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Abstract
Modelling the relationship between alcohol consumption and crime generates new knowl-

edge for crime prevention strategies. Advances in data, particularly data with spatial and

temporal attributes, have led to a growing suite of applied methods for modelling. In support

of alcohol and crime researchers we synthesized and critiqued existing methods of spatially

and quantitatively modelling the effects of alcohol exposure on crime to aid method selec-

tion, and identify new opportunities for analysis strategies. We searched the alcohol-crime

literature from 1950 to January 2014. Analyses that statistically evaluated or mapped the

association between alcohol and crime were included. For modelling purposes, crime data

were most often derived from generalized police reports, aggregated to large spatial units

such as census tracts or postal codes, and standardized by residential population data.

Sixty-eight of the 90 selected studies included geospatial data of which 48 used cross-sec-

tional datasets. Regression was the prominent modelling choice (n = 78) though dependent

on data many variations existed. There are opportunities to improve information for alcohol-

attributable crime prevention by using alternative population data to standardize crime

rates, sourcing crime information from non-traditional platforms (social media), increasing

the number of panel studies, and conducting analysis at the local level (neighbourhood,

block, or point). Due to the spatio-temporal advances in crime data, we expect a continued

uptake of flexible Bayesian hierarchical modelling, a greater inclusion of spatial-temporal

point pattern analysis, and shift toward prospective (forecast) modelling over small areas

(e.g., blocks).

Introduction
Alcohol supply restrictions continue to relax across the globe, leading to increases in disease
[1,2], dependency [3], injury [4,5], and crime [6–11]. Of particular concern, is the large propor-
tion (~30%) of criminal offences committed while intoxicated [12–15]. For instance, research-
er’s continue to demonstrate that, independent of socio-economic and demographic influences,
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higher alcohol access leads to greater rates of crime, including violent offences [16–18], distur-
bance [19], property damage [20], and drunk driving [21].

Modelling the relationship between alcohol consumption and crime can enable the coordina-
tion of preventative police patrolling and alcohol access restrictions. As such, health researchers
are tasked with understanding how populations will respond to alcohol access and promotion
[22]. Main questions include: how the change and distribution of alcohol price [23–25], hours
of sales [26–28], establishment types [10,29–32], or consumption patterns [21,33] influence the
rate of criminal offences. To accurately estimate alcohol consumption and alcohol policy effects
on crime, data quality and selection of appropriate statistical methods are integral.

Advances in Global Positing Systems (GPS) and Geographical Information Systems (GIS)
studies are increasing the use of detailed spatial units for alcohol-crime modelling (e.g., neigh-
bourhoods, blocks, [32,34–36]) and results from longer times-series (ten years plus) are becom-
ing available (e.g., [28]). With data increasing in spatial and temporal detail the likelihood of
dependency between analysis units and time periods increases. If not explicitly addressed, auto-
correlation (positive correlation of data between regions or time periods) can violate the
assumptions of statistical modelling leading to clustered residuals and an artificial decrease in
standard errors, such that dependence between data reduces the effective sample size (n)
[37,38]. As a result, a growing suite of methods have emerged to model spatial and temporal
structure across the crime-alcohol studies.

To date, other reviews have summarized the effects of alcohol exposure on crime [22,39–43],
but not the methods used for estimation of the effects. The objective of our study was to evaluate
data and the suitability of quantitative analysis strategies to model the effect of alcohol access/
consumption on crime abundance by synthesizing current trends and highlighting methods
keenly adapted to spatial effects modelling. The review is structured in a manner that first
describes the selection of studies reviewed. Secondly, data characteristics, applied spatial units,
and dataset structure are summarized. Finally, dominant statistical approaches are reviewed and
critiqued, and new opportunities for data measurement and spatial analysis are discussed.

Study Selection and Synthesis
We searched the alcohol-crime literature from 1950 to January 2014 using the Web of Science
and Google Scholar databases. A list of key terms used singularly and combined with the fol-
lowing Boolean statement: (alcohol consumption OR binge drinking OR heavy drinking OR
drinking patterns OR alcohol tax OR alcohol price OR alcohol cost OR alcohol outlet OR alco-
hol outlet density OR alcohol trading hours OR alcohol sales OR alcohol availability OR alco-
hol licensing OR on-premises OR off-premises OR bar OR pub OR hotel) AND (crime OR
violent crime OR violence OR assaults OR domestic violence OR rape OR homicide OR inter-
personal violence OR drinking and driving OR impaired driving OR drunk driving OR distur-
bance OR nuisance crime OR property crime OR amenity problems). Analyses that
quantitatively evaluated or mapped the association between alcohol and crime were included
(see Table 1 for search term descriptions and Fig 1 for publication selection steps).

We calculated the number of countries represented across our sample and addressed if alco-
hol consumption was measured directly (e.g., blood alcohol level or survey admission of intoxica-
tion) or indirectly as measures related to exposure /use (e.g., alcohol price, hours of sales, or
establishment access). Additionally, the frequency of different crime types and crime data
sources were summarized. Spatial units were recorded and percent change in use before and
after 2009 was calculated by subtracting the proportion of studies applying the analysis unit
before 2009 from the proportion of studies applying the same unit after 2009. The results indicate
an increasing or decreasing trend in unit application through time. Studies were then categorized
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by dataset structure including: cross-section (individual or regionally aggregated data collected at
the same time), time-series (data collected over one region, but multiple time periods), panel
(data collected over multiple spatial units and time periods), and intervention data (data
indicating a change in alcohol exposure over time). After categorizing studies by structure, we

Table 1. Search term descriptions.

Search Term General description

Blood alcohol level Percentage of alcohol contained in a person’s blood

Alcohol
consumption

Ingestion of alcohol

Binge drinking Drinking habits that lead to persons blood alcohol concentration to be 0.08grams or
above [143]

Heavy drinking Drinking five or more drinks at the same occasion five days out of thirty [143]

Drinking patterns The frequency and amount of a person’s alcohol consumption

Alcohol tax Government’s financial charge on alcoholic beverages

Alcohol price The consumer’s price including cost and tax for purchasing alcohol

Alcohol cost The consumer’s price before tax for purchasing alcohol

Alcohol outlet On or off premises alcohol sales establishment

Alcohol outlet
density

Measure of alcohol outlets per regional area standardize by population counts,
roadways, or area

Alcohol trading
hours

Permitted hours for alcohol sales

Alcohol sales Days permitted to sell alcohol and gross profit received from alcohol sales

Alcohol availability Population’s exposure to alcohol supply

Alcohol licensing Permit allowing the sale of alcohol

On-premises Establishment where alcohol consumption occurs within the building

Off-premises Establishment where alcohol is purchased inside, but consumed outside

Bar Establishment serving alcoholic drinks, sometimes dancing is encourage activity

Pub Establishment serving alcoholic drinks and food

Hotel Establishment offering housing that also serves alcoholic drinks and food

Crime An action or omission that may be prosecuted by the government and is punishable
by law

Violent Using physical force to harm someone, a group, or something

Violence Behaviour using physical force to harm someone, a group, or something

Assault Physical attack against someone or something

Domestic violence Violent or aggressive behavior between members of a home, usually between
spouses or partners

Rape Unlawful sexual acts or intercourse, with or without force, without the consent of the
victim

Homicide Deliberate killing of one person by another

Interpersonal
violence

One person uses physical, mental, or financial power to control another person

Drinking and driving Driving a motor vehicle after or during consuming alcohol

Impaired driving Driving a motor vehicle while intoxicated

Drunk driving Driving a motor vehicle while intoxicated by alcohol

Disturbance Interruption of a settled environment

Nuisance crime Minor crime that constitutes an injury, loss, or damage to a community rather than
an individual

Property crime Theft or destruction of someone’s personal belongings without force or threat of
force

Amenity problems Neighbourhood disturbance, litter, and noise

doi:10.1371/journal.pone.0139344.t001
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summarized and critiqued methods used to estimate the effects of alcohol on crime including
categories for: Autoregressive Integrated Moving Average (ARIMA) models, generalized linear
regression (GLM), hierarchical and non-linear regression modelling (including spatial and tem-
poral modelling), and finally a section for the regression trees, spatial, and temporal mapping.

Results

3.1 Data
From the selections, 90 studies were included. Of selected studies, 56 were conducted in the
United States and 16 in Australia, representing 80% of the sample (Table 2). The effects of alco-
hol consumption on crime were often measured as indicators related to alcohol use (89% of the
studies), including: alcohol outlet counts or rates per region (n = 55), on-premises closing
times (n = 10), alcohol tax (n = 7), volume of alcohol sold (n = 7), alcohol sales hours (n = 5),
distance to alcohol outlets (n = 3), real price of alcohol (n = 3), or sale lock-outs (n = 2). The
regional rates of alcohol outlet density exposure were calculated per 100,000 (n = 1), 10,000
(n = 3), 1,000 (n = 9), and 100 (n = 5) persons and as a density per square mile (n = 5) or road-
way (n = 8). To a lesser extent, alcohol effects were measured directly from survey respondent
consumption habits (n = 7) or blood alcohol levels (n = 3).

Fig 1. Publication selection steps.

doi:10.1371/journal.pone.0139344.g001

Methods Applied in Alcohol-Attributable Crime Studies

PLOS ONE | DOI:10.1371/journal.pone.0139344 September 29, 2015 4 / 24



Crime data included a variety of crime types and sources including aggregated crime catego-
ries (n = 8), violent offences (n = 70) drunk driving/crashes (n = 6), or nuisance crimes (n = 6),
sourced from police records (n = 57), hospital admissions (n = 16), health statistics (n = 4), or
surveys (n = 13). Five studies stratified police recorded data to peak alcohol drinking hours
consisting of weekday and weekend evenings to reduce risk of spurious results [44–48].

3.2 Spatial units
Across the 90 studies selected, 68 studies used a spatial unit to measure crime or alcohol expo-
sure. In most cases (n = 57, 83%), both crime and alcohol access data were aggregated to the
same analysis unit. The remaining studies measured alcohol access across a larger spatial unit
and related the regional alcohol exposure to crime reports associated with individuals. For
example, state level alcohol taxes [49,50], and city [33], zip code [21,51], neighbourhood
[20,52], census tract [6,29,53,54], campus [55] and police region [56] alcohol outlet density
measures were used to estimate criminal incidences at the individual level.

Overall postal/zip codes (n = 11) and census tracts (n = 16) were the most commonly
applied units. Analyzing trends before and after 2009 we found a decline in the use of larger
state (-3%), postal code (-9%), city (-6%), municipality (-9%), and economic regions (-6%) and
an increase in smaller police (9%), neighbourhood (9%), block (3%), block group (15%), and
campus (3%) units (Table 3). The smaller unit studies were exclusive to North American.

3.3 Dataset structure
Datasets were dominated by cross-sectional assessments (n = 54, 60%), eleven of which ana-
lyzed individual level crime data. Sixteen studies (18%) used time-series data to assess how
alcohol exposure varied with crime across time, 15 of which monitored the change crime inci-
dence after an alcohol policy intervention. Finally, 20 researchers (22%) conducted analyses on
panel data to address how alcohol exposure varied with crime over time and space, in which
five analyzed an alcohol policy intervention. Overall, the study of panel datasets was a trend of
newer publications. Only four panel studies were published before 2009 [25,47,57,58].

3.4 Statistical approaches
3.4.1 Autoregressive integrated moving average. Autoregressive Integrated Moving

Average (ARIMA) models were selected for five of the 15 intervention time-series studies
modelling the effects of on-premises alcohol establishments changes [59], alcohol tax

Table 2. Country study areas.

Country Number of Studies

United States 56

Australia 16

Canada 5

Brazil 3

England 2

Sweden 2

Norway 2

New Zealand 1

Finland 1

Denmark 1

Scotland 1

doi:10.1371/journal.pone.0139344.t002
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reductions [60,61], change in outlet closing [28], and alcohol sales hours [62] on annual [59]
and monthly incidence of assaults. Trends in the crime data were specified by three terms of
the ARIMA model: the auto-regressive term (characterizes the temporal correlation in the
series), the integrated trend (transforms the trend to stationarity), and the moving average
(smoothes any random patterns or seasonal effects) [63]. Possible shifts in the incidence of
crime were monitored using a dichotomous indicator variable (pre (0) and post (1) change).

3.4.2 Generalized Linear Model. A large portion (n = 37, 41%) of the reviewed studies
used generalized linear models (GLMs) to estimate the incidence of crime (outcome variable)
as a function of the alcohol exposure and socio-demographic controls across intervention
times-series (n = 10), cross-section (n = 23), panel (n = 3), and intervention panel (n = 1) data-
sets. GLMs are an extension of simple linear regression used to model crime as any member of
the exponential family of distributions, conditional on the covariates, using a link function
(e.g., log, logit, etc.). Expected crime distributions included binary (n = 7), multi-nomial
(n = 3), count (n = 10), and rate (n = 17) outcomes.

Intervention time-series assessments used GLMs to analyze the change in monthly rates
[44,64–67] and counts [18,27,68–70] of crime after on-premises outlet lock-out policy changes
[18,65] or alcohol trading hour extensions [27,44,64,66–70]. In almost all cases, change in
crime was assessed using a dichotomous intervention variable before and after the policy inter-
vention period. Additional covariates were included in half of the studies to control for the
impact of socio-demographics, other crimes, dry laws, polices force changes [65–67] and inter-
actions among age, location and time of drinking [44] on crime. Seventy percent of the inter-
vention studies used quasi control data to test that any change in criminal incidence was the
effect of the alcohol policy intervention. Control data were integrated directly into the model
by combining the alcohol policy intervention variable with a dichotomous area variable (study
area verses control)(e.g., [70]).

Table 3. Applied analysis units counted by country, overall use before and after 2009, and the percent change in use after 2009. Percent change in
use was calculated by subtracting the proportion of studies applying the analysis unit before 2009 from the proportion of studies applying the
same unit after 2009.

Spatial Unit Count Per Country Overall Summary

United
States

Australia Canada Brazil United
Kingdom

Norway New
Zealand

Finland Count
Before 2009

Count
After 2009

%
Change

Blocks 2 1 1 2 2.94

Block groups 7 1 6 14.71

Campuses 1 0 1 2.94

Neighbourhoods 5 1 4 8.82

Police Regions 2 1 0 3 8.82

Postal/Zip Codes 7 4 7 4 -8.82

Rural Areas 1 0 1 2.94

Census Tracts 16 9 7 -5.88

Municipalities 2 1 3 0 -8.82

Government
Areas

2 1 1 0.00

Economic
Regions

2 2 0 -5.88

Counties 2 1 1 0.00

Cities 2 1 1 1 3 2 -2.94

User defined 2 2 0 -5.88

States 5 3 2 -2.94

doi:10.1371/journal.pone.0139344.t003
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More commonly, GLMs were applied to cross-section datasets estimating the effects of alco-
hol access on crime (n = 23). Eleven studies aggregated crime and alcohol measures to
regional/spatial units to estimate the effects of increased excise tax [50] or alcohol outlet densi-
ties on crime rates [45,55,71–74] and counts [10,75–77], while controlling for area (spatial
unit, fixed effect) and demographic characteristics. The remaining 12 cross-section studies esti-
mated the probability of crime using individuals’ alcohol consumption data [13,78,79], alcohol
access in the respondent’s regional area [20,52], or nested data investigating both consumption
at the individual level and regional alcohol exposure [6,29,49,51,53,54,80].

Across panel analysis, fixed-effect GLMs (n = 4) were specified to estimate the impact of
regional alcohol outlets [8,56,81] and change in alcohol tax [82] on monthly count [56], and
annual [8,81,82] crime rates. The intervention in alcohol tax policy was monitored using cate-
gorical change variable, analogous with the intervention time-series regressions [82]. By speci-
fying unit and time fixed effects GLMmodels maximize explaining the variance within units
and years, limiting the possibility that differences between regions and time-periods will bias
results (i.e., omitted variable bias).

3.4.3 Hierarchical, non-linear models and extensions. An extension of GLMs are hierar-
chical models (generalized linear mixed models (GLMM), generalized additive models
(GAM)), which were used to account for correlated errors, spatial patterns, and temporal
trends (n = 40, 44%) across time-series (n = 1), cross-section (n = 27), panel (n = 8), and inter-
vention panel (n = 4) datasets. Splines, data hierarchies, lagged variables, correlation terms,
and random effects (slope and intercepts) addressed non-linear relationships, nested data
structures, data dependency between units/time, and unexplained variance, respectively. Bayes-
ian methods were also applied for inference in recent studies [30–32,35,83–86]. In contrast to
frequentist techniques, Bayesian inference is conditional on both observed data (via the likeli-
hood) and specified prior information for each model parameter to provide a joint posterior
distribution for the model parameters. While the full posterior is generally not available in
closed form, sampling methods (such as Markov Chain Monte Carlo) can be used to obtain
samples from the marginal distributions, which are of primary interest.

The intervention time-series study [87] applied a negative binomial conditional autoregres-
sive model (adjusted for age, sex, weekends, holidays, event days, government leadership) to
estimate the influence of three different alcohol sales restrictions on the daily count of crime
over four years. The autoregressive structure corrected for correlation between homicides in
time (lagged counts of homicides from 7, 14, and 21 days). Intra annual trends (associated with
alcohol policy changes) were modelled using marginal splines, and annual trends and seasonal
changes in crime were captured using fractional polynomials and sine-cosine pairs (also
known as Fourier terms), representing a thorough consideration of temporal oscillations in
criminal activity.

Cross-sectional studies varied in model complexity to estimate the influence of alcohol
expenditure [88], consumption frequency [21], or alcohol outlet density (n = 26) on the count
(n = 4) and or rate (n = 23) of crime. Four studies published prior to 2004 used hierarchical
regression to simultaneously estimate the influence of alcohol outlet density, socio-economic
factors [89,90] and their interactions [91] on the rate of violent crime across municipalities,
accounting for both individual level (frequency of drinking and driving with an intoxicated
person) and city wide (alcohol outlet density) alcohol consumption influences on youth drink-
ing and driving [33].

A larger portion (76%) of the cross-sectional studies conducted spatial regression to esti-
mate crime rates within block groups (n = 5), neighbourhoods (n = 3), census tracts (n = 6),
postal/zip codes (n = 5), government areas (n = 1), or user defined areas (n = 1) areas using
spatial lag (SAR) [7,11,16,17,21,34,88,92–98], conditional autoregressive (CAR) [32,83], or
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spatial error (SEM) [84,92,94,99,100]. SAR, CAR and SEM models address spatial dependence
within the outcome or exploratory variables (correlation of data between analysis units) to
avoid spatially clustered residuals and biased coefficients [101]. Spatial lagged models (SAR)
include a parameter of interest on the right hand side of the regression equation, calculated in
some studies as the weighted average of alcohol outlets [16,57] or socio-demographics in
neighbouring regions, to estimate the incidence crime. Whereas, the spatial error models
(SEM) restrict autocorrelation to the error term assuming missing variable bias, effecting the
covariance structure of the random disturbance term (e.g., in [57] the spatial error is a random
effect) [101,102]. Frequently, spatial models use a contiguity spatial weights matrix to repre-
sents the dependency between values or errors at each location and adjacent locations among
analysis units, though distance weighted matrices also exist. CAR models, in contrast to SAR
and SEM models, assume the state of a particular area is influenced by its neighbours and not
neighbours of neighbours (Markov property) applying a symmetric weights matrix.

Pursuant to the spatial models, two cross-section studies explored geographically weighted
regression (GWR) [36] or Bayesian spatially varying coefficient process (SVCP) models [35] to
estimate how alcohol outlet density influences violent crime across local regional areas. In con-
trast to the spatial regression models above, spatially varying coefficient models do not assume
the relationship between alcohol access and crime is constant across space and instead estimate
coefficients for regions across the study area (e.g., census tracts or block groups in these cases).
The GWRmethod fits an linear regression model for each location in the dataset using data
collected from a specified radius around the point/region, weighted in varying degrees of
importance using a kernel function, such that data further away from the units is less influen-
tial that data close by [103]. The “optimal” radius is calculated using cross-validation. In the
Bayesian spatial varying coefficient model, random effects (intercept and effect parameters) are
defined in the prior and borrow strength from local data exhibiting spatial autocorrelation
(defined using contiguity matrix or distance weighted function). The spatially varying coeffi-
cient process then uses a prior joint specification of the coefficients that models the spatial cor-
relation of the coefficients as a continuous process (i.e., multivariate conditional autoregressive
model) [104], and parameter inferences are possible by sampling the posterior distributions
using MCMC sampling.

Panel studies used a variety of fixed and random effects modelling, fit with maximum likeli-
hood (n = 7) or Bayesian (n = 2) estimation, to model how alcohol price [25,58], excise tax
[105], and outlets densities [31,57,85,106,107] influenced the incidence of crime over space
and time. To ensure cross-sectional and temporal differences did not bias results, researchers
applied either space-time fixed [47,105,106] or random [25,57,58,85] effects for units and time
periods. In the fixed effects models, researchers considered the lagged effects of alcohol access
or socio-demographics over time [105,106] or space [47] on the incidence of crime, but did not
explore space-time interaction.

In a more complex panel model, Poisson Bayesian space-time misalignment analysis was
conducted to estimate how alcohol outlet density in focal region and neighbouring zip codes
(lag) effected the count of assault injuries over 14 years [31]. The Bayesian spatial misalignment
model addressed how the geographic delineation of zip codes varied over the study period. The
authors specified a CAR random effect for each year’s spatial adjacencies to control the influ-
ence on autocorrelation between units. A random county and country level effect were also
used to control for the nested structure of the zip codes, and year specific intercepts where
implemented to assess statewide changes in assault risk not explained by the neighborhood
demographics, alcohol outlet densities, overall hospitalization rates, population density, retail
clutter, presence of highways, and ZIP code instability (misalignment) covariates. Successive
models were run to explore additional lags and bar interactions effects on crime.
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In the less common intervention panel studies (n = 4), applying mixed modelling tech-
niques, researchers contended with space-time effects and monitored if a significant change in
the incidence of crime occurred after a change in alcohol outlet closing times [46], allowance of
Sunday alcohol sales from packaged retail stores [86], alcohol tax increase [23], or decrease in
alcohol outlets [30]. In two cases, fixed effects were used to model the influence space and time
units on crime [23,46] though both studies explored temporally lagged influences on crime
including: alcohol consumption per capita [23] and change in municipal dry laws [46]. Finally,
dummy variables were used to signify if a significant shift in the rate of crime occurred after an
alcohol tax change [23] or restricted alcohol outlet closing times [46].

The random effects panel studies (n = 2), applying Bayesian estimation, modelled the
change in quarterly count of alcohol-related crashes post lifting alcohol sales ban across 33
counties [86] and the change in probability of assaultive violence after and alcohol licenses sur-
renders across 480 census tracts [30]. The probability of a crash was estimated using previous
quarterly state-rate of crashes, the yearly change in crash rate, socio-demographic controls and
a random intercept indicating the change in Sunday sales of alcohol (zero before, mean sales
after sales ban). Weakly informative priors were specified for each parameter in the model leav-
ing the posterior inferences largely influenced by the dataset. A CAR model was used to moni-
tor changes in assaultive violence after outlet licence surrender assuming a Poisson distribution
for crime data. Alcohol exposure was measured as a dichotomous indicator of census tracts
surrendering alcohol licenses, the percent of surrender, alcohol outlet density, and a dual
change point interaction term specifying the year and tract. Control covariates included yearly:
race, young male population, poverty, and damage per square mile, and a spatial error. The
spatial error model accounted for residual similarities across neighbourhoods specifying the
prior mean of the error in the focal tract should be equal to the average error in the adjacent
census tracts (gamma hyperprior distribution having mean 1 and variance 10 used). All other
covariates priors were specified as having a normal distribution centered at 0 with precision
0.00001 (i.e., non-informative). Marginal posterior distributions for all parameters were
obtained via Markov chain Monte Carlo (MCMC) sampling.

3.4.4 Regression Trees, Cluster Detection, and Mapping. Pursuant to traditional effects
modelling, Multiple Additive Regression Tree method (n = 1) was applied to account for the
effects of a percent change in alcohol-license outlets on violent crime rates after multiple alco-
hol-license surrenders in Los Angles California [108]. Regression trees are a computationally
intensive, non-parametric method, of recursively splitting data based on thresholds of the sin-
gular variables to maximize the homogeneity within the resulting response groups (e.g., crime
rates), using (in some cases) the analysis of variance [109]. The resulting tree shows a hierarchy
of selected explanatory variables, and interactions among, though no formal coefficient estima-
tion or significance testing are available [110]. To avoid over fitting and provide a more rigor-
ous evaluation of explanatory variables influence on the model fit, bagging and boosting
regression trees ensemble methods were developed. These methods use multiple trees, derived
from sub-samples or residual data to predict the response (crime) to stabilize model results
[111]. Yu et al., [108] study included a continuous measure of on and off license alcohol outlets
densities per square mile from 1990–1999, the proportion of licences surrender after civil
unrest, and accounted for spatial structure using a CAR term to explain the variance in violent
rates across census tract units of Los Angeles California.

Beyond estimation approaches, alcohol and crime studies have emphasized mapping and
graphing as valuable techniques for identifying spatio-temporal patterns between crime and
alcohol consumption for policing (n = 5). Space-time mapping was conducted to understand
how liquor violations, assaults, batteries, vandalism, and noise complaints emerged through
time and space in proximity to the university bar district of Madison Wisconsin [112].
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Graphing identified the temporal distribution and proportion of assault per alcohol establish-
ment license type in the Newcastle &Wollongong Australia [113]. Spatial cluster methods illu-
minated where alcohol outlet densities and crime rates frequencies significantly diverted from
an expected random pattern [114]and cellular automata models were used as the first prospec-
tive (forecast) analysis to assess how relative risk ratios of crime (crime as a proportion of alco-
hol density) were expected to disperse with changes in population at risk across a detailed
(50m resolution) downtown Vancouver British Columbia study [48].

Specifically, the spatial cluster method identified agglomerations of alcohol outlet densities
using an empirical Bayesian rate standardizing scores per roadway mile, and then applied a
Moran’s I local analysis to identified block groups (lag 1 contiguity) where the rate of alcohol
outlets exceeded the mean overall rates, and significantly departed from what would be
expected under a random assignment of alcohol outlets across the study region [115]. Alcohol
outlet agglomerations were compared to regional violence counts using a foci cluster test speci-
fied as the sum of the differences between observed and expected assault counts at each loca-
tion weighted by the exposure to alcohol outlet agglomeration. In this sense, the statistic
explained a distance decay effect identifying the spatial extent at which the observed number of
assaults exceed the expected [114].

Cellular automata methods, similar to agent based modelling, forecasted crime dispersion
based on spatial distribution of alcohol outlet seats using a 50m grid across the Vancouver
area. Each grid cell was specified with a number of finite states of possible violent crime risk,
and a contiguity neighbourhood around each cell was defined. The initial state of each cell was
trained by observed alcohol outlet seats and violent crime risk. A new state for each cell was
created according to a fixed rule (blocks with high relative risk were specified to increase vio-
lent crime frequency) conditional on the current state and of the cells in the adjacent neigh-
bourhood. The simulation was run 2300 times and in each case high risk violent crime blocks
multiplied when liquor licenses clustered, creating the first prospective analysis of alcohol
exposure and criminal behaviour.

Discussion

4.1 Methods
A large variety of modelling and exploratory techniques were applied to study the effects of
alcohol exposure on criminal behaviour (Table 4). Datasets varied in exposure indices and spa-
tial and temporal detail from large state/city/district overviews of crime rate changes after alco-
hol policy changes [18,23,65,70] to detailed block level analysis of alcohol outlet density and
crime clusters [48,114] with each providing unique information for alcohol policy planning.
Policy makers are interested in how exposure to alcohol affects overall population rates of
crime, while also wanting to address neighbour needs for policing around troublesome alcohol
establishments, local zoning policy, or approval of new alcohol establishments [2]. Therefore,
estimation and prediction techniques were mindfully selected to provide guidelines for alco-
hol-crime prevention. We address the strengths and weaknesses of common quantitative
approaches, and data collection methods to guide future alcohol-crime research.

ARIMAmodelling was used for 33% of the intervention time-series studies, with the most
recent published in 2012 [28]. While it is possible to use ARIMA models for change point anal-
ysis, some limitations exist; namely, the removal of temporal trends and seasonal oscillations in
crime during the differencing technique to ensure stationarity among the crime series [63]. By
removing information about the timing of crime one is limiting information for crime preven-
tion strategies and information for local alcohol policy/zoning. Further, the structure of the
ARIMAmodel challenges researchers ability to contend with missing data or explore stochastic
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exploratory effects on the alcohol-crime relationship [116]. Therefore, it is not surprising that
54% of the intervention time-series studies used regression to quantitatively summarize any
changes in the incidence of crime post regional alcohol policy changes.

Regression modelling was the most commonly used method of crime estimation (86%)
spanning the widest variety of datasets (cross-section, time-series, panel and intervention) and

Table 4. Applied quantitativemethods.

Method Type Application Suitable Dataset
Structures

Considerations Applied

ARIMA Model Forecasting model used to predict
crime-trends (rates or counts) through
time. Most often used to understand if
the rate or count of crime changed
after an alcohol policy intervention.

Times-series Times-series must be
stationary, which can remove
information about the temporal
patterns of criminal behaviour.

[28,59–62]

GLM Model Regression model used to understand
how alcohol consumption or alcohol
exposure in an area influences crime
(rates, counts, odds) across space
and or time using fixed effects. Policy
interventions were monitored using a
dichotomous intervention variable.

Times-series Cross-
section Panel

Model residuals must be
independent between analysis
units (time and or space).

[6,8,10,13,18,20,27,29,44,45,49–
56,64–82]

Hierarchical, non-
linear models and
extensions
(GLMM)

Model Extended regression models used to
estimate crime (rates, counts, odds)
across space and time as a function of
alcohol consumption, access, or other
explanatory variables. Effects were
random, or mixed, and sometimes
hierarchical in structure. Temporally or
spatially lagged variables were
explored. SAR, CAR, SEM extensions
provided useful techniques for
modelling spatial autocorrelation
across small contiguous unit studies
(e.g., census, postal, neighbourhood,
block). Policy interventions were
monitored using a dichotomous
intervention variable.

Times-series, Cross-
section Panel

Model residuals must be
independent between analysis
units (time and or space).

[7,11,16,17,21,23,25,30–
34,46,47,57,58,83–100,105–107]

GWR and
Bayesian SVCP

Model Regression models used to specify
regional coefficients to address spatial
heterogeneity (data relationships that
vary across space). Bayesian SVCP
method offered a robust statistical
estimation, over GWR.

Cross-section Panel(Data
must be spatially
aggregated to points,
grid, or contiguous
polygons)

GWR is vulnerable to multiple
significance testing. Estimated
coefficients should not exhibit
positive spatial autocorrelation.

[35,36]

Regression Tree Non-
parametric
model

Non-parametric recursive partitioning
method used for modelling crime rates
or counts as a function of multiple
explanatory variables including
categorical variables, spatial lagged
variables, or CAR terms to model
spatial or temporal trends. Policy
interventions monitored using
dichotomous intervention variable.

Time-series Cross-
section Panel

No formal coefficient estimation
or significance testing
available.

[108]

Cluster Detection
(e.g., Local
Moran’s I)

Statistical test Statistical test used to identify (map)
areas of high crime or alcohol
exposure concentrations.

Cross-section (Data must
be aggregated to
contiguous spatial units)

User defined spatial weights
matrices can influence cluster
results. Irregular spatial units
can also bias results.

[114]

Cellular automata Systems
model

Discrete model used to predict future
crime dispersion based on changes in
alcohol exposure using a set of user
defined “rules”. The model began with
a grid, a fixed state for each cell, and
a rule for transformation of the “state”
over time.

Cross-section Panel
(Data must be
superimposed onto a
grid)

No formal statistical estimation.
System rules (algorithms) are
user defined.

[48]

Mapping and
graphing

Visual and
quantitative
method

Used to access if the distribution of
crime coincides with alcohol exposure
over space and time.

Cross-section Panel No formal statistical estimation.
Limited ability to access
multiple effects on the
distribution of crime.

[112,113,144]

doi:10.1371/journal.pone.0139344.t004
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distributional characteristics (Section 3.4.2 & 3.4.3). GLMs (41% of studies) had the advantage
of testing constant and seasonal trends on crime, in addition to alcohol exposure, over methods
such as hypothesis testing (e.g., chi-square [117,118]). However, there were drawbacks when
considering the statistical assumption of: independence between crime measures, correct speci-
fication of link and variance functions, little to no multi-collinearity among the explanatory
variables, and independent uncorrelated residuals.

A limitation of the intervention time-series studies applying GLMs, without fixed time
effects (n = 5), included the assumption that monthly crime data were independent between
time periods and any changes in alcohol policy would have an immediate effect on crime.
Ignoring implication of time can cause positive serial autocorrelation in errors, and miss any
time-lagged effects of the alcohol exposure on crime [119]. Notably, when serial autocorrela-
tion exists between the temporal units the significance of the intervention variable can be over-
estimated. A small number of the (n = 5) intervention studies did test for data dependence
between months [27,65–68] and one corrected for secular and seasonal effects on alcohol con-
sumption and crime [70], though half of the results may have been vulnerable to untested tem-
poral bias. Intervention time-series analysis may be better addressed by mixed modelling
approaches incorporating time lagged explanatory variables or structured time series methods
that explicitly address trends and seasonality inherent in crime data.

Spatial autocorrelation was an underlying concern for contiguous (n = 10) multi-regional
cross-section studies applying fixed linear regression, most often, to study the regional effects
of alcohol density on violent crime. Data dependence (positive correlation) between units can
lead to correlated residuals, ultimately reducing the standard error and biasing coefficients
[38,102]. More recent publications (published since 2011) tested for residual spatial autocorre-
lation [10,45,75–77] though half did not address the independence assumption. When positive
autocorrelation was found, one study remedied significant spatial autocorrelation by removing
spatial units instead of applying a more appropriate spatial lag or error model (See Section
3.4.2).

A further concern of the cross-section studies was the application of GLM technique to
nested data (n = 7). Nesting often occurred when researchers were modelling the influence of
both individuals’ consumption habitats and regional alcohol exposure on the individual level
incidences of crime. Without specification of the hierarchies (e.g., generalized linear mixed
model) it is possible that correlated errors exist among groups (e.g., dependence between
responses pulled from the same regional area/level of alcohol access) which can under estimate
standard errors, and in some cases, incorrectly specify the magnitude of the explanatory effects
(see [120]).

Panel studies applying fixed effects on the unit and time covariates (n = 4) sacrificed statisti-
cal power to avoid omitted variable bias as the degrees of freedom diminish for every space and
time unit. The models also become vulnerable to over fitting as the space and time effects are
not generalizable to other regions and time periods. Understanding intra space-time patterns is
key for alcohol policy planning in an effect to address effects on study applied a jackknifing
approach to monitor the impact on the estimated coefficient when one space-time period is left
out of the analysis [8]. Researchers would further benefit from the specification of random
space time effects, especially with shorter time-periods and a greater amount of spatial units, in
order to conserve statistical power [121]. Panel models should also consider the implications of
alcohol access in previous units and regions as well as within unit variance.

Hierarchical models (e.g., GLMM, GAM, and Bayesian SVCP) were better suited for estima-
tion when addressing the complex framework of alcohol-crime studies incorporating data
from multiple regions and time-periods. Specifically random effects modelling permitted the
influence of explanatory variables to fluctuate over space and time (random slope or intercept
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model) and can be keenly useful when addressing spatial variation in the expected outcome
[121]. For example, you can condition the estimated value of crime toward the mean for
regions with fewer persons instead of predicting extremely low numbers [121,122], particularly
useful for small scale regional modelling (e.g., census, neighbourhood, blocks). Further, hierar-
chical models can estimate the effects of explanatory variables on crime measured at multiple
scales allowing researchers to consider direct factors (e.g., alcohol blood level) and environ-
mental effects (e.g., regional alcohol outlet density, or demographics) on the incidence of
crime. Mixed modelling also offer approaches for modelling autoregressive processes (lagged
or spatial error models) when the space and time detail in data increase such that researchers
have to consider the effects of alcohol access in previous time periods or neighbouring units on
the incidence of crime. Alcohol consumption in one neighbourhood can lead to crime in an
adjacent or further region and changes in alcohol policy may have a delayed influence on crime
incidence as the population recognizes modifications, increasing the importance of considering
lagged variables.

Bayesian estimation also provided flexible inference methods for modelling hierarchies
[32,84] space [31,35], and space-time [30,85,86] dynamics. Improving upon frequentist tech-
niques, Bayesian Spatially Varying Coefficient Process offer inference possibilities for model-
ling non-stationary datasets (controlling for correlation among regionally estimated regression
coefficients), in contrast to GWRmodels which use an iterative algorithm lacking formal statis-
tical properties of inference [104]. Because of these advantageous we are seeing a recent trend
in the publication of Bayesian inference across the alcohol-crime literature (seven published
since 2007) most likely influenced by the increasing hierarchical and space-time detail of data
and free software (e.g., WinBugs) for model fitting and computationally intensive sampling of
the posterior distributions for estimation.

In addition to mixed modelling techniques, we also see utility in the less common applied
exploratory methods, specifically cluster detection and density mapping, which can illuminate
specific risk locations of alcohol-related crime [123]. Cellular automata also poses an alterna-
tive prospective modelling approach where known information about alcohol exposure and
crime can train a computation model to predict where crime will lead in future scenarios of
exposure [48]. However, these methods lack tradition coefficient estimation, statistical signifi-
cance testing, and limit the ability to study simultaneous effects on crime. Parameters are often
specified by the user (e.g., cellular automata “rules” and weight matrices in cluster detection)
introducing user bias. What they do provide is local specification of high risk areas for policing
and regional planning, and unique methods for predictive simulations when alcohol exposure
increases (e.g., additional retail stores, on-premises drinking establishments, or extended hours
of sales).

4.2 Future research
Pursuant to modelling considerations we found the practice of standardizing crime counts by
residential population data predominant across rate calculations. It is likely when using smaller
geographic units (blocks or neighbourhood) for analysis the residential population is unrepre-
sentative of population at-risk [43] displacing the true spatial pattern of crime [124] thereby
altering model results for small areas studies. For example, people living in an area are not nec-
essarily the population consuming alcohol and committing crime. Often establishments that
sell alcohol draw people from neighbouring regions to their premises altering the population at
risk in time and space [125]. Depending on the study, using residential population counts can
skew the relative risk scenario of crime and alter relationships estimated in models applying
residential population rates, especially across smaller areas such as blocks, census tract, or
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neighbourhoods where persons could readily venture between. Opportunities exist to use
ambient population data (data representing the spatial and temporal fluctuations of popula-
tions). Products such as Landscan Data (1km resolution, http://web.ornl.gov/sci/landscan/) or
social media crowd sourced data [124] can be used to gain dynamic population estimates for
improved rate calculations and provide population information for retrospective and prospec-
tive modelling. Landscan data redistributes residential population counts, using complex land
use models, to identify where persons are mostly likely to spend their time in a 24hr period.
Whereas, social media demographic estimates pin media users to the geographic location in
time showing demographic variances across space and time, and are likely to represent the
younger drinking population vulnerable to nuisance and assault crimes [2,126,127].

Emphasis on the accurate measurement of alcohol exposure is also prudent with the major-
ity of analysis (89%) inferring causation using exposure measures (alcohol outlet density, hours
of sales, alcohol sales volumes, and trading hours) instead of direct consumption information
(blood alcohol level, drinking frequency). Generally, we found studies exploring direct alcohol
consumption indicators (blood alcohol level and consumption patterns) identified positive sig-
nificant results between alcohol consumption and crime [6,13,23,29,44,54,55,78,79]. Whereas
studies using alcohol exposure measures such as alcohol sales lock-outs [18,65], change in the
hours of sales [62,66–69], change in establishment hours [118], modification of alcohol tax
[60,61,82,105] or alcohol outlets (measured at the municipal level) [89,91] found no significant
relationships. Insignificant findings, were exclusive to time-series [60,61,65,67–69,118], cross-
sectional [89,91], and panel [82,105] assessments aggregating data to large spatial units such
states (n = 1), countries (n = 5), cities (n = 3), or municipalities (n = 2), which may indicate
that both the type of index and level of spatial aggregation can mask effects. Overall the choice
of scale is limited to available data and we can not make conclusions across scales, though
improvements can be made to alcohol exposure measures. Simply the difference in measure-
ment of alcohol outlet density per region is one example. Regions of equal outlets and popula-
tions can have vastly different access if spread across difference sized areas. Similarly
standardizing by area does not represent the paths people readily use for travel. While most
studies standardize outlet density by population per region [34] or per area [128], roadway
standardization is regarded as a preferred method of representing “access” [88].

Further, many studies combine alcohol establishment types to model the association
between crime and indicators of consumption [6,8,29,35,90–92,95,129]. However, it has been
established that specific establishments types contribute disproportionately to increasing the
rates of crime [113,130]. To illuminate these connections researchers need disaggregate alcohol
establishments, especially across small unit studies were correlation among densities is less
likely. Additionally, researchers could explore attributing density measures with seating capaci-
ties as not to treat each establishment as having an equal weight on consumption patterns [48].
Only one study represented on-premises alcohol outlet density using seats [48].

We recognize the limitations surrounding the level of spatial and temporal detail available
for crime models using traditional data sources, such as aggregated police data or government
records. We see utility in assessing if social media can be used to track alcohol consumption
and crime patterns in space and time by searching user’s messages on twitter feeds. The infor-
mation content provided by social media is being utilized in health research [131], and could
prove resources for crime and alcohol studies. Participatory mapping, where respondents con-
nect responses in space and time on a geographic interface, could also become a more common
application across the consumption and crime surveys to source information about the proba-
ble locations of alcohol consumption and witnessed alcohol-attributable crime. The advantages
of participatory data collection for health research are well known [132,133], but have not
extended to crime-alcohol modelling.
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Regarding dataset structures, the robustness of cross-sectional studies (n = 43) could be
improved by increasingly collecting data that link intoxication level and the place of last con-
sumption, to the location of the crime. For example, in studies, such as Chikritzhs & Stockwell
[44] and Macdonald et al. [78], researchers analyzed crime records in conjunction with blood
alcohol levels and place of last consumption. These studies are well poised to draw hierarchical
connections between individuals and environmental influences on drinking patterns and sub-
sequent criminal behaviour. Other researchers applied a local-level analysis to gain insights on
the frequency of crime in and around alcohol establishment’s linking offences with the types of
alcohol outlets [18,26,72,113]. Studies connecting consumption to specific locations are invalu-
able crime prevention, but scarce across the literature.

When smaller regions are studied, heath researchers have noted the distance effects of alco-
hol availability within regions on neighbouring regions’ crime rates, and these influence have
been observed by fitting models with spatially lagged variables where within each spatial unit
crime rates are predicted by establishments within neighbouring areas [16,57]. Rarely in these
studies are the effects explored outside of the adjacent areas (e.g.,[31,96]); however, as the spa-
tial units become smaller (i.e., blocks) the movement of intoxicated individuals across more
than one spatial unit is likely and researchers should address the distance at which the effect is
negligible by using multiple spatial lags within small area studies.

To date, explicitly addressing the concept of proximity between alcohol establishments and
crime is limited [20,114]. With advances in technology for mapping alcohol establishment and
crimes, it is possible to address the diffusion of crime around each establishment in space and
time. Using distance decay functions [134–136], parameters can be quantified to explain the
expected frequency of crime as a function of distance by treating alcohol establishment loca-
tions (or clusters) as the origins of crime. Space-time bivariate point pattern analysis [136] can
also statistically assess the spatial extent (i.e., radius) crimes cluster around outlets. These
results would provide evidence based information for setting restrictions on the proximity of
alcohol establishments in an area. Only one known study has explored bi-variate Ripley’s k-
function to determine the distance at which point level crime data clusters around alcohol
establishments [137] and additional analysis is need to understand if these distance thresholds
are consistent across study areas for implementing policy.

Mapping has been largely overlooked analysis strategy, likely because of the privacy con-
cerns associated with crime data. Out of the 90 studies summarized, 18 mapped the distribu-
tions of alcohol access and/or crime, and to a lesser extent fitted model values or errors
[30,108,138]. However, maps can illuminate data outliers and applicable spatial scales for
model assessment. Criminologists to date have had a vested interest in understanding the fre-
quency of crime through space and time and studies have been conducted to address the stabil-
ity of crime hot-spots [139,140]. In the cases where alcohol establishment densities remain
static, it is still useful to study how crime hot spots emerge through hours of the day around
these establishments. To observe how clusters of crime form over time three dimensional ker-
nel density mapping [141], or scan statistics [142] are possible approaches, providing a novel
and interesting perspective for alcohol policy literature.

Identifying thresholds at which alcohol access substantively increases crime rates is also an
interesting avenue of future studies. Both Livingston [11] and McKinney et al. [51] observed
that violent crimes exponentially increased when the count of alcohol establishments met or
exceeded 25 units per postal or zip code. These findings signify a change in the environment,
merging from community areas to entertainment districts. To understand if these thresholds
are cross-regionally or cross-culturally stable, it is of interest for criminologist and health
researchers to employ modelling techniques that can accommodate non-linear response
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relationships, either in the form of transformed specification before modelling (i.e., GLM,
GLMM), or non-parametric methods such as regression trees [109].

Conclusion
Study designs and statistical approaches characterizing the relationship between crime and
alcohol are best chosen based on the research question and nature of data. Researchers study-
ing the influence of alcohol exposures on the rate or count of crime over large areas using mul-
tiple spatial units (census tracts, neighbourhoods, blocks) will likely turn to spatial regression,
hierarchical models, and spatial varying coefficient models to capture spatial effects. While,
crime data collected over areas considered to be demographically homogenous will mostly
likely apply time-series analysis to understand how alcohol policy affects crime over larger pop-
ulation groups. Novel sources of spatial data are going to create further opportunity to utilize
non-traditional methods to study how the size and capacity of drinking establishments impacts
consumption and ultimately crime, across space and through time. There are new techniques
available for rate calculations across small analysis units, and we anticipate a surge in the spa-
tio-temporal analysis of the alcohol consumption and crime connection. There is a need to
inform policing and alcohol policy by identifying how consumption in specific locations influ-
ences regional crime. With advances in spatial-temporal data collection we expect a continued
uptake of flexible Bayesian inference, greater inclusion of spatio-temporal point pattern analy-
sis, and prospective modelling over small areas.
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