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Receptor tyrosine kinase ROR1 plays an essential role in embryogenesis and is
overexpressed in many types of malignant tumors. Studies have demonstrated that it
plays an important role in oncogenesis by activating cell survival signaling events,
part icular ly the non-canonical WNT signal ing pathway. Ant ibody-based
immunotherapies targeting ROR1 have been developed and evaluated in preclinical
and clinical studies with promising outcomes. However, small molecule inhibitors
targeting ROR1 are underappreciated because of the initial characterization of ROR1 as
a peusdokinase. The function of ROR1 as a tyrosine kinase remains poorly understood,
although accumulating evidence have demonstrated its intrinsic tyrosine kinase activity. In
this review, we analyzed the structural and functional features of ROR1 and discussed
therapeutic strategies targeting this kinase.
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INTRODUCTION

Receptor tyrosine kinases (RTKs) are key regulators of normal cellular processes, and they are also
involved in the development and progression of many types of cancer (1). To date, the RTKs
superfamily has 58 members that fall into 20 subfamilies. The receptor tyrosine kinase-like orphan
receptor (ROR) subfamily contains two members, namely, ROR1 and ROR2 that were initially
identified in a human neuroblastoma cell line in 1992 (2). ROR1 and ROR2 are evolutionarily
conserved among animals including protostomes, cnidarians, and all vertebrates, suggesting a
critical physiological function of ROR family members in development. The ROR subfamily
members were designated as “orphan” receptors because their ligands have not been identified
for many years. Now it is known that ROR family members are receptors for Wnt family signaling
molecules Wnt5a/b and Wnt16, with Wnt5a as the primary ligand (3–6).

The Wnt family of proteins transduce signals through the canonical b-catenin-dependent and
non-canonical b-catenin-independent pathways (7, 8). Several Wnt ligands, including Wnt1,
Wnt3a, and Wnt8, can bind to the Frizzled family of receptors to trigger the b-catenin-
dependent Wnt signaling pathway. This activated signaling cascade stabilizes b-catenin to
facilitate transcription of pro-survival genes, including Myc, Survivin, and MMP (9–11). In
contrast, other Wnt ligands such as Wnt5a/b and Wnt16 bind to the ROR family proteins and
activate b-catenin-independent Wnt/planar cell polarity and Wnt/Ca2+ pathways, involving
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activation of small GTPases Rho/Rac signaling proteins and the
protein kinase C (PKC)/calcineurin signaling cascade, respectively.
Although insufficiently studied, Wnt b-catenin-independent
pathways are known to regulate cell polarity, proliferation,
motility, and migration (12, 13). Studies have shown that binding
of Wnt5a leads to autophosphorylation of ROR2, which induces
activation of b-Catenin-independent pathways (14). However,
autophosphorylation of ROR1 and the associated downstream
signaling network are still poorly understood.

Until recently, ROR2 has been studied more intensively than
ROR1 (Figure 1). This was due to a clear association of ROR2
mutations with two distinct developmental defects in humans,
namely, Robinow syndrome and type B1 brachydactyly (15).
Although no mutations in ROR1 have been found in any human
disease yet, numerous studies demonstrated aberrant expression
patterns of ROR1 in many types of diseases in recent years, which
made ROR1 an attractive therapeutic target in malignancies,
ischemia, and diabetes (16–18), leading to a growing interest in
studyingROR1 signaling and targeted therapies against ROR1 (15).

