical bars. Full names for the ligands are listed in Figure S2. Values
equal to zero for cAMP correspond to the experimentally uncharacterized cAMP. 2MA ligand is marked to be visible as it is given more detailed
discussion in the manuscript.
doi:10.1371/journal.pone.0004189.g003
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in Figure S1. Although we found a couple of pairs where ligands

map quite closely (fMLP-NGFb, LPS-CpG), the ligands in this

group looked much more disconnected than in the other two

groups.

Next, we added AIG to the NO/NO group and clustered genes.

AIG is the strongest Ca2+ ligand and we observed its strong

correlation with CD40, LPS, CpG and IL4 (Figure S2). These

clustering results on these 5 ligands are identical to the finding

Figure 4. Clustering results for YES/NO (cAMP), YES/YES (cAMP-Ca2+) and NO/YES (Ca2+) groups. Ligands group into two big sub-
regions: YES/NO and YES/YES and one small sub-region represented by MI3a (NO/YES) ligand. The M3A ligand mainly induced by Ca2+ is separated
and does not form a cluster downstream. This representation, which we call ‘PCA correlation ball’, shows both the groups of ligands and their
correlations, and also the regulations of gene clusters from the projections of nearby ligands. Bow-graphs in the upper corners show the percent of
genes being up- or down- regulated after the expiration of one/both molecules activation limited to first time marks (30 min in B-Cell), and the
differences are obvious. Genes functions (‘Function’ or ‘Cellular process’ (GO terms), if ‘Function’ is absent) calculated basing on the enrichment in
clusters with p-value,0.05 are shown in the pie-graphs.
doi:10.1371/journal.pone.0004189.g004

Table 1. Receptor genes expressed in YES/NO and YES/YES sub-regions of B-Cell.

Receptor ID Full name Group

Fzd4 Frizzled homolog 4, GPCR YES/NO

Ssr1 Signal sequence receptor, alpha, GTP-binding YES/NO

Igl-V1 Immunoglobulin lambda chain, variable 1 YES/NO

Gabbr1 Gamma-aminobutyric acid (GABA) B receptor 1 YES/NO

Olfr701 Olfactory receptor, GPCR YES/YES

Ahr Aryl-hydrocarbon receptor (cell-cycle, apoptosis) YES/YES

Tnfrsf12a,13c Tumor necrosis factor receptor superfamily (adhesion, apoptosis) YES/YES

doi:10.1371/journal.pone.0004189.t001
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uncovered in paper published on original data [5]. It is interesting

to find AIG (Anti-Ig) NO/YES ligand close to LPS in B-Cell (Fig.

S1) and 2MA NO/YES ligand sharing Cluster_8 with LPS in

macrophage (Figure 5).

YES/NO sub-region in macrophage clusters separately
All the macrophage ligands were clustered together as there

were only a few (5 ligands). Isoprenol (ISO) and Prostaglandin 2

(PGE2) after cAMP induction can be seen clustered closely

together in Fig. 5. 2MA, which is only a NO/YES (Ca2+) ligand, is

located away from the YES/NO and NO/NO ligands (LPS, IFG).

We have considered possibly inducing Cluster_8 together with

LPS. The YES/NO sub-region was found to be interesting and

had similarities with B-Cell, such as possessing many transcriptions

(13%), GTP-ase (9%), proliferation (8%), and ion transport (7%)

genes. It also had a group of enzymes (17%), but they were still

smaller than that in the YES/NO group of B-Cell. What was most

remarkable was the set of receptors involved in the YES/NO and

NO/YES groups (Table 2). Half of them were G-protein coupled

receptors (Ptger2, Avpr1b, Ccr1, Ccrl2, F2rl2, etc.) and the other

half were involved in the immune response (Igk-V1, Il7r, Cd16 Cr2,

Tnfrsf1b). Although we do not separately show the up- and down-

regulated clusters because we had only comparatively small data,

the expression profiles of GPCRs were similar and the genes lost

their expression activities after termination of cAMP. We can

assume that the GPCRs activation is as important for the

proliferation program of cells [16,17,18,19] as cAMP itself. We

also have checked the receptors scattered around the NO/NO

ligands and found two distinct groups: GPCRs (F2rl3, Htr2b, Lgr5,

& Ltb4r1) suppressed more than two folds at the first time mark and

immune response receptors (Toll-like receptor, Natural killer cell

receptor, and Xenotropic retrovirus receptor) gradually activated.

Figure 5. Clustering results on 5 macrophage ligands with available microarray expression data: PGE, ISO (YES/NO), 2MA (YES/YES)
and LPS, IFG (NO/NO). Two cAMP-activated ligands (PGE and ISO) form a distinct sub-region within the hyperspace. NO/NO ligands (LPS and IFG)
do not form a single sub-region. 2MA is an only YES/YES ligand remoted from YES/NO sub-region as well as from NO/NO ligands. Possibly Cluster_8 is
the influenced by 2MA. This representation, which we call ‘PCA correlation ball’, shows both the groups of ligands and their correlations, and also the
regulations of gene clusters from the projections of nearby ligands. Genes functions (‘Function’ or ‘Cellular process’ (GO terms), if ‘Function’ is absent)
calculated basing on the enrichment in clusters with p-value,0.05 are shown in the pie-graphs. By the reason of small number of genes we
combined up- and down- regulated gene together in the pie-graphs.
doi:10.1371/journal.pone.0004189.g005
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Transcription regulation analysis in B-cell and
macrophage

Given these differences in genes that are activated in each

ligands group that are categorized based on the sub-regions on the

cAMP-Calcium space, a next natural question to ask is what

transcriptional factors are involved in the expression of genes in

different sub-regions and how specific are they? We do not use

phylogenetic footprinting because the downstream signaling in

immune cells can be weakly conserved in higher eukaryotes, and

therefore only mouse data has been used for analysis.

Finding cis-elements
For the analysis we used the F-match software within

ExPlain2.4 package [20,21]. F-match searches against the largest

library (.500) of position specific scoring matrices (PSSM)

compiled on experimentally verified transcription factors binding

sites of the higher eukaryotes [20,21] from the TRANSFAC

database [20].

F-Match evaluates the set of promoters and for each matrix tries

to find two thresholds: one, th-max, which provides maximum ratio

between the frequency of matches in the promoters in focus

(control set ‘C’) and background promoters (background set ‘B’)

(over-represented sites); and the second threshold, th-min, that

minimizes the same ratio (underrepresented sites). A binomial

distribution of the sites between two sets is calculated and the p-

value is assigned to the probability that the observed number of

sites and higher, for over-represented matches, or lower, in the

case of under-represented matches.

Sequences to 2000 bp upstream and 500 bp downstream from

the transcriptional start sites (TSS) of the integrated TRANSPro

database (ExPlain2.4) accumulating TSS evidences from EPD,

DBTSS, and Ensembl databases were used for the analysis.

Comparison between YES/NO (cAMP) and YES/YES
(cAMP-Calcium) groups in B-Cell

As we had enough data to separate genes in YES/NO and

YES/YES groups into Up-regulated (UP) and Down-regulated

(DOWN) sub-groups (Fig. 4) the biggest interest for us was to find

differences in the transcription regulators of those sub-groups.

Thus we did search having following pairs for the control[C] and

background [B] sets: YES/NO(UP)[C] to YES/YES(UP)[B] and

vice-versa, and YES/NO(DOWN)[C] to YES/YES(DOWN)[B]

and vice-versa. Finally we had 4 resulted sets of possible candidates

for transcription factor binding sites (TFBS) represented by the

TRANSFAC matrices names. We picked up top 30 TFBS for each

group, excluded matrices of qualities 5 and 6 (‘_Q5’, ‘_Q6’) and

plotted the rest of them as possible candidates for the transcription

factors binding (Figure S3).

We identified 18 TFBS being shared in different combinations

by the promoters of genes in 4 groups of B-Cell (YES/NO‘UP’,

YES/NO‘DOWN’, YES/YES‘UP, YES/YES‘DOWN’ and

group-specific TFBS.

23% (25/78) of TBFS are known to be Immune System

regulators, such as, AP1, GATAs, PPARA, MZF1, IK1,

TAL1ALPHA(BETA)E47, CEBP, NFKAPPAB50, EGRs, etc

[22,23].

Comparison between YES/NO (cAMP) and NO/YES
(Calcium) groups in Macrophage

In the case of macrophage we did not separate the genes into

Up- and Down-regulated sub-groups in macrophage, as we had a

very small and putative dataset (Cluster_8) for the NO/YES sub-

region of the macrophage to fairly compare them. We compared

YES/NO[C] group against NO/YES[B] as a background and

vice-versa, and the results are shown in Figure S4. We found the

same percentage 23% (9/39) of known Immune System regulators

and only 4 TFBS were shared by YES/NO and NO/YES groups.

It would be interesting if this could explain the stronger differences

between the YES/NO and NO/YES datasets, which do not share

a common molecule, than in the YES/NO and YES/YES

datasets, which share cAMP. Sub-region specific TBFS candidates

were observed with p-values slightly lower than in B-Cell.

Macrophage and B-Cell (Up- and Down- together) YES/NO

groups have common TFBS, which are MZF1, CEBP, AP2AL-

PHA, GR1, AR, SRY, etc.

In case we compare the sets of TFBS found in B-Cell and

Macrophage 21% (24 out of 113 unique names) are common,

although some bias from the dataset sizes could be expected.

By taking into account the similarities and differences described

above, we concluded that some combinatorial effect of the

transcription factors together with specific groups of the

transcription factors are utilized in regulating sub-regions formed

by the different statuses of activation of cAMP and calcium.

Although some bias is expected from the different background

dataset sizes, we hope that our findings will help in the further

investigations on the transcription regulation network in immune

cells. In this work our purpose was limited by the discovery of the

possible transcription factor candidates with combinatorial and

group-specific destinations within the bow-tie signaling network

architecture.

As a result of our analysis, the correlation between the ligand

groups and the groups of genes that are activated is obvious, and

the sub-regions within the cAMP-Calcium space bridges the ligand

Table 2. Receptor genes expressed in YES/NO and NO/YES
sub-regions of macrophage.

Receptor ID Full name Group

Ptger2 Prostaglandin E receptor (subtype EP2), GPCR Y/N

Avpr1b Arginine vasopressin receptor 1B, GPCR Y/N

Ccr1 Chemokine (C-C motif) receptor 1, GPCR Y/N

Ccrl2 Chemokine (C-C motif) receptor-like 2, GPCR Y/N

F2rl2 Coagulation factor II (thrombin) receptor-like 2, GPCR Y/N

Gpr146 G-protein coupled receptor, GPCR Y/N

Olfr948 Olfactory receptor, GPCR Y/N

Vmn2r89 Vomeronasal 2, receptor 89, GPCR Y/N

Igk-V1 Immunoglobulin kappa chain variable 1 (V1) Y/N

Il7r Interleukin 7 receptor Y/N

Cd160 CD160 antigen, MHC class I Y/N

Cr2 Complement receptor 2 Y/N

Tnfrsf1b Tumor necrosis factor receptor Y/N

Nr4a2 Nuclear receptor subfamily 4, group A, member 2 Y/N

Gabra1 Gamma-aminobutyric acid A receptor, alpha 1 Y/N

Brs3 Bombesin-like receptor 3, GPCR N/Y

Gpr84 G-protein coupled receptor, GPCR N/Y

Il5ra Interleukin 5 receptor, alpha N/Y

Cd22 CD22 antigen (adhesion) N/Y

Cd244 Natural killer cell receptor 2B4 N/Y

Gosr1 Golgi SNAP receptor complex member 1 N/Y

doi:10.1371/journal.pone.0004189.t002
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groups and genes that are to be activated in each stimuli. Ligands

that are categorized in the YES/NO group promote the general

proliferation of cellular activities and the YES/YES group tends to

activate the adhesion and migration of related genes. These two

groups include many GPCRs as well as nuclear and immune

system-specific receptors. The NO/NO ligands do not produce

meaningful downstream clusters and few GPCRs found in

macrophage are strongly down-regulated by these ligands, whereas

the immune response receptors were found continuously up-

regulated. Thus, we believe the hypothesis is likely correct, and

should be considered to be one of the logics behind signaling

systems. The investigation into and further elaboration of such a

study is warranted to determine if there are additional molecules

that can further sub-categorize cellular responses so that the

detailed differences in cellular responses can be explained at a

network architecture level.

Methods

Clustering ligands and genes
The clustering analysis was carried out on ‘in house’ software

especially developed for the task. This task consists in grouping

genes in clusters, according to the similarity of their measurements;

we performed a hard membership clustering, in which each gene

belongs exactly to one cluster. However, rather than directly

performing clustering, we chose to first preprocess data: it is indeed

widely accepted that clustering results are often improved when

one plunges data in a low-dimensional space which captures the

intrinsic manifold on which they lie [24,25,26]. Overall, we get

five steps for preprocessing and clustering. First, a time series for

gene i and ligand j was mapped to a slope sij using a conventional

linear regression fit:

Sij~
cov t,xij

� �
var tð Þ ~

Sk tk{avg tð Þð Þ xijk{avg xij

� �� �
Sk tk{avg tð Þð Þ2

:

Here, ‘‘avg’’ denotes the average, ‘‘var’’ is the variance and ‘‘cov’’

is the covariance; furthermore, t denotes the set of time stamps and

xij denotes the set of measurements for gene i and ligand j. k spans

{0, 1, 2, 3} (B-Cell) and {0, 1, 2} (Macrophage). Since only two

measurements are necessary for one slope, we do not need to

discard genes with incomplete sets of measurements. Second, a

similarity matrix M is computed, whose entry in row i, column l

(mil) is the similarity between gene i and l, chosen to be

proportional to the heat kernel [24]:

mil~exp {
1

q

X
j

sij{slj

� �2

 !
:

Here, q.0 is a real parameter to be fixed by the user (q = 2 in our

experiments). Matrix M is then post-processed following a

procedure close to Local Linear Embedding [25]. The user

chooses an integer r.0 (r = 5 in our experiments); for each row i of

M, we search for the r largest entries whose columns define the r

nearest neighbors of gene i. For each row i of M, we then compute

the symmetric nearest neighbors of each gene i, by aggregating

both the nearest neighbors of the gene, and the genes for which

gene i is a nearest neighbor [27]. We finally replace M by using the

Boolean indicator matrix for symmetric nearest neighbors (mil = 1

if genes i and l are symmetric nearest neighbors, or 0 otherwise).

Matrix M remains symmetric, and turns out to be a very

convenient input for the third step, which seeks the closest doubly

stochastic approximation of M [26]. This doubly stochastic

approximation finds the solution to the following problem:

arg min
Y § 0

Y1 ~ 1
Y ~ YT

P
i

P
l

mil{yilð Þ2:

The first condition on Y is non-negativity; with the second

condition, Y is a Markov chain’s transition matrix. With the last

condition, Y becomes doubly stochastic. In the fourth step, the

spectral decomposition of Y is computed, and we seek the leading

d non-trivial eigenvectors of this decomposition, which yield the

new genes coordinates in <d [26]. There is no universally efficient

rule of thumb to choose d; we decided to pick d = 3, as this makes

clustering fit to the representation of genes in three dimensions.

We also noted that this choice was accurate from the standpoint of

the eigenvalues, as the first three stood in general significantly

above the others.

The fifth and last step is a conventional k-means algorithm on

these new manifold coordinates. We have run numerous

experiments for different values of k, and kept the value of k

that visually yields the strongest bend in k-means potential and k-

means intracluster kernel similarities. The clusters are visualized in

this paper on three-dimensional PCA correlation balls, instead of

two-dimensional correlation circles. Each cluster u is represented

by cu, the expectation of its members manifold coordinates, i.e.:

cu~
X

i

Pr i uj½ �si,

Pr i uj½ �~Pr u ij½ �Pr i½ �=Pr u½ �:

Here, si is the vector description of gene i (each coordinate is a

slope); Pr[u|i] is the membership probability for gene i in cluster u,

i.e. the indicator variable for the membership in cluster u, known

from the clustering results; Pr[i] is the probability of gene i, known

since it is the number of replica measurements for the gene over

the total number of replica measurements for all genes; finally,

Pr[u] is the probability of cluster u. This last probability is

unknown, so we end up with an approximation of cu of the form:

cu!
X

i

Pr u ij½ �Pr i½ �si:

Rather than plotting a point, we plot a line segment whose

direction is given by the right-hand side of the preceding equation.

Supporting Information

Table S1 Classification of 32 B-cell ligands into 4 groups

according to their cAMP and Ca2+ fold increase by the expertise

provided with the data. ‘YES’ was assigned to the induced state

and ‘NO’, otherwise. The former annotation refers cAMP and the

latter Ca2+ molecules. The respective numbers of the ligands are:

‘YES/NO’ - 6, ‘NO/YES’ - 3, ‘YES/YES’ - 5 and ‘NO/NO’ - 18.

Found at: doi:10.1371/journal.pone.0004189.s001 (0.07 MB

DOC)

Table S2 Classification of 23 macrophage ligands into 3 groups

according to their cAMP and Ca2+ fold increase by the expertise

provided with the data. ‘YES’ was assigned to the ‘induced’ state

and ‘NO’, otherwise. The former annotation refers cAMP and the

latter Ca2+ molecules. The respective numbers of the ligands in 4

groups are: ‘YES/NO’ - 2, ‘NO/YES’ - 7 and ‘NO/NO’ - 14.

Found at: doi:10.1371/journal.pone.0004189.s002 (0.05 MB

DOC)
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Figure S1 NO/NO (without cAMP or Ca2+ response) ligands

clustered. Except for fMLP-NGF and PAF-IFNb pairs of ligands

all ligands this group look uncorrelated, without the explicit

projection to the particular downstream clusters.

Found at: doi:10.1371/journal.pone.0004189.s003 (5.97 MB TIF)

Figure S2 NO/NO ligands clustered together with AIG NO/

YES (strongest Ca2+-inducing ligand). AIG is the closest to CD40,

LPS, CpG and IL4 ligands with strong proliferate and differen-

tiation response [5]. It is interesting to notice that adding AIG

ligand made the picture of NO/NO ligands completely reorga-

nized, thus brining those 5 ligands closely, while all others moved

away.

Found at: doi:10.1371/journal.pone.0004189.s004 (5.97 MB TIF)

Figure S3 The common and specific transcription factor

binding sites (TFBS) found in 4 sub-groups of YES/NO and

YES/YES ligands groups of B-Cell. Horizontal axis lists the

matrices names, which former parts (like ‘MZF1’ in MZF1_01)

indicate the TFBS name and the latter parts (like ‘_01’ in

MZF1_01) point to the experimental-base quality of the matrices

in the descending order from ‘1’ to ‘6’. From the top 30 TFBS we

selected matrices within the quality index range from 1 to 4.

Asterisks* indicate known regulators of the Immune System, which

constitutes 23% of the total number of TFBS (25/78) for B-Cell.

The respective number of genes in the right-down corner indicates

the numbers of genes which promoters were subjected to the

transcriptional analysis and depicted in Figure 3 of the manuscript.

Found at: doi:10.1371/journal.pone.0004189.s005 (2.53 MB TIF)

Figure S4 The common and specific transcription factor

binding sites (TFBS) found in 2 YES/NO and NO/YES sub-

regions of macrophage. Horizontal axis lists the matrices names,

which former parts (like ‘MZF1’ in MZF1_01) indicate the TFBS

name and the latter parts (like ‘_01’ in MZF1_01) point to the

experimental-base quality of the matrices in the descending order

from ‘1’ to ‘6’. From the top 30 TFBS we selected matrices within

the quality index range from 1 to 4. Asterisks* indicate known

regulators of the Immune System, which constitutes 23% of the

total number of TFBS (9/39) selected for macrophage. The

respective numbers of genes in the right-down corner indicate the

numbers of genes which promoters were subjected to the

transcriptional analysis and depicted in Figure 5 of the manuscript.

Found at: doi:10.1371/journal.pone.0004189.s006 (2.37 MB TIF)
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