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Abstract

Background: The test-negative design (TND) to evaluate influenza vaccine effectiveness

is based on patients seeking care for acute respiratory infection, with those who test

positive for influenza as cases and the test-negatives serving as controls. This design has

not been validated for the inpatient setting where selection bias might be different from

an outpatient setting.

Methods: We derived mathematical expressions for vaccine effectiveness (VE) against

laboratory-confirmed influenza hospitalizations and used numerical simulations to verify

theoretical results exploring expected biases under various scenarios. We explored

meaningful interpretations of VE estimates from inpatient TND studies.

Results: VE estimates from inpatient TND studies capture the vaccine-mediated protec-

tion of the source population against laboratory-confirmed influenza hospitalizations. If

vaccination does not modify disease severity, these estimates are equivalent to VE

against influenza virus infection. If chronic cardiopulmonary individuals are enrolled

because of non-infectious exacerbation, biased VE estimates (too high) will result. If

chronic cardiopulmonary disease status is adjusted for accurately, the VE estimates will

be unbiased. If chronic cardiopulmonary illness cannot be adequately be characterized,

excluding these individuals may provide unbiased VE estimates.

Conclusions: The inpatient TND offers logistic advantages and can provide valid esti-

mates of influenza VE. If highly vaccinated patients with respiratory exacerbation of

chronic cardiopulmonary conditions are eligible for study inclusion, biased VE esti-

mates will result unless this group is well characterized and the analysis can ad-

equately adjust for it. Otherwise, such groups of subjects should be excluded from the

analysis.
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Introduction

The antigenic variability of seasonal influenza viruses re-

quires frequent reassessments of the effectiveness of vac-

cines designed to prevent influenza infection and

morbidity. However, randomized controlled trials are no

longer ethical in settings where seasonal influenza vaccin-

ation is widely recommended, such as in the USA.1 The so-

called ‘test-negative’ design (TND) has become a popular

choice for post-licensure observational studies of the effect-

iveness of vaccines for influenza.2–10 Both cases and con-

trols are identified in a clinical setting among patients

meeting certain clinical criteria, e.g. for acute respiratory

infection (ARI) or ‘influenza-like illness’ (ILI) and who

consent to participate in the study. Those testing positive

for influenza with a sensitive and specific assay, usually by

reverse-transcription polymerase chain reaction (RT-PCR),

are designated cases and those who test negative for influ-

enza are used as controls. Vaccine effectiveness (VE) is cal-

culated as VE¼ (1- ORV) * 100%,11 where ORV is the

ratio of the odds of being vaccinated in cases vs the odds

being vaccinated in controls or, equivalently, the odds of

being a case in vaccinated vs the odds of being a case in un-

vaccinated study subjects. The popularity of this design in

ambulatory settings can be explained not only by its ease

of implementation, but also by the implicit conditioning

on healthcare-seeking practices, which eliminates an im-

portant source of selection bias. The general validity of VE

estimates obtained from TND studies conducted in ambu-

latory settings (ambulatory TND) has recently been con-

firmed for a wide range of conditions.11–13

Recent investigations have used a TND approach to

examine the effectiveness of influenza vaccination against

influenza-related hospitalizations.14–25 VE estimates from

both inpatient and outpatient TND studies are used as

measures of VE for specific influenza seasons and inform

public health responses. The validity of the TND in the

inpatient setting (inpatient TND), however, has yet to be

examined. In fact, some VE estimates from inpatient TND

studies appear to exceed VEs usually encountered in ambu-

latory settings. For example, Belongia et al. estimated in-

fluenza vaccine effectiveness for all ages against influenza-

associated hospitalizations for the seasons 2006-7 in the

USA to be 88% (95% confidence interval (CI) 13%,

100%), whereas North American ambulatory TND studies

reported adjusted VE estimates of 52% (CI 22%, 70%)4

and 46% (CI 17%, 65%)26 for the same season. Similarly,

Gefenaite et al.22 reported for the season 2012-13 an ad-

justed adult influenza VE of 86% (CI 19%, 97%) from an

inpatient TND study in Lithuania. A European ambulatory

TND study from the same year reported a VE of 49%

(95% CI 32%, 62%).27 This discrepancy could reflect an

effect of vaccination on disease severity, i.e. vaccinated in-

dividuals might tend to develop less severe influenza dis-

ease if infected and thus be less likely to require

hospitalization, or it might simply reflect the lack of preci-

sion in the inpatient TND VE estimates. However, it could

also be the result of selection bias if influenza-negative con-

trols are substantially different from the source population

in their uptake of influenza vaccination. For instance, sub-

jects suffering from chronic conditions such as congestive

heart failure or chronic obstructive pulmonary disease

(COPD) (CP individuals) are more likely to be hospitalized

with non-infectious respiratory disease (e.g., decompensa-

tion of their heart condition or COPD exacerbation). If

they are also more likely to be vaccinated than the source

population from which the cases are drawn, selection bias

would result.28

Here, we first examine the interpretation of VE esti-

mates obtained from inpatient TND studies: does VE rep-

resent the level of protection against influenza

hospitalizations? We then examine the effect on VE esti-

mates of enrolling CP individuals for respiratory non-ARI

Key Messages

• Test-negative design (TND) studies of influenza vaccine effectiveness (VE) are increasingly used with inpatients

• In the absence of bias, VE estimates from inpatient TND studies represent the protection of the source population

from hospitalization with influenza

• Late complications of influenza are not captured by this study design

• Selection bias due to the inclusion of subjects for exacerbation of chronic pulmonary conditions that are not caused

by acute respiratory infection is a potential problem of inpatient TND studies which requires careful consideration.
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exacerbation. We also investigate the effect of accurate

and inaccurate adjustment for CP status on VE estimates.

We theoretically derive the mathematical quantities of

interest and use a simulator to verify the theoretical results.

Methods

Assumptions

We make use of notation previously described.11

Parameters with their symbols and baseline values are

shown in Table 1. We assume that the incidence of influ-

enza ARI and ARI of other aetiologies (‘non-influenza’) is

driven by incidence rates kIðtÞ and kNIðtÞ, respectively,

where t represents time in days. We assume that influenza

viruses represent one antigenic entity such that infection

with the virus results in full immunity to influenza viruses

for the remainder of the study. ARI of non-influenza aeti-

ology does not change the future risk of acquiring ARI of

any aetiology (influenza, non-influenza). Study inclusion

criteria are broad enough to allow for the enrolment of

subjects admitted to inpatient care for respiratory exacer-

bation of underlying chronic medical conditions, such as

COPD, asthma or congestive heart failure, hence referred

to as CP conditions. To differentiate such events from ARI-

related events we will use the term non-ARI events.

Individuals suffering from CP conditions are also assumed

to have a higher vaccination uptake than the remainder of

the population. All subjects are susceptible to influenza in-

fection before influenza vaccination or natural infection

with influenza virus. Influenza vaccination is completed

before the beginning of the study period. VE is the same

for CP and non-CP subjects and an ‘all-or-none’ model of

the vaccination effect is assumed according to which a pro-

portion u (¼VE) of those susceptible to influenza who

were vaccinated become fully immune to influenza infec-

tion (vaccination-mediated); accordingly, influenza vaccin-

ation fails to protect a proportion 1� u against influenza

virus infection (vaccine failure). Despite vaccine failure, an

individual’s probability of becoming hospitalized with in-

fluenza may be reduced by the factor ð1� iÞ (Greek letter

iota). This represents a mitigating effect of influenza

Table 1. Parameter descriptions and symbols with default values. The index 0/1 denotes parameter values for individuals with-

out chronic cardiopulmonary (CP) conditions and CP individuals, respectively.

Parameter Symbol Baseline value

Total population size Npop 1E þ 06

Target no.of cases – 500

Target no.of controls – 1000

Duration of study (days) s 150

Prevalence of CP status g 0.2

Vaccination uptake (non-CP) �0 0.4

Vaccination uptake (CP) �1 0.8

Vaccine efficacy against infection u 0.6

Proportion of influenza hospitalizations prevented by vaccine, given infection i 0

Incidence constant (maximum daily influenza incidence rate per 1000 per day) k0 4.0

Incidence rate of influenza infection at time t kIðtÞ kosint=sp

Incidence rate of non-influenza infection at time t kNIðtÞ kocost=spþ abs minðcostv=esrpb; a rt;2; ð; 0; ; ; s; Þð Þ
Incidence rate of non-acute respiratory infection (ARI) events (non-CP) kCP0 MeanðkNIðtÞÞ=10

Incidence rate of non-ARI events (CP) kCP1 MeanðkNIðtÞÞ
Testing probability of inpatients r 0.5

Test sensitivity a 1.0

Test sensitivity reduction by vaccination n 0.0

Influenza test specificity � 1.0

Vaccine status assessment sensitivity w 1.0

Vaccine status assessment specificity x 1.0

CP status assessment sensitivity f 1.0

CP status assessment specificity h 1.0

Probability of hosp.resulting from influenza (non-CP) cI0 0.01

Probability of hospitalization (hosp) resulting from influenza (CP) cI1 0.05

Probability of hosp.with non-influenza ARI (non-CP) cNI0 0.01

Probability of hosp.with non-influenza ARI (CP) cNI1 0.05

Probability of hosp.with non-ARI events (non-CP) cCP0 0.02

Probability of hosp.with non-ARI events (CP) cCP1 0.1
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vaccination on influenza disease severity. Influenza vaccin-

ation does not directly modify the probability of non-influ-

enza outcomes. CP subjects are at higher risk for non-ARI

events than non-CP subjects (kCP1ðtÞ and kCP0ðtÞ, respect-

ively). Given an ARI or non-ARI event, subjects are hospital-

ized with a given probability which depends on the type of

event and on their CP status: For example, cNI1 is the prob-

ability of a CP subject being hospitalized with non-influenza

ARI; see Table 1. All subjects hospitalized with an ARI or

non-ARI event are tested for influenza and included in the

study with probability r. The laboratory test used to assess

influenza infection has perfect accuracy. Similarly, both vac-

cination and CP status (0 or 1) are assessed accurately. We

assume that CP status is adjusted for in the analysis by the

use of a binary covariate in the logistic regression analysis.

For the sake of simplicity we ignored confounders of prac-

tical importance such as age and calendar time.

Simulation study

We simulated the daily incidence of the events of interest

(influenza and non-influenza ARI, non-ARI events), the oc-

currence of relevant downstream events (hospitalization,

influenza testing, study participation etc.) which resulted

in simulated data sets that were analysed using logistic re-

gression analysis. This allowed us to investigate the effect

of certain parameters on resulting VE estimates

(Supplement 2, available as Supplementary data at IJE on-

line). We did not model transmission, but based the daily

incidence on given incidence rate functions for all events

(see below). Briefly, the population is subdivided into non-

CP (‘normal’), and CP subjects, who can be either vacci-

nated or unvaccinated. Infections with influenza virus,

with non-influenza ARI agents and non-ARI events were

generated for each day of the simulation by applying the

respective incidence rates to the respective population

groups. Driven by values of the parameters that represent

conditional probabilities, such as the probability of non-

CP subjects being hospitalized given influenza infection

(e.g. cI0), data generation from an inpatient TND study is

simulated. To assess the ‘meaning’ of VE estimates from in-

patient TND studies, hypothetical cohort studies, repre-

senting the whole population, were simulated in which

inpatient TND studies were nested. We then varied i to

produce a specific VE against hospitalization:

u� ¼ 1� ð1� iÞ 1� uð Þ (see Supplement 1 S9 available

as Supplementary data at IJE online) and estimated u� as

û� ¼ 1� RR

where RR is the relative risk of influenza hospitalization in

those vaccinated compared with those not vaccinated,

estimated by CP-adjusted binomial regression and expo-

nentiating the coefficient estimate associated with vaccin-

ation. For each simulated TND study we estimated VE

using logistic regression analysis, adjusting for CP status.

We then compared the inpatient TND VE estimates with

the cohort values in 10 000 simulations for each u�.

To investigate the effect of CP status on VE estimates

from inpatient TND studies, we simulated 10 000 studies,

for each calculating the crude VE, VE by CP status (separ-

ate analysis for CP and non-CP subjects) and adjusted VE

using logistic regression analysis (Supplement 1). We also

simulated the situation where CP subjects were not homo-

geneous with respect to their vaccination uptake and risk

of non-ARI events, such that their marginal vaccination

uptake and non-ARI risk remained the same (80% and 4

per 1000 per day, respectively), but two-thirds of them suf-

fered 5-fold higher rates of non-ARI events compared with

non-CP subjects and one-third suffered 20-fold higher rates

of non-ARI events than non-CP subjects. Of the former

group 75% were vaccinated, whereas 90% were vacci-

nated of the latter group.

The simulation model was implemented using R 3.1.129

and can be downloaded (Supplement 2). All simulations

were based on fixed sets of parameters (Table 1) unless ex-

plicitly stated. The bias was calculated as the median dif-

ference between the estimated VE and u, along with the

2.5th and 97.5th percentiles of that difference as empirical

95% confidence intervals (CI).

Results

The interpretation of VE estimates from inpatient

TND studies

Theoretically, if the controls are representative of the

source population with regard to vaccine receipt, if both

outcome and vaccination status are accurately measured

and if the vaccine provides ‘all-or-none’ protection, VE es-

timates from inpatient TND studies should represent

unbiased estimates of the true VE against laboratory-

confirmed influenza hospitalization for the general popu-

lation (Supplement 1, equation S9). This was confirmed

by simulation where the VE estimates based in inpatient

studies were highly consistent with the actual protection

from influenza hospitalization in the population cohort

(Table 2, columns 2-4) even though they are derived from

hospitalized subjects only. If, in addition, vaccination does

not modify influenza disease severity (i ¼ 0), VE against

hospitalization equals VE against influenza virus infection

(Supplement 1, S10, Table 2, first row). Given VE against

infection (u), VE against laboratory-confirmed influenza

hospitalization, u�, increases linearly with the ‘attenuation
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factor’ i because u� ¼ 1� 1� ið Þ 1� uð Þ. This was con-

firmed by simulation (Table 2). The difference between

VE against infection (u) and the VE against laboratory-

confirmed influenza hospitalization (u�Þ, given a certain

‘attenuation factor’ i, is larger for smaller values of u than

it is for larger values (Supplement 1, S9). As only out-

comes that test positive for influenza, usually by molecular

methods such as RT-PCR, define case status, hospitaliza-

tions due to late complications of influenza will not be

captured and the VE estimated in inpatient TND studies

relates only to hospitalization with laboratory-confirmed

influenza and not necessarily to all influenza-associated

hospitalizations.

Bias in VE estimate from an inpatient TND

If CP status is associated both with high vaccine uptake

and with the risk of non-ARI events, and if such events

are eligible for study inclusion, VE estimates that are not

adjusted for the CP status (‘crude’) will be biased. This

bias can be classified as selection bias because highly vac-

cinated controls are selectively included in the study,

which leads to a misrepresentation of the source popula-

tion in terms of vaccination prevalence, biasing VE

estimates towards falsely high values (Table 3 and

Supplement 1). The magnitude of the bias depends on the

assumptions regarding the incidence of non-ARI events in

both non-CP and CP individuals, as well as the vaccin-

ation coverage in both groups. If vaccination coverage

does not depend on CP status, then unbiased estimates

result without CP-adjustment (Supplement 1; simulation

results not shown). CP-adjusted VE estimates were sensi-

tive to parameters that drive the accuracy of the influenza

test, as well as assessment of vaccination and CP status

(Supplement 1). If CP status is either adjusted for accur-

ately or VE is estimated separately for CP and non-CP in-

dividuals, unbiased estimates will result (Table 3 and

Supplement 1).

Table 2. The comparison of vaccine effectiveness (VE) estimates from simulated inpatient test-negative design (TND) studies

with the actual vaccine protection from influenza hospitalization (hosp.) in simulated cohort studies (see text) for different val-

ues of the proportion of influenza hospitalization that is prevented by vaccination (l)in ‘vaccine failures’. VE against infections is

60% for all scenarios. For each value l, 1 000 simulations were performed

ia VE against hosp.b Cohort VE against hosp. (%) Inpatient TND VE (%) VE difference (% points)

0.0 60 60 (54.4, 65) 60.1 (48.5, 69)d �0.1 (-9.1, 10.8)

0.1 64 64 (58.9, 68.6) 64.1 (53.8, 72.1) �0.1 (-8.1, 9.7)

0.2 68 68 (63.1, 72.2) 68 (59, 75.1) �0.1 (-7.2, 8.5)

0.3 72 72 (67.7, 75.8) 72.2 (64.3, 78.4) �0.2 (-6.4, 7.3)

0.4 76 76 (72.2, 79.5) 76.1 (69, 81.5) �0.1 (-5.6, 6.5)

0.5 80 80 (76.6, 83) 80.1 (74.3, 84.8) �0.1 (-4.7, 5.4)

0.6 84 84 (81, 86.6) 84.1 (79.2, 87.9) �0.1 (-4, 4.4)

0.7 88 88 (85.5, 90.1) 88 (84.1, 91.2) 0 (-3.1, 3.5)

0.8 92 92 (90.1, 93.6) 92.1 (89.2, 94.3) �0.1 (-2.2, 2.5)

0.9 96 96 (94.8, 97) 96 (94.2, 97.5) 0 (-1.3, 1.5)

†Type equation here
aInfluenza hosp. prevented by vaccination, given infection.
bCalculated as u� ¼ 1� ð1� iÞ 1� uð Þ.
cMedian (2.5th, 97.5th percentile).
dAdjusted for chronic cardiopulmonary (CP) status.

Table 3. Empirical bias distribution of crude vaccine effective-

ness (VE) estimates and VE estimates adjusted for chronic

cardiopulmonary (CP) status. These estimates were obtained

from simulated inpatient test-negative design (TND) studies,

using default parameter values in 10 000 simulations

Remarks Analysis Bias (% points)

No heterogeneity

within CP

categories

Crude 10.66 (3.24, 16.68)a

Restricted to subjects

without CP

0.02 (�23.45, 15)

Restricted to subjects

with CP

�0.06 (�13.27, 10.05)

CP-adjusted �0.08 (�11.09, 8.81)

Heterogeneity

within CP¼1

(see text)

Crude 13.23 (6.28, 18.89)

Restricted to subjects

without CP

0.17 (�32.77, 18.48)

Restricted to subjects

with CP

8 (�1.87, 15.93)

CP-adjusted,

imperfectly

6.78 (-2.55, 14.32)

aMedian (2.5th, 97.5th percentile).
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Bias in VE estimates from inpatient TND with

heterogeneity in CP status

If CP status is not a binary characteristic, but CP individu-

als rather fall into two or more categories defined by vacci-

nation uptake and study inclusion probabilities (controls),

and if that heterogeneity is not fully characterized, adjust-

ment for CP status will not result in full removal of the

bias (Table 3). This scenario mimics a situation in which

CP status cannot be fully characterized. Similarly, stratifi-

cation on the imperfect binary CP indicator will result in a

biased VE estimated among CP individuals (restricted ana-

lysis) (Table 3). However, as long as non-CP subjects (CP

¼ 0) are homogeneous with respect to vaccination uptake

and probability of being included in the study as controls,

the analysis restricted to non CP subjects will give rise to

unbiased VE estimates (Table 3).

Discussion

We demonstrated that, under certain general assumptions,

VE estimates from inpatient TND studies can be inter-

preted as the level of protection bestowed by influenza vac-

cination against hospitalization with laboratory-confirmed

influenza for the source population, despite the fact that

the study is conducted only among inpatients. If vaccin-

ation does not mitigate disease severity in break-through

influenza infections, then VE estimates from inpatient

TND studies also quantify protection from influenza virus

infection. Because proof of active infection with influenza

virus is required for the case definition, late complications

of influenza leading to hospitalization are not captured by

inpatient TND study-derived VE estimates. Such test-nega-

tive VE estimates may thus underestimate the level of pro-

tection from complications of influenza infection.

The TND offers logistical advantages over other study

designs since all enrolled patients are utilized either as

cases or controls. Even though the methodological issues

faced by inpatient TND studies do not fundamentally dif-

fer from the issues encountered by TND studies conducted

in ambulatory patients, there are important practical dif-

ferences: In studies of ambulatory patients seeking care for

non-life-threatening ARI, the choice by individuals to visit

a healthcare provider is a sine qua non for study inclusion.

The TND implicitly corrects for the selection bias associ-

ated with healthcare-seeking behaviour11–13 which is, be-

sides its practical advantages, the main benefit of the

ambulatory TND. In the inpatient setting, access to care

may introduce selection bias that could be avoided by con-

ditioning on hospital admission.

We did, however, identify a potential source of selection

bias that could affect VE estimates from inpatient TND

studies. Certain chronic conditions, here referred to as CP

conditions, that may be associated with high vaccination

coverage may also cause inpatient admission of subjects

for non-ARI events, e.g. respiratory exacerbation of their

underlying condition that are not associated with influenza

infection. If these events meet the study inclusion criteria,

these subjects would be enrolled as controls. There, in fact,

is indirect evidence for the over-representation of CP sub-

jects among controls in some inpatient TND. For example,

cases and controls may differ in indicators of chronic ill-

ness that are predictive both of vaccination status and of

the probability to be hospitalized with respiratory non-ARI

events. In several inpatient VE studies,18,23,24,30,31 controls

were older than cases and much more likely to suffer from

heart disease and pulmonary disease, as well as other con-

ditions which, conceivably, might have increased their vac-

cination coverage and their probability of being admitted

for inpatient care for non-ARI events and of thus of being

enrolled in the study as controls.

We have shown, both by theoretical considerations and

by simulation that, if these conditions (CP conditions) are

adequately adjusted for or if the analysis is restricted to

non-CP conditions and if both influenza infection and vac-

cination status are assessed with a high level of accuracy,

unbiased VE estimates can be obtained from inpatient

TND studies even if subjects are enrolled in the study be-

cause of non-ARI events. In reality, however, adjustment

for CP status may not be straightforward. If, for example,

“CP subjects’’ are heterogeneous with respect to their risk

for non-ARI events that may lead to study inclusion and

with respect to their vaccination uptake, inaccurate adjust-

ment by CP status will result in biased VE estimates. This

problem of inaccurate adjustment of selection bias is well

known, for example, in educational research.32 A sensitiv-

ity analysis comparing full VE estimates with VE estimates

obtained from the data restricted to not chronically ill pa-

tients might indicate a problem with selection bias if the

two estimates are substantially different. In that case, the

restricted estimate should be reported. It is important to

note that we have focused our analysis on a scenario which

is more representative of inpatient TND studies in adults

rather paediatric populations which may offer quite differ-

ent challenges.33

Our analysis of the inpatient TND has some limitations.

First, we assumed perfect accuracy in the assessment of

both influenza and vaccination status. Jackson et al.34 re-

cently showed that, although misclassification of influenza

status tended to result in a slightly greater bias of VE esti-

mates in TND studies compared with other designs, the

magnitude of the bias was trivial under realistic assump-

tions regarding VE, the accuracy of RT-PCR and influenza

attack rates. The difficulty in detecting late complications

International Journal of Epidemiology, 2016, Vol. 45, No. 6 2057



of influenza infection can also be construed as a problem

of sensitivity. Even though the impact of inaccurate assess-

ment of vaccination status is less understood, the potential

effect of inaccurate characterization of vaccination status

on VE estimates is concerning, although not specific for in-

patient TND studies. It has been shown that vaccination

self-reports may be unreliable, often leading to under-

reporting of influenza vaccination,35–37 but occasionally to

over-reporting.38 On the other hand, neither medical re-

cords nor vaccine registries are likely perfect sources for

vaccination status.39Misclassification of vaccination status

could have unpredictable consequences for the resulting

VE estimates. Our sensitivity analysis (Supplement 1) con-

firms that misclassification of case-control, vaccination or

CP status is a source for concern. Second, we assumed an

‘all-or-none’ vaccination effect model, according to which

vaccination either results in full immunity or full suscepti-

bility to infection. As we have shown previously,11 odds

ratio-derived VE estimates are biased toward 0 if vaccin-

ation reduces the instantaneous risk by a given fraction

(VE) instead, a mechanism referred to as ‘leaky vaccine’

model.40 Third, our quantitative evaluation of biases in VE

estimates is based on assumptions about the incidence of

influenza infection, non-influenza ARI and non-ARI

events, as well as assumptions about hospitalization proba-

bilities and, importantly, the prevalence of underlying

medical conditions that are associated with both vaccin-

ation coverage and the likelihood of study inclusion as con-

trols (CP status). These parameters are highly context-

dependent and can be chosen to produce both trivial and

massive biases of VE estimates not adjusted for CP.

Finally, we assumed influenza virus to represent a single

antigenic entity. This assumption clearly does not capture

the antigenic and immunological complexity of questions

regarding vaccine effectiveness that arise from the inter-

action between sequential natural exposure and vaccin-

ation responses.41,42. More refined models of influenza

circulation and of immunological mechanisms involved in

the effect of influenza vaccination may reveal different

sources of biases.

Supplementary Data

Supplementary data are available at IJE online.
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