This review provides updated information about the
structural and functional features of ROR1, its role in cell
signaling, and anti-cancer therapies targeting ROR1. It further
discusses the potential of ROR1 as an active tyrosine kinase and
strategies to identify small-molecule compounds that inhibit
ROR1 signaling.
THE STRUCTURE AND EXPRESSION
PATTERN OF ROR1

ROR1 is a transmembrane receptor that contains an extracellular
section, a transmembrane segment, and a cytoplasmic region
(Figure 2) (2). The extracellular part comprises an
immunoglobulin-like domain (IG), a cysteine rich domain
(CRD), and a Kringle domain (KD). CRD modulates non-
canonical WNT signaling by binding to the ligand Wnt5a (19,
20).KDmediates the interactionofROR1withother receptors such
as ROR2 (21). The cytoplasmic section includes a tyrosine kinase
domain, two serine/threonine-rich domains, and a proline-rich
domain.Theproline-richdomain is responsible for the activationof
cell migration and proliferation signals by recruiting SH3 domain-
Frontiers in Oncology | www.frontiersin.org 2
containing proteins includingHS1,DOCK2, and cortactin (22–24).
The serine/threonine-rich domainphysically interactswith adaptor
proteins, such as 14-3-3 zeta, leading to resistance to apoptosis (25).
The detailed signaling activated by ROR1 has been reviewed
recently (7). Although ROR1 is a member of the receptor tyrosine
kinase superfamily, the function of the tyrosine kinase domain
remains controversial.

The gene encoding ROR1 was first identified in a human
neuroblastoma cell line in 1992 (2), and subsequent studies found
that ROR1 was expressed predominantly during embryogenesis,
mainly in the central nervous system, the early limb bud, cartilage
condensations, cartilage growth plate, heart, lung, and
mesonephros in mice (15). ROR1 knockout is embryonic lethal,
indicating a critical role of ROR1 in embryogenesis (26). ROR1 is
not expressed inmost postpartum tissues, except for adipose tissues
that highly express ROR1, and some tissues from the endocrine
glands, gastrointestinal tract, and immature B lymphocytes (27, 28).
The function of ROR1 in these adult tissues is currently unknown.
THE ROLE OF ROR1 IN MALIGNANCIES

Many studies have shown that ROR1 was expressed at high levels
in malignant cells. It was first identified as an oncoembryonic
gene in hematological malignancies. In 2001, two groups
observed high transcriptional levels of ROR1 in chronic
lymphocytic leukemia (CLL) cells compared with those in
normal B lymphocytes by cDNA microarrays (29, 30).
However, the importance of ROR1 was not recognized until
years later. In 2008, Fukuda et al. identified aberrantly expressed
ROR1 in CLL cells at the protein level using monoclonal
antibodies (mAbs). This study also identified Wnt5a as the
ligand of ROR1, which stimulated activation of pro-survival
signals in a ROR1-dependent manner (31). The expression of
ROR1 was also found to have a significant prognostic impact in
patients with CLL (32). In addition, ROR1 was found expressed
in a subgroup of B acute lymphoblastic leukemia (B-ALL),
mainly in patients with t(1;19) chromosomal translocation
(33). These B-ALL cells are sensitive to siRNA-mediated ROR1
silencing, indicating a critical function of ROR1 to maintain
leukemia-cell survival (34). ROR1 is also aberrantly expressed in
FIGURE 1 | Numbers of publications on ROR1 and ROR2 between 1992 to 2019 according to PubMed.
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mantle cell lymphoma (MCL), triggering pro-survival signals
similar to those in CLL and B-ALL (35, 36). Studies found that
several other types of non-Hodgkin lymphoma (NHL), including
diffuse large B cell lymphoma (DLBCL), follicular lymphoma,
and marginal zone lymphoma expressed ROR1, but its function
was not clearly characterized (37, 38).

In addition, ROR1was found in CD34+ acutemyeloid leukemia
(AML) cells and can be targeted by mAbs (39).In addition to
hematological malignancies, aberrant expression of ROR1 was
also found in a wide range of solid tumors as a biomarker and
therapeutic target (7, 40). In breast cancer, ROR1 was found to be
positive in tumor specimens but not normal breast tissues (41).
High expression of ROR1 in breast adenocarcinomawas associated
with epithelial-mesenchymal transition (EMT), tumor metastasis,
and aggressive disease (41–43). ROR1 was also found at high levels
in lung cancer cells, which serves as a prognostic biomarker in
patients with lung adenocarcinoma. Silencing of ROR1 led to
growth inhibition in cell lines representing human lung
adenocarcinoma (44, 45). In ovarian cancer, tumor cells with
high expression of ROR1 exhibited stem cell-like gene-expression
signatures and had a greater capacity to engraft immunodeficient
mice (46).There are also reports on the expressionofROR1 inother
types of cancer, including colorectal cancer, endometrial cancer,
gastric cancer, melanoma, and pancreatic cancer (47–51).

