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Abundant accumulation of digital histopathological images has led to the increased demand for their analysis,
such as computer-aided diagnosis using machine learning techniques. However, digital pathological images
and related tasks have some issues to be considered. In this mini-review, we introduce the application of digital
pathological image analysis using machine learning algorithms, address some problems specific to such analysis,
and propose possible solutions.
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1. Introduction

Pathology diagnosis has been performed by a human pathologist ob-
serving the stained specimen on the slide glass using a microscope. In
recent years, attempts have been made to capture the entire slide
with a scanner and save it as a digital image (whole slide image, WSI)
[1]. As a large number of WSIs are being accumulated, attempts have
been made to analyze WSIs using digital image analysis based on ma-
chine learning algorithms to assist tasks including diagnosis.

Digital pathological image analysis often uses general image recogni-
tion technology (e.g. facial recognition) as a basis. However, since digital
pathological images and tasks have some unique characteristics, special
processing techniques are often required. In this review, we describe
the application of digital pathological image analysis using machine
learning algorithms, and its problems specific to digital pathological
image analysis and the possible solutions. Several reviews that have
been published recently discuss histopathological image analysis includ-
ing its history and details of general machine learning algorithms [2–7];
in this review, we provide more pathology-oriented point of view.

Since the overwhelming victory of the team using deep learning at
ImageNet Large Scale Visual Recognition Competition (ILSVRC) 2012
[8], most of the image recognition techniques have been replaced by
deep learning. This is also true for pathological image analysis [9–11].
Therefore, even though many techniques introduced in this review are
related to deep learning, most of them are also applicable for other ma-
chine learning algorithms.
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2. Machine Learning Methods

Fig. 1 shows typical steps for histopathological image analysis using
machine learning. Prior to applying machine learning algorithms, some
pre-processing should be performed. For example, when cancer regions
are detected in WSI, local mini patches around 256 × 256 are sampled
from large WSI. Then feature extraction and classification between can-
cer and non-cancer are performed in each local patch. The goal of feature
extraction is to extract useful information for machine learning tasks.
Various local features such as gray level co-occurrence Matrix (GLCM)
and local binary pattern (LBP) have been used for histopathological
image analysis, but deep learning algorithms such as convolutional neu-
ral network [9,10,12–14] starts the analysis from feature extraction. Fea-
tures and classifiers are simultaneously optimized in deep learning and
features learned in deep learning often outperforms other traditional
features in histopathological image analysis.

Machine learning techniques often used in digital pathology image
analysis are divided into supervised learning and unsupervised learning.
The goal of supervised learning is to infer a function that can map the
input images to their appropriate labels (e.g. cancer) well using training
data. Labels are associated with a WSI or an object in WSIs. The algo-
rithms for supervised learning include support vectormachines, random
forest and convolutional neural networks. On the other hand, the goal of
unsupervised learning is to infer a function that can describe hidden
structures from unlabeled images. The tasks include clustering, anomaly
detection and dimensionality reduction. The algorithms for unsuper-
vised learning include k-means, autoencoders and principal component
analysis. There are derivatives from these two learning such as semi-
supervised learning and multiple instance learning, which are described
in Section 4.2.2.
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Fig. 1. Typical steps for machine learning in digital pathological image analysis. After preprocessing whole slide images, various types of machine learning algorithms could be applied
including (a) supervised learning (see Section 2), (b) unsupervised learning (see Section 2), (c) semi-supervised learning (see Section 4.2.2), and (d) multiple instance learning
(see Section 4.2.2). The histopathological images are adopted from The Cancer Genome Atlas (TCGA) [33].
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3. Machine Learning Application in Digital Pathology

3.1. Computer-assisted Diagnosis

Themost actively researched task in digital pathological image anal-
ysis is computer-assisted diagnosis (CAD), which is the basic task of the
pathologist. Diagnostic process contains the task tomap aWSI ormulti-
pleWSIs to one of the disease categories, meaning that it is essentially a
supervised learning task. Since the errors made by a machine learning
system reportedly differ from those made by a human pathologist
[14], classification accuracy could be improved using CAD system. CAD
may also lead to the reduce variability in interpretations and prevent
overlooking by investigating all pixels within WSIs.

