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The replication and transcriptional activator (Rta), encoded by ORF50 of gammaherpesviruses,

initiates the lytic cycle of gene expression; therefore understanding the impact of Rta on viral and

cellular gene expression is key to elucidating the transcriptional events governing productive

infection and reactivation from latency. To this end, the impact of altering Rta transcription on viral

and cellular gene expression was studied in the context of a whole virus infection. Recombinant

murine gammaherpesvirus (MHV)-68 engineered to overexpress Rta greatly accelerated

expression of specific lytic cycle ORFs, but repressed transcription of the major latency gene,

ORF73. Increased expression of Rta accelerated the dysregulation in transcription of specific

cellular genes when compared with cells infected with wild-type and revertant viruses. A subset of

cellular genes was dysregulated only in cells infected with Rta-overexpressing virus, and never

in those infected with non-overexpressing viruses. These data highlight the critical role of Rta

abundance in governing viral and cellular gene transcription, and demonstrate the importance of

understanding how the relative expression of ORF50 during the virus life cycle impacts on these

processes.

INTRODUCTION

Gammaherpesviruses are lymphotropic viruses that estab-
lish lifelong latent infections, and are associated with the
development of lymphoproliferative disorders. Murine
gammaherpesvirus (MHV) 68 was isolated from a bank
vole (Blaskovic et al., 1980), and represents a genetically
tractable system for the study of gammaherpesvirus patho-
genesis (Nash et al., 2001; Stevenson et al., 2002).

Gammaherpesvirus immediate-early genes initiate viral
lytic cycle gene expression, and thereby govern the switch
between lytic and latent replication. Epstein–Barr virus
(EBV) encodes two genes (BRLF1 and BZLF1) that trans-
activate the lytic cycle of replication (Schwarzmann et al.,
1998; Speck et al., 1997). The gene product of BZLF1, Zta,
is not well conserved among the gammaherpesviruses.
BRLF1, which is well conserved and encodes the virus
replication and transcriptional activator (Rta) protein, is

homologous to the open reading frame (ORF) 50 of
MHV68, Kaposi’s sarcoma-associated herpesvirus (KSHV),
rhesus rhadinovirus (RRV) and herpesvirus saimiri (HVS)
(reviewed by West & Wood, 2003).

The Rta protein encoded by ORF50 transactivates viral gene
expression, triggering the lytic replication cycle (Liu et al.,
2000; Nicholas et al., 1991). KSHV Rta enhances its own
transcription and transactivates expression of ORF57 (Deng
et al., 2000), properties which are also shared by HVS and
MHV68 Rta (Liu et al., 2000; Whitehouse et al., 1998).
MHV68 and RRV Rta can transactivate KSHV viral pro-
moters, demonstrating that the murid and rhesus Rta
proteins retain some functions of the human Rta (Damania
et al., 2004). In addition, MHV68 Rta transactivates the
MHV68 ORF50, ORF57 and M3 promoters (Martinez-
Guzman et al., 2003; Pavlova et al., 2005; Wu et al., 2001),
although other viral gene targets may exist. Studies in
KSHV and MHV68 have demonstrated an obligate require-
ment for Rta expression to initiate lytic replication (Pavlova
et al., 2003; Zhu et al., 2004). Moreover, expression of RtaSupplementary material is available with the online version of this paper.
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alone is sufficient to disrupt latency and initiate lytic
replication in KSHV, HVS and MHV68 (Goodwin et al.,
2001; Sun et al., 1998; Wu et al., 2000).

In addition to activating viral transcription, Rta has been
shown to modulate the expression of cellular genes. Rta
of KSHV activates transcription of human interleukin-6
(IL-6) (Deng et al., 2002) and interacts with the signal
transducer and activator of transcription (STAT) 3 protein,
inducing transcription of STAT3-target genes (Gwack et al.,
2002). Recent work has highlighted a role for KSHV Rta in
upregulating transcription of CD21 and CD23 in B cells
(Chang et al., 2005). These studies expressed Rta in iso-
lation from other viral factors and the role of Rta in the
alteration of cellular gene expression, when expressed in
the context of viral infection, has yet to be studied.

We sought to elucidate how changes in the relative expres-
sion of Rta alter viral and cellular gene expression using an
MHV68 engineered to overexpress Rta by using the murine
cytomegalovirus (MCMV) IE1 promoter (termed M50;
May et al., 2004). In this way, we were able to study the
transcriptional impact of altering Rta abundance when it
was expressed in the context of virus infection. M50 infec-
tion strongly induced several viral genes that are putative
targets for direct transactivation by Rta, but downregulated
transcription of the major latent gene ORF73, indicating
that lytic replication may actively repress latent gene
expression. Specific cellular genes [including nuclear factor
of k light chain gene enhancer in B-cells inhibitor a (IkBa)
and nuclear hormone receptor Nur77] were dysregulated
after M50 infection and also, later, during wild-type (WT)-
MHV68 infection. Changes in the transcription of these
common genes may be fundamental to the viral replicative
cycle. A subset of genes displayed dysregulated transcrip-
tion only when Rta was overexpressed, including genes
involved in cell adhesion (VCAM-1), cell growth (FGF10)
and inflammation (Tnfip6, CPA3). These findings high-
light cellular genes of potential importance during MHV68
early lytic replication, and demonstrate the need to con-
sider Rta abundance as a fundamental determinant of
alterations to the cellular transcriptome early during lytic
replication and reactivation from latency.

METHODS

Cell lines and virus infections. NIH 3T3 cells were cultured in

Dulbecco’s modified Eagle’s medium supplemented with fetal calf

serum (FCS; 10 % v/v), 4 mM L-glutamine, 100 U penicillin G ml21

and 100 mg streptomycin ml21. Working stocks of virus were

medium-purified from infected BHK21 cell supernatants by high-

speed centrifugation (14 000 r.p.m. for 2 h in a Beckman Type 19

rotor) and stored at 270 uC. Infections were performed at an m.o.i. of

5 with WT-MHV68 (strain g2.4), Rta-overexpressing MHV68 (M50)

or revertant virus (50R) (May et al., 2004). For each viral infection,

mock-infected (medium only) cells were included as controls.

Microarray probe design and fabrication. Custom mouse

immunology oligo set arrays (immunoarrays) were obtained from

the MRC Rosalind Franklin Centre for Genome Research microarray

programme (Hinxton, UK). The immunoarray contains 50mer oligo-

nucleotide probes representing 2434 mouse genes and expressed

sequence tags (ESTs) (for details see Supplementary Table S1, avail-

able in JGV Online). To enable analysis of the MHV68 transcriptome,

additional 50mer oligonucleotide probes representing 77 viral ORFs

were incorporated into the immunoarray.

RNA extraction and microarray hybridization. RNA was extracted

at 1 and 2 h post-infection (p.i.) from M50-, 50R- and WT-MHV68-

infected 3T3 cells using RNeasy columns (Qiagen), according to the

manufacturer’s instructions. In a separate experiment, RNA was

extracted at 1, 2, 4, 8 and 12 h p.i. from 3T3 cells infected with WT-

MHV68. Contaminating DNA was removed by on-column digestion

with 30 U DNase (Qiagen), and RNA concentration was determined

using an ND-1000 spectrophotometer (NanoDrop Technologies).

RNA (40 mg in 12.9 ml RNase-free H2O) was labelled with dCTP-Cy3

or dCTP-Cy5 (Amersham Biosciences) and hybridized to micro-

arrays as previously described (Petalidis et al., 2003). Hybridized

microarrays were scanned using a microarray scanner (Agilent

Technologies).

Microarray data analysis. Imagene software (BioDiscovery) was

used at default settings to extract probe fluorescence intensities; poor

data (flag51) were discarded prior to analysis. For viral genes,

background-subtracted fluorescence values were averaged for dupli-

cate probes on each microarray, then normalized across all

microarrays using the 75th percentile method (Dr Edward Wagner,

University of California at Irvine, USA). Data from each time point

were normalized separately.

For cellular genes, intensity-dependent normalization (LOWESS) was

performed for all microarrays at each time point using GeneSpring

software (Agilent Technologies). The reproducibility of the micro-

array data was confirmed to be consistently high for each experiment,

with mean correlation coefficients for the WT time course and M50

experiments of 0.95 and 0.87, respectively (Supplementary Fig. S1,

available in JGV Online). Viral genes dysregulated by Rta over-

expression were those that were expressed (.100 fluorescence units)

with a fluorescence value in M50-infected cells that was at least

twofold different from that in WT-infected cells. Cellular genes

dysregulated in the WT-MHV68 time course (1–12 h p.i.) were

identified as up- or downregulated (infected/mock-infected) by

.1.656, t-test P value ,0.05, and fluorescence in either infected

or mock-infected Cy-dye channel .1000 units. Cellular genes dys-

regulated by Rta overexpression were identified as those changing in

M50-infected cells (according to the criteria outlined previously) and

not changing in WT- and 50R-infected cells. The 1.65-fold cut-off

value represents an empirically determined 95 % confidence limit for

calling differential expression based on ‘self vs self’ hybridization data

(P. Lyons, unpublished data).

Primer design and quantitative RT-PCR (Q-RT-PCR). Primers for

tumour necrosis factor-induced protein (Tnfip) 6, vascular cell

adhesion molecule (VCAM)-l, fibroblast growth factor (FGF) 10,

vascular endothelial growth factor (VEGF) and b-2 microglobulin

(b2M; loading control) genes were designed using Primer3 (Supple-

mentary Table S2, available in JGV Online) (Rozen & Skaletsky,

2000). RNA from infected cells at 2 h p.i. was reverse-transcribed

using Super RT (HT Biotechnology), according to the manufacturer’s

instructions. RNA was extracted from three independent series of

infections. Levels of Tnfip6, VCAM-1, FGF10 and VEGF were

normalized to b2M loading controls by subtracting their Ct values

from the b2M double antibody Ct value for that cDNA (ABI 7000

sequence detection system; Applied Biosystems; and SYBR Green;

Qiagen). Levels of CPA3 were normalized to HPRT using Assay-On-

Demand reagents (Applied Biosystems). Data analysis was performed

using Excel (Microsoft).
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Western blotting. Cell lysates were prepared from 3T3 cells infected
for 10 h. Protein samples (50 mg) were subjected to SDS-PAGE,
transferred to nitrocellulose membranes and incubated in 0.4 mg goat
anti-mouse VCAM-1 ml21 (R&D Systems) or an irrelevant primary
antibody (0.4 mg goat anti-mouse IgM–biotin ml21; Sigma-Aldrich).
Membranes were washed in PBS/0.1 % Tween 20, incubated in
secondary antibody (donkey anti-goat IgG–horseradish peroxidase;
The Jackson Laboratory), washed in PBS/0.1 % Tween 20 and then in
dH2O. Protein bands were visualized using ECL reagents (Amersham)
and quantified using Quantity One software (Bio-Rad).

FACS analysis. Cells (56105) were infected for 10 h, washed three
times in PBS/1 % FCS and stained using biotinylated goat anti-
mouse VCAM-1 (2.5 mg ml21; R&D Systems). Isotype controls
were WT-infected cells stained with biotinylated goat anti-mouse
IgM (2.5 mg ml21; Sigma). Cells were washed, stained with
streptavidin–FITC (1.25 mg ml21; Amersham Biosciences), rewashed
and analysed by flow cytometry (FACSCalibur; BD Biosciences). 7-
Aminoactinomycin D (7AAD; Molecular Probes) was used as a
marker of dead cells. Data analysis was performed using FCSPress
(Ray Hicks, Department of Medicine, University of Cambridge,
UK).

RESULTS

Accelerated lytic replication as a consequence of
Rta overexpression leads to rapid changes in viral
gene expression

To address the impact of Rta abundance on viral gene
transcription, 3T3 cells were infected with an MHV68
recombinant (M50) engineered to overexpress Rta
(ORF50) as a consequence of placing Rta under control
of the MCMV IE1 promoter (May et al., 2004). As controls,
WT- or M50 revertant (50R)-MHV68 infections were
performed. Viral gene expression was determined at 1 and
2 h p.i. using a custom microarray carrying probes re-
presenting 77 MHV68 ORFs. Viral gene expression was
low at 1 h p.i. in cells infected with WT- or 50R-MHV68
(Fig. 1a, b). Increased Rta transcription profoundly up-
regulated expression of many ORFs, the most abundant
being genes with roles in viral DNA replication, ORF61
[ribonucleotide reductase (RNR), large subunit], ORF57
(post-transcriptional regulator) and ORF37 (alkaline
exonuclease) (Fig. 1a).

To quantify these changes, the fold-change difference in
expression of each ORF was calculated (Fig. 1c). Over-
expression of Rta upregulated the transcription of most
MHV68 ORFs. Many of the most highly induced genes
[including ORFs 6 (single-stranded DNA-binding protein),
37, 57 and 61] were also those that were abundantly expres-
sed, indicating that increased Rta expression strongly
induced transcription of these genes. Contrastingly, over-
expression of Rta downregulated transcription of ORF73
(latency-associated nuclear antigen, LANA) and the three
viral tegument/N-formylglycinamide ribotide amidotrans-
ferases (FGARAT; ORF75A, B and C). When the data were
analysed to determine whether certain functional classes
of viral genes (DNA replication/transactivation, virion
structure/transport/assembly or latency-associated) were

preferentially upregulated or downregulated, Rta over-
expression was determined to affect all classes equally (x2

analysis, data not shown).

At 2 h p.i., viral gene transcription in M50-infected cells
remained greater than in WT- or 50R-infected cells
(Supplementary Fig. S2a, b; available in JGV Online), but
the fold-change differences were less striking than at
1 h p.i. (Supplementary Fig. S2c). Similar to the 1 h time
point, overexpression of Rta reduced transcription of
ORF73, ORFs 75A, B and C and affected all functional
classes equally (data not shown).

Therefore, elevated transcription of Rta profoundly influ-
enced viral gene transcription as early as 1 h p.i. Specific
genes (including DNA replication ORFs 6, 37, 57 and 61)
were strongly induced by elevated Rta levels, indicating that
their induction via Rta may be fundamental to triggering
lytic replication. Contrastingly, increased Rta suppressed
ORF73 transcription, illustrating a mechanism by which
the switch between latency and lytic replication may
occur.

Rta abundance is a fundamental determinant of
cellular gene transcription

To determine the extent to which levels of Rta impact on
cellular transcription, we identified genes whose transcrip-
tion was altered in M50-infected cells, but not in WT- or
50R-infected cells at 1 and 2 h p.i., and compared these
to transcriptional changes occurring in a separate WT
infection time course.

Enhanced expression of Rta induces unique changes
in cellular gene transcription and negatively regulates
expression of tumour suppressor genes. A striking
finding of this study was that altering the expression of Rta
had a profound influence on the cellular transcriptome
(Table 1). M50 infection induced the transcriptional dys-
regulation of a cohort of 15 genes and one EST not
observed to change in WT- or 50R-infected cells at the
same 2 h p.i. time point, or in a separate WT infection time
course (Table 1). Most of the M50-specific, upregulated
genes encode secreted proteins, including carboxypepti-
dase (CP) A3, Tnfip6 and FGF10. Elevated expression of
Rta downregulated the transcription of several tumour
suppressor or pro-apoptotic genes [transforming growth
factor b-induced transcript (TGFbli) 4, myeloid differ-
entiation primary response gene (Myd) l18, IkBa, CCAAT/
enhancer binding protein (C/EBP) b, Kruppel-like factor
(Klf) 4, CCCTC-binding factor (Ctcf) and Nur77] as well
as members of the transforming growth factor (TGF) b
signalling pathway [integrin a V (CD51), Myd118, TGFbli4
and dual specificity phosphatase (Dusp) l] mutations in
which are associated with human malignancies. These
data indicate that Rta abundance is a critical factor in
determining the cellular transcriptional profile and sug-
gest that the level of Rta expressed may influence cell
survival.

Rta determines viral and cellular gene expression
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Lower Rta expression targets dysregulation of cellular
genes with roles in cell survival, adhesion, migration
and mRNA processing. The 29 genes and three ESTs
differentially regulated at lower Rta expression in the WT
infection time course were strikingly different from those
dysregulated at higher Rta abundance (Table 1). The onco-
genes Myc and ephrin receptor Epha2 were upregulated,
whereas the pro-apoptotic zinc finger protein (Zfp) 36,
Zfp36 C3H type-like (Zfp36l) 1, Klf2, inhibitor of DNA
binding (Id) 3 and DNase II a (DNase2a) were down-
regulated. Jun, Jun proto-oncogene related gene d1 (JunD),
Fos and Fosb were all downregulated and are components
of the AP-1 complex that can exert either pro- or anti-
apoptotic effects. Downregulation of Zfp36 and Zfp36l1
may additionally increase the stability of AU-rich element
(ARE) domain-containing mRNAs (Blackshear, 2002). The
expression of cell adhesion and migration-associated genes

was also affected, with upregulation of the urokinase
plasminogen receptor (uPAR), CD44 and small inducible
cytokine (Scy) a2, but downregulation of Ly6 receptors,
CD24a and integrin b (Itgb) 5. Therefore, lower Rta
expression induced distinct transcriptional changes domin-
ated by the dysregulation of genes implicated in cell
survival, adhesion, migration and mRNA stability.

A conserved set of cellular genes are dysregulated at
both high and low Rta abundance. A subset of the cellular
genes identified was dysregulated at both high (M50) and
lower (WT) Rta abundance (Table 1). IkBa, Dusp1 and
Nur77 have roles in the negative regulation of inflam-
mation, mitogen-activated protein kinase (MAPK) signal-
ling and cell survival, respectively, whereas platelet-derived
growth factor receptor a polypeptide (PDGFRA) is a
potent activator of cell growth, survival and migration. The

Fig. 1. Viral gene expression 1 h after infection with WT-, 50R- and M50-MHV68. 3T3 cells were infected at an m.o.i. of 5.
RNA was extracted and analysed by DNA microarray. Fluorescence intensity (relative expression) of high-expression
(fluorescence .1000) MHV68 ORFs (a) and low-expression (fluorescence ,1000) MHV68 ORFs (b) in infected cells. Bars
show mean fluorescence intensities (n53), ± SD. ORF colours: yellow, Rta; red, DNA replication/transactivation; blue, virion
structural/transport/assembly protein; green, latency-associated; black, unknown/other function. (c) Histogram showing fold-
change differences in ORF expression when M50-infected cells are compared to WT- (grey) or 50R- (white) infected cells.
Statistically significant fold changes (when M50 was compared with WT; P,0.05 by Student’s t-test) are indicated by
asterisks. The pie chart shows percentage of ORFs that (relative to WT-MHV68-infected cells) were upregulated .2-fold (q),
unchanged («) or downregulated .2-fold (Q).
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conservation of these transcriptional changes implies an
important role in lytic replication and the potential bio-
logical relevance of these findings is outlined in the
Discussion.

Confirmation of microarray findings at the level of
RNA and protein

We chose to study the link between Rta abundance and
transcription further by RT-PCR, and examined a subset of
cellular genes specifically dysregulated following M50
infection. Genes were chosen for their biological interest:
CPA3 is the most highly upregulated transcript and encodes
a carboxypeptidase that may function to degrade inflam-
matory leukotrienes (Reddanna et al., 2003; Vendrell et al.,
2000); FGF10 is a member of a family of proteins with
potent growth-promoting properties (Eswarakumar et al.,
2005); Tnfip6 suppresses the inflammatory response, which
may facilitate viral growth, and has also been implicated in
the regulation of lymphocyte migration and adherence
(Milner & Day, 2003); VEGF is a pro-angiogenic factor, the
expression of which is upregulated by EBV latent mem-
brane protein 1 (LMP1) and KSHV ORF74 (Bais et al.,
1998; Murono et al., 2001); VCAM-1 was selected despite
having a P value .0.05, as its upregulation has been
associated with several human herpesvirus infections (Allen
et al., 1996; Kim et al., 2000; Pati et al., 2001; Rahbar &
Soderberg-Naucler, 2005). Q-RT-PCR confirmed the
differential regulation of all of these genes (Fig. 2).

To test the correlation between levels of mRNA and
protein, we chose to examine expression of VCAM-1 by
Western blotting (Fig. 3a). At 6 and 10 h p.i., M50 infec-
tion upregulated VCAM-1 expression 3.67- and 4.64-fold

relative to that in WT- and 50R-infected cells, respectively
(Fig. 3b). The difference in expression of VCAM-1 between
WT- and 50R-infected cells was never greater than 1.79-
fold (10 h p.i.) at any time point tested, and was substan-
tially lower than that induced by M50 infection. To
confirm these findings using an independent measure of
VCAM-1 abundance, FACS analysis of cells infected for
10 h with WT, 50R or M50 viruses was performed (Fig.
3c). Expression of VCAM-1 in cells infected with WT- or
50R-MHV68 was almost identical, but in M50-infected
cells it was 46 and 32 % greater than in WT- and 50R-
infected cells, respectively. Therefore, increasing Rta

Fig. 2. Q-RT-PCR confirmation of microarray data. 3T3 cells were
infected (at an m.o.i. of 5) for 2 h with WT-, 50R- or M50-MHV68
and expression of CPA3, TNFIP6, FGF10, VCAM-1 and VEGF
was determined using Q-RT-PCR. Bars show mean fold changes
(n53 infections) normalized to loading controls (b-2 microglobulin
or glyceraldehyde-3-phosphate dehydrogenase) in cells infected
with 50R- (white) and M50- (black) relative to WT-MHV68 (grey).
P values according to Student’s t-test are shown (*, P,0.05;
**, P,0.01; ***, P,0.001). There was no statistically significant
difference between WT- and 50R-MHV68 values for any of the
genes tested.

Fig. 3. Expression of VCAM-1 protein in infected cells. 3T3 cells
were infected with WT-, 50R- or M50-MHV68 for 2, 4, 6 and 10 h.
(a) Cell lysates were subjected to gel electrophoresis, the proteins
were transferred to a nitrocellulose membrane and VCAM-1 was
detected using biotinylated anti-VCAM-1 with anti-IgG streptavi-
din–horseradish peroxidase antibodies. +, Uninfected 3T3 cells;
”, uninfected 3T3 cells with irrelevant (anti-mouse IgM biotin)
primary antibody. (b) Densitometry of the protein bands was
performed and VCAM-1 values were normalized to b-actin con-
trols. For each time point, VCAM-1 expression in 50R- (white) and
M50- (black) infected cells is shown relative to that in WT-MHV68
(grey) -infected cells (set to 1). (c) FACS analysis of cell-surface
VCAM-1 was performed using 3T3 cells infected for 10 h with
WT- (blue), 50R- (green) or M50-MHV68 (red) and is shown
relative to WT-MHV68-infected cells stained with isotype control
antibody (black).

Rta determines viral and cellular gene expression
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Table 1. Cellular genes dysregulated after MHV68 infection

Table shows fold changes for cellular genes that were dysregulated (criteria outlined in Methods) in infected cells. (a) Genes specifically dysregulated

in M50-MHV68-infected cells at 2 h p.i. and (where applicable) also during a WT infection time course. No genes were identified as dysregulated in

M50-infected cells at 1 h p.i. (b) Genes dysregulated only during a WT-MHV68 infection time course. For clarity, dysregulation of early growth

response 1 at 1 h p.i. (21.74) and the EST AW610815 at 1 and 2 h p.i. (1.79 and 1.74, respectively) are not shown. In all cases, positive and negative

fold-changes indicate upregulation and downregulation of gene expression, respectively.

Gene Genbank

accession nos

M50 WT 50R WT

2 h

p.i.

4 h

p.i.

8 h

p.i.

12 h

p.i.

(a)

Carboxypeptidase A3, mast cell NM_007753 35.25 * * * * *

Tumour necrosis factor-induced protein 6 U83903 3.66 * * * * *

Fibroblast growth factor 10 U94517 2.14 * * * * *

Vascular cell adhesion molecule 1D M84487 1.65 * * * * *

Transforming growth factor b1-induced transcript 4 NM_009366 21.66 * * * * *

EST expressed in B cells AW495873 21.69 * * * * *

Myeloid differentiation primary response gene 118 X54149 21.70 * * * * *

Platelet-derived growth factor receptor a M84607 21.71 * * 21.67 * 22.09

Nuclear factor I/A D90173 21.71 * * * * *

CDC-like kinase 3 AF033565 21.71 * * * * *

Integrin alpha V (CD51) U14135 21.74 * * * * *

IkBa U57524 21.74 * * * * 21.65

Vascular endothelial growth factor U41383 21.75 * * * * *

Dual specificity phosphatase 1 NM_013642 21.83 * * * 22.02 *

Enolase 2, c neuronal X52380 21.83 * * * * *

Supressor of cytokine signalling 5 NM_019654 21.88 * * * * *

CCAAT/enhancer binding protein (C/EBP) b AY056052 21.88 * * * * *

Kruppel-like factor 4 (gut) U70662 21.90 * * * * *

CCCTC-binding factor U51037 21.91 * * * * *

Nur77 NM_010444 22.00 * * 22.20 21.93 21.74

(b)

Urokinase plasminogen activator receptor X62701 * * * 2.54 1.74 *

Small inducible cytokine A2 M19681 * * * 2.36 * *

AW610703 (EST) AW610703 * * * 2.18 * *

CD44 M27130 * * * 1.97 * *

Ephrin receptor A2 U07634 * * * 1.93 * *

Myc NM_010849 * * * 1.72 * *

Peroxisome proliferator activator receptor d L28116 * * * 1.67 * *

Jun oncogene J04115 * * * 21.65 * *

Baculoviral IAP repeat-containing 2 U88909 * * * 21.66 * *

Viral envelope-like protein (G7e) gene U69488 * * * 21.66 * *

Homeo box A3 Y11717 * 21.65 21.69 21.73 * *

Zinc finger protein 36, C3H type-like 1 M58566 * * * 21.92 * 22.00

Zinc finger protein 36 L42317 * * * 22.27 21.99 22.48

Fos NM_010234 * * * 22.44 22.25 22.57

CD24a X72910 * * * * 21.67 22.14

Kruppel-like factor 2 (lung) NM_008452 * * * * 21.68 22.17

Jun proto-oncogene related gene d1 J04509 * * * * 21.76 *

Ly6 antigen X04653 * * * * 21.88 22.64

Fosb NM_008036 * * * * 22.04 *

Early growth response 1 NM_007913 * * * * 22.07 *

AW824577 (EST) AW824577 * * * * * 3.52

AW825364 (EST) AW825364 * * * * * 21.71

Inhibitor of DNA binding 3 NM_008321 * * * * * 21.91

Deoxyribonuclease II a AF045741 * * * * * 21.92

Integrin beta 5 AF043256 * * * * * 21.99
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expression in the context of virus infection upregulates
VCAM-1 expression at the cell surface.

DISCUSSION

The major aim of this study was to determine whether Rta
abundance influences viral and cellular gene expression, since
the regulation of Rta expression is likely to be cell-type
dependent, and may differ between entry into lytic cycle
following exogenous virus infection and reactivation from
latency. Few studies have addressed the role of Rta in
alteration of cellular gene transcription, and none have done
this in the context of virus infection. To study the influence
of Rta abundance on viral and cellular transcription in the
context of virus infection, gene transcription in cells infected
with MHV68 expressing Rta at normal (WT and 50R) or
increased (M50) levels was compared. Elevated Rta expres-
sion induced the clearest differences in viral gene expression
at 1 h p.i. These changes correlate with previous findings that
increasing Rta expression accelerates virus replication (May
et al., 2004), although enhanced protein expression is prob-
ably restricted to early proteins as gene expression converges
with that of WT and 50R viruses at later time points
(Supplementary Fig. S2, available in JGV Online).

M50 infection reduced transcription of the latency gene
ORF73 (LANA), extending previous findings that the ORF73
promoter is repressed by Rta (Coleman et al., 2005), and
offers a possible additional explanation for the latency deficit
associated with M50 in vivo (May et al., 2004). Splicing of
MHV68 ORF73 occurs over the ORF75 locus (Coleman
et al., 2005), making it likely that the microarray probes
against ORFs 75A, B and C cross-hybridize with unspliced
ORF73 RNAs. It is therefore likely that the apparent
downregulation of ORF75 transcription merely reflects the
consequence of probe cross-hybridization.

Overall, these findings not only highlight new putative
transactivation targets of Rta, but also demonstrate that
Rta abundance negatively correlates with ORF73 transcrip-
tion, and therefore potentially with latency.

The striking finding of this study with regard to changes in
cellular gene expression is that altering the transcription of

Rta has profound effects on the cell transcriptome. Lower
expression of Rta during the WT-MHV68 infectious time
course promotes a transcriptional profile seemingly favour-
ing cell survival, with upregulation of anti-apoptotic Epha2
and Myc, and downregulation of many pro-apoptotic
genes including Zfp36, Zfp36l1, Klf2 and Id3. The down-
regulation of the ARE-binding proteins (AUBP) Zfp36 and
Zfp36l1, which bind and destabilize AU-rich mRNAs,
including those encoding many proto-oncogene and cyto-
kine RNAs, suggests that regulation of mRNA stability may
also be important to the virus life cycle. This is in keeping
with emerging evidence from other gammaherpesviruses
such as KSHV, which encodes kaposin B, a protein involved
in the stabilization of AU-rich cytokine transcripts
(McCormick & Ganem, 2005). When Rta was expressed
at a higher level, a subset of genes were identified that were
transcriptionally altered only following M50 infection, but
not following WT or 50R infection, suggesting that factors
influencing Rta expression levels can profoundly influence
cellular gene transcription. Our interest in studying the link
between Rta abundance and cell function led us to confirm
several M50-specific genes of interest by RT-PCR. Both
VCAM-1 and Tnfip6 were upregulated, and are known to
promote lymphocyte adherence (Milner & Day, 2003;
Springer, 1995). VCAM-1 induction has been observed
following herpes simplex virus and human cytomegalo-
virus infection (Kim et al., 2000; Shahgasempour et al.,
1997). In addition, ORF74 of KSHV has been shown to
positively regulate cell-surface VCAM-1 (Pati et al., 2001).
It may therefore be important to consider how cell adher-
ence is affected during MHV68 infection as a product of
Rta abundance.