ROR1 is not only aberrantly expressed in malignant cells, but
is also involved in the activation of signaling proteins important
for cell proliferation, survival, and migration. In CLL, Wnt5a/
ROR1 activates Rho-GTPase RhoA and Rac1 through the
ARHGEF family adaptor proteins, including ARHGEF1,
Frontiers in Oncology | www.frontiersin.org 3
ARHGEF2, and ARHGEF6 (21). Wnt5a also induces tyrosine
phosphorylation of HS1, leading to a ROR1-dependent cell
migration (22). It is possible that HS1 is directly
phosphorylated by ROR1, but more definitive evidence for this
possibility is needed. In addition, Wnt5a/ROR1 induces
activation of the NF-kB signaling pathway, resulting in
autocrine regulation of pro-inflammatory cytokines such as
IL-6 (4). Expression levels of ROR1 are tightly correlated with
the progression of CLL, making it a good biomarker for prognosis
(32). In lung cancer, ROR1 is involved in the activation of c-Src
and MET, causing inhibition of tumor cell apoptosis (44, 52).
However, these studies did not define whether ROR1 actively
phosphorylated c-Src and MET or merely served as their
substrate. ROR1 was also found as a scaffold protein of cavin-1
and caveolin-1, which activated AKT in lung adenocarcinoma
(53). More systematic investigations are required to validate
the precise role of ROR1 in lung cancer cells. In breast cancer,
ROR1 promoted activation of the PI3K/AKT pathway, and high
ROR1 expression was correlated with more severe progression of
the disease (41, 54). Together, aberrant expression of ROR1 and
associated pro-growth signaling events are observed in many
types of malignancies, making ROR1 an attractive therapeutic
target for anti-cancer drug development.
THE KINASE ACTIVITY OF ROR1

ROR1andROR2werefirst cloned in1992byDr.PiotrMasiakowski
and Dr. Robert D. Carroll. The study found that ROR1 and ROR2
carry the YXXXYY amino acid sequence motif, corresponding to
the autophosphorylation site of the insulin receptor. The kinase
assay with radiolabeled [g (32)P]ATP and recombinant proteins
carrying tyrosine kinase domains from ROR1 or ROR2 purified
fromCOS cells indicated clear intrinsic kinase activity of ROR2 but
weak activity of ROR1 (2). The data about kinase activity of ROR1
are difficult to interpret due to possible contamination by other
residual kinases co-purified within the reaction system, while the
intrinsic tyrosine kinase activity of ROR2was repeatedly confirmed
byothergroups (14, 55–57). Following the initial study,Gentile et al.
investigated the kinase activity of ROR1 by using a similar method
(52). The kinase assay showed that the autocatalytic activity of
ROR1 purified fromCOS-7 cells was negligible, compared with the
classic receptor tyrosine kinase ErbB2. In addition, purified ROR1
failed to phosphorylate the exogenous peptide substrate, and
COS-7 cells overexpressing ROR1 did not exhibit elevated
autophosphorylation or a change in the tyrosine phosphorylation
pattern of endogenous proteins (58). Travis W. Bainbridge and
colleagues also found that recombinant proteins carrying the
intracellular domain of ROR1 purified from insect cells lacked
robust kinase activity in a kinase assay with [g32P]ATP, largely due
to substitutions of several highly conserved amino acids in a
GXGXXG motif in the kinase domain compared with other
active tyrosine kinases (59). This notion is supported by a recent
structural analysis showing that ROR1 has an inaccessible ATP-
binding pocket and maintains inactive conformation in the
activation loop, because of substitutions of several conserved
FIGURE 2 | Schematic domain structure of ROR1. IG, Ig-like domain; CRD,
cysteine-rich domain; KD, kringle domain; TKD, tyrosine kinase domain; S/T,
serine/Threonine-rich domain; PRD, proline-rich domain.
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amino acids. However, the kinase dead mutation (K506A) and
autophosphorylation site mutation (YXXXYY to FXXXFF) in
ROR1 abolished the ability of ROR1 to support BaF3 cell
proliferation, suggesting important signaling functions of the
kinase domain of ROR1, even without the ATP binding
capability (60).

In contrast, accumulating evidence suggests that ROR1 has
intrinsic kinase activity. The group of Dr. Håkan Mellstedt found
constitutive phosphorylation of ROR1 in CLL cells, which was
associated with progressive disease. Binding of mAbs to the
extracellular domains of ROR1 led to rapid dephosphorylation
before leukemia-cell apoptosis. The detailed mechanism requires
further investigation, but one possibility mentioned in this study is
that ROR1 phosphorylation could be ligand-dependent and
binding of the mAbs may have prevented binding of the ligand
(61). Indeed, thiswork led to thedevelopmentof two smallmolecule
inhibitors of ROR1 by the same group, as described in the next
section (62–64). The group led by Dr. Takashi Takahashi
investigated the role of ROR1 in lung adenocarcinoma in a series
of studies and found that ROR1 supported pro-survival signaling in
both kinase-dependent and kinase-independent manner. The
kinase activity of ROR1 was shown to be required for the
regulation of HIF-1a expression (65), repression of the ASK1-p38
axis, oxidative stress-induced cell death (66), and phosphorylation
of c-Src (44). On the other hand, ROR1 can serve as a scaffold
protein in a kinase-independent manner to facilitate cavin-1/
caveolin-1 interaction (53, 67) and binding to HSP90a (67). In
another study by Li et al., ROR1was shown to phosphorylateHER3
therebymediating bonemetastasis of breast cancer via crosstalking
with the Hippo-YAP pathway (68).

We believe that ROR1 has an intrinsic tyrosine kinase activity.
Protein sequence alignment revealed that ROR1maintains the key
aminoacid residues inconserved regionsofproteinkinasedomains,
including the VAIK motif, catalytic loop, and activation segment.
The major difference was the substitution of glycine by cysteine in
the glycine loop (Figure 3). Interestingly, the same glycine residue
in the glycine loopwas substituted by asparagine inROR2. Since the
kinase activity of ROR2has been confirmed bymultiple studies (14,
55, 69), it is likely that the glycine by cysteine substitution may not
Frontiers in Oncology | www.frontiersin.org 4
abolish the kinase activity. It has been demonstrated that Wnt5a
inducedhomodimerizationandautophosphorylationofROR2. It is
conceivable that activation of ROR1 kinase activity also requires
engagement with its ligand such as Wnt5a. Multiple factors could
contribute to the failure to detect the tyrosine kinase activities of
ROR1. Systematic biochemical studies are needed to uncover the
enzymatic properties of ROR1, including transphosphorylation,
autophosphorylation, and phosphorylation sites, as well as
substrate preference interactions of proteins and nucleotides.
THERAPEUTIC STRATEGIES TARGETING
ROR1 IN MALIGNANCIES

To date, several therapeutic strategies against ROR1 have been
developed and evaluated in clinical trials (Table 1) and preclinical
studies (Table 2). Most targeted cancer therapies use either small-
molecule drugs or mAbs-based strategies (74, 75). mAbs block
ligandbindingdirectly andactivate the immune system toeliminate
tumor cells (76). Small-molecule tyrosine kinase inhibitors (TKIs)
are ATP-competitive inhibitors that target the catalytic domains in
tyrosine kinases (77). Currently,multiplemAbs against ROR1have
been developed (78–83). These mAbs mediated antibody-
dependent cellular cytotoxicity (ADCC), complement-dependent
cytotoxicity (CDC), internalization of ROR1, and apoptosis in
malignant cells expressing ROR1. To date, cirmtuzumab is the
only monoclonal antibody (mAb) targeting ROR1 that has been
evaluated in clinical trials. Aphase I trial of cirmtuzumab inpatients
with CLL has been finished with beneficial effects observed in
patients (84). A phase Ib and phase I/II trials on cirmtuzumab
combined with paclitaxel or ibrutinib in patients with breast cancer
or CLL/MCL are currently ongoing.

Based on ROR1-targeted mAbs, antibody drug conjugate
(ADC), bispecific T cell engager (BiTE), and chimeric antigen
receptor (CAR) T cells have also been developed, some of which
are currently being evaluated in clinical trials. VLS−101 is an ADC
comprising cirmtuzumab and monomethyl auristatin E (MMAE),
an agent that inhibits cell division by blocking the polymerization
FIGURE 3 | Sequence alignment of ROR1 and ROR2 with active receptor tyrosine kinase receptors FLT3, ERBB-2, and MET in the key peptide segments of
protein kinase domains. Highlighted in yellow are key residues involved in enzymatic activity in protein kinases. The deviations of ROR1 and ROR2 sequence from
the consensus sequence are highlighted in red.
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of tubulin. It is effective to target ROR1-positive malignant cells by
binding to ROR1 that leads to rapid internalization of MMAE to
induce celldeath (85). Similarly,NBE-002 is anADCthat consistsof
ahumanizedmAbagainstROR1that is conjugated toaderivativeof
the highly potent anthracycline PNU-159682, which shows
significant anti-tumor activity in patient-derived xenograft
models of breast cancer, lung adenocarcinoma, ovarian
carcinoma, and sarcomas (86). Clinical trials evaluating VLS−101
and NBE-002 in hematological malignancies and solid tumors are
ongoing. NVG-111 is a first-in-class humanized ROR1 and CD3
BiTE that utilizes the inherent cytotoxic potential of resident T cells
to target ROR1-positive malignant cells. Preclinical studies showed
promising T-cell-mediated cytotoxicity of NVG-111 in CLL and
solid tumors (87).TheClinical trial ofNVG-111 inCLL andMCL is
active now. CAR-T cells targeting ROR1 also demonstrate strong
potency and specificity to malignant cells expressing ROR1, which
has been evaluated in a clinical trial in patients with ROR1-positive
hematological and solid malignancies (28). Furthermore, the
immunonanoparticle-mediated ROR1-targeted delivery of OSU-
2S, a sphingosine analogue with anti-tumor activity, showed
promising potency in ROR1-positive malignant cells in
preclinical studies. Subsequent large-scale clinical trials are highly
warranted (72, 73).

Since the kinase activity of ROR1 has not been clearly defined,
little effort has been made to identify small-molecule inhibitors
of ROR1. Nonetheless, a small molecule compound dubbed
Frontiers in Oncology | www.frontiersin.org 5
KAN0439834 was found to inhibit the survival of CLL and
pancreatic cancer cells, as well as phosphorylation of ROR1 in
cell-based assays (62, 63). The potency of KAN0439834 to induce
apoptosis in CLL cells was as strong as that of venetoclax, a BCL-
2 inhibitor approved for treating patients with CLL in in vitro
assays. KAN0439834 seems to target the tyrosine kinase domain
of ROR1 and inhibit Wnt5a-induced phosphorylation of ROR1,
which leads to the deactivation of downstream signaling proteins
SRC, AKT, PKC, and MAPK. In pancreatic cancer cells, the
efficiency of KAN0439834 can be enhanced by erlotinib and
ibrutinib, a small molecule inhibitor of EGFR and BTK,
respectively. Based on this compound, a second-generation
small molecule ROR1 inhibitor KAN0441571C with improved
potency and pharmacokinetics to inhibit DLBCL in a zebrafish
model was developed by the same group (64). KAN0441571C
and venetoclax showed a promising combination effect to
eliminate DLBCL cells in vitro. Although these compounds are
effective in decreasing the phosphorylation of ROR1 and c-Src in
malignant cells, the mechanism of action requires further
investigation by performing biochemical assays using isolated
proteins. Interestingly, another study identified a small molecule
designated ARI-1 that targeted the extracellular CRD of ROR1,
thereby blocking Wnt5a binding (71). ARI-1 was shown to
suppress non-small cell lung cancer cell growth in vitro and in
vivo (71). Strictinin, a compound isolated from Myrothamnus
flabellifolius was also reported to bind to the intracellular domain
of ROR1, which inhibited AKT phosphorylation and survival of
breast cancer cells (70). Further investigations are needed to
characterize the mechanism of action of these compounds before
clinical trials.

Considering the promising outcomes of anti-ROR1
immunotherapies, we believe that small molecule inhibitors
targeting ROR1 should be actively pursued by performing cell-
based biochemical screening. A preferred cell-based screening
system should contain cells whose survival and proliferation
depend on the hyperactivation or overexpression of ROR1. The
inhibitors thus identifiedmay target ROR1 directly or act indirectly
on other signaling components downstream of ROR1. To identify
inhibitors targeting the kinase domain of ROR1, a kinase assay
system needs to be established with appropriate substates and
TABLE 2 | ROR1-targeted drugs in preclinical studies.

Drug Description Disease Reference

KAN0441571C Inhibitor DLBCL (64)
KAN0439834 Inhibitor CLL

Pancreatic
cancer

(62, 63)

Strictinin Inhibitor Breast cancer (70)
ARI-1 Inhibitor Lung cancer (71)
2A2-OSU-2S-
ILP

Immunonanoparticle with OSU-
2S

CLL
MCL

(72, 73)
CLL, chronic lymphocytic leukemia; DLBCL, diffuse large B cell lymphoma; MCL, mantle
cell lymphoma.
TABLE 1 | ROR1-targetd therapies in clinical trials.

Drug Description Disease ClinicalTrials.gov Identifier

Cirmtuzumab mAb CLL
MCL
Breast cancer

NCT03088878
NCT02776917
NCT02222688
NCT02860676

VLS-101 ADC
(MMAE)

Lung cancer
Breast cancer
Hematological neoplasms

NCT03833180
NCT04504916

NBE-002 ADC
(PNU-159682)

Triple Negative Breast Cancer
Advanced Solid Tumor

NCT04441099

NVG-111 Bispecific antibody to ROR1 and CD3 CLL
MCL

NCT04763083

CAR-T CAR-T Lung cancer
Breast cancer
Hematological neoplasms

NCT02706392
May 2021
ADC, antibody drug conjugate; CLL, chronic lymphocytic leukemia; mAb, monoclonal antibody; MCL, mantle cell lymphoma; MMAE, Monomethyl auristatin E.
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effective detectionmethods. To date, themajority of tyrosine kinase
inhibitors bind to catalytic centers and block the binding of ATP.
CONCLUSIONS

Receptor tyrosine kinase ROR1 is an excellent target for the
development of therapeutic drugs to treat CLL and several types
of solid tumors. Major progress has been made in developing
antibody-based immunotherapies targeting ROR1 in preclinical
and clinical studies. The identification of small-molecule
compounds targeting ROR1 still lags behind due to a poor
understanding of ROR1 kinase activity. We believe that ROR1
should have intrinsic kinase activities, but further studies are
required to understand its enzymatic properties. While cell-
based screening systems should be employed to find inhibitors
targeting ROR1 directly or indirectly, biochemical assays are
required to identify inhibitors targeting its kinase domain.
Frontiers in Oncology | www.frontiersin.org 6
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