Other diagnosis-related tasks include detection or segmentation of
Region of Interest (ROI) such as tumor region in WSI [15,16], scoring
of immunostaining [11,17], cancer staging [14,18], mitosis detection
[19,20], gland segmentation [21–23], and detection and quantification
of vascular invasion [24].
3.2. Content Based Image Retrieval

Content Based Image Retrieval (CBIR) retrieves similar images to a
query image. In digital pathology, CBIR systems are useful inmany situ-
ations, particularly in diagnosis, education, and research [25–32]. For
example, CBIR systems can be used for educational purposes by stu-
dents and beginner pathologists to retrieve relevant cases or histopath-
ological images of tissues. In addition, such systems are also helpful to
professional pathologists, particularly when diagnosing of rare cases.

Since CBIR does not necessarily require label information, unsuper-
vised learning can be used [29].When label information is available, su-
pervised learning approaches could learn better similaritymeasure than
unsupervised learning approaches [27,28] since the similarity between
histopathological images may differ by definition. However, preparing
sufficient number of labeled data can be a serious problem aswill be de-
scribed later.

In CBIR, not only accuracy but also high-speed search of similar im-
ages from numerous images are required. Therefore, various techniques
for dimensionality reduction of image features such as principal compo-
nent analysis, and fast approximate nearest neighbor search such as kd-
tree and hashing [31] are utilized for high speed search.
3.3. Discovering New Clinicopathological Relationships

Historically, many important discoveries concerning diseases such
as tumor and infectious diseases have been made by pathologists and
researchers who have carefully and closely observed pathological spec-
imens. For example, H. pylori was discovered by a pathologist who was
examining the gastric mucosa of patients with gastritis [32]. Attempts
have also been made to correlate the morphological features of cancers
with their clinical behavior. For example, tumor grading is important in
planning treatment and determining a patient's prognosis for certain
types of cancer, such as soft tissue sarcoma, primary brain tumors, and
breast and prostate cancer.

Meanwhile, thanks to the progress in digitization of medical infor-
mation and advance in genome analysis technology in recent years,
large amount of digital information such as genome information, digital
pathological images, MRI and CT images has become available [33]. By
analyzing the relationship between these data, new clinicopathological
relationships, for example, the relationship between the morphological
characteristic and the somatic mutation of the cancer, can be found
[34,35]. However, since the amount of data is enormous, it is not realis-
tic for pathologists and researchers to analyze all the relationshipsman-
ually by looking at the specimens. This is where the machine learning
technology comes in. For example, Beck et al. extracted texture
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information from pathological images of breast cancer and analyzed
with L1 - regularized logistic regression, and indicated that the histology
of stroma correlates with prognosis in breast cancer [36]. Other re-
searches include prognosis predictions from histopathological image
of cancer [37], prediction of somatic mutation [13], and discovery of
new gene variants related to autoimmune thyroiditis based on image
QTL [38].

4. Problems Specific to Histopathological Image Analysis

In this section, we describe unique characteristics of pathological
image analysis and computational methods to treat them. Table 1 pre-
sents an overview of papers dealing with the problems and the
solutions.