Our interest in FGF10 and VEGFs was because these
families of molecules are potent activators of cell growth,
differentiation and migration. The finding that the tran-
scription of growth factors such as FGF10 positively correl-
ated with enhanced Rta expression demonstrates that the
level of viral gene expression may impact on infected cells
and also their surrounding tissues. Enhanced VEGF pro-
duction is notable in human gammaherpesvirus-associated
malignancies (Aoki & Tosato, 1999), although interest-
ingly, increased MHV68 Rta expression reduced VEGF

Table 1. cont.

Gene Genbank

accession nos

M50 WT 50R WT

2 h

p.i.

4 h

p.i.

8 h

p.i.

12 h

p.i.

Platelet-derived growth factor receptor, b X04367 * * * * * 22.10

Lymphocyte antigen 6 complex, locus C D86232 * * * * * 22.63

Lymphocyte antigen 6 complex M37707 * * * * * 22.79

*Non-dysregulated genes that did not meet the following criteria; .1.656, t-test P value ,0.05 and fluorescence in either infected or mock-

infected Cy-dye channel .1000 units.

DP.0.05.
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transcription. CPA3 is a poorly characterized enzyme
(Reznik & Fricker, 2001), but it would be interesting to
study whether its induction plays a role in the degradation
of inflammatory leukotrienes, as reported for pancreatic
carboxypeptidase (Reddanna et al., 2003). Contrastingly,
Tnfip6 is a well-documented, multifunctional protein with
potent anti-inflammatory properties (Milner & Day, 2003).
These data further highlight the important influence of Rta
abundance on cellular transcription, and suggest that cell
adherence, inflammation and growth factor release may be
influenced by Rta expression.

Of significant interest was the identification of genes that
were dysregulated both at elevated (M50) and lower (WT)
levels of Rta. Such conserved changes may indicate genes
whose dysregulation is fundamental to lytic replication.
Nur77 is one such gene and encodes a pro-apoptotic pro-
tein whose function is suppressed by EBV nuclear antigen 2
(EBNA2) (Lee et al., 2002). Another gene of potential
importance is IkBa, a negative regulator of nuclear factor
kB signalling that is important in antiviral inflammatory
responses and the maintenance of latent gammaherpesvirus
infections (Brown et al., 2003; Hiscott et al., 2001). It
would be of great interest to study further whether subver-
sion of apoptosis and inflammatory signalling via these
molecules is fundamental to the early phases of MHV68
replication.

Whilst this study demonstrates the need to consider Rta
abundance as a determinant of virus and cellular gene tran-
scription, future work would seek to identify the mechan-
isms by which Rta abundance mediates these changes, and
whether the effects are directly mediated by Rta or repre-
sent indirect effects as a consequence of accelerated lytic
infection. For viral genes, this would include studying iso-
lated promoter regions of putative Rta-responsive ORFs
for their transcriptional response to Rta. The role of Rta
abundance in altering cell adhesion and migration via
VCAM-1 and Tnfip6 would be a significant area of interest,
as would be studying the impact of cell-survival molecules
such as Nur77 on virus replication. Ultimately, we would
seek to identify how defined cellular transcriptional profiles
correlate with Rta abundance in different infected cell types
during primary infection and latency, and link these
findings with alterations in cell function.

The findings in this study illustrate that alterations in Rta
abundance during the earliest phases of lytic replication
have profound influences on viral and cellular gene tran-
scription. Rta abundance should therefore be considered as
a potential factor in determining viral and cellular tran-
scriptional changes occurring in discrete cell populations
and at particular time points in the virus life cycle.
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