4.1. Very Large Image Size

When images such as dogs or houses are classified using deep learn-
ing, small sized image such as 256 × 256 pixels is often used as an input.
Imageswith large size often need to be resized into smaller sizewhich is
enough for sufficient distinction, as increase in the size of the input
image results in the increase in the parameter to be estimated, the re-
quired computational power, and memory. In contrast, WSI contains
many cells and the image could consist of as many as tens of billions
of pixels, which is usually hard to analyzed as is. However, resizing the
entire image to a smaller size such as 256 × 256 would lead to the loss
of information at cellular level, resulting inmarked decrease of the iden-
tification accuracy. Therefore, the entire WSI is commonly divided into
partial regions of about 256 × 256 pixels (“patches”), and each patch
is analyzed independently, such as detection of ROIs. Thanks to the ad-
vances in computational power and memory, patch size is increasing
(e.g. 960 × 960), which is expected to contribute to better accuracy.
There is still a room for improvement in the method of integrating the
result from each patch. For example, as the entire WSI could contain
hundreds of thousands of patches, false positives are highly likely to
Table 1
Overview of papers dealing with problems and solutions for histopathological image
analysis.

Solution Reference

Very large image size
Case level classification summarizing
patch or object level classification

Markov Random Field [17], Bag of Words of
local structure [18] and random forest
[14,39,40]

Insufficient labeled images
GUI tools Web server [41,42]
Tracking pathologists' behavior Eye tracking [43], mouse tracking [44] and

viewport tracking [45]
Active learning Uncertainly sampling [42],

Query-by-Committee [46], variance reduction
[47] and hypothesis space reduction [48]

Multiple instance learning Boosting-based [49,50], deep weak
supervision [51] and structured support
vector machines (SVM) [52]

Semi-supervised learning Manifold learning [30] and SVM [53]
Transfer learning Feature extraction [54], fine-tuning

[16,55,56]

Different levels of magnification result in different levels of information
Multiscale analysis CNN [57], dictionary learning [58] and texture

features [59]

WSI as orderless texture-like image
Texture features Traditional textures [60–63] and CNN-based

textures [64]

Color variation and artifacts
Removal of color variation effect Color normalization [65–68] and color

augmentation [69,70]
Artifact detection Blur [71,72] and tissue-folds [73,74]
appear even if individual patches are accurately classified. One possible
solution for this is regional averaging of each decision, such that the re-
gions is classified as ROI only when the ROI extends over multiple
patches. However, this approach may suffer from false negatives,
resulting in missing small ROIs such as isolated tumor cells [39].

In some applications such as IHC scoring, staging of lymph nodeme-
tastasis of specimens or patients, and staging of prostate cancer diag-
nosed by Glisson score of multiple regions within one slide, more
sophisticated algorithms to integrate patch-level or object-level deci-
sions are required [14,17,18,39,40,75]. For example, for pN-staging of
metastatic breast cancer, which was one of the tasks in Camelyon 17,
multiple participating teams including us applied random forest classi-
fiers of pixel or patch-level probabilities estimated by deep learning
using various features such as estimated tumor size [39].

4.2. Insufficient Labeled Images

Probably the biggest problem in pathological image analysis using
machine learning is that only a small number of training data is avail-
able. A key to the success of deep learning in general image recognition
task is that training data is extremely abundant. Although label informa-
tion at patch-level or pixel-level (e.g. inside/outside boundary of can-
cerous regions) is required in most tasks in digital pathology such as
diagnosis, most labels of WSIs are at case-level (e.g. diagnosis) at
most. Label information in general image analysis can be easily retrieved
from the internet and it is also possible to use crowdsource labeling be-
cause anyone can identify objects and perform labeled work. However,
only pathologists can label the pathological image accurately, and label-
ing at the regional level in a huge WSIs requires a lot of labor.

It is possible to reuse public ready-to-analyze data as training data in
machine learning, such as ImageNet [76] in natural images and Interna-
tional Skin Imaging Collaboration [77] in macroscopic diagnosis of skin.
In the field of digital pathology, there are some public datasets that con-
tain hand-annotated histopathological images as summarized in
Tables 2 and 3. They could be useful if the purpose of the analysis,
slide condition (e.g. stain), and image condition (e.g. magnification
level and image resolution) are similar. However, because each of
these datasets focuses on specific disease or cell types, many tasks are
not covered by these datasets. There are also several large-scale histo-
pathological image databases that contain high-resolution WSIs: The
Cancer Genome Atlas (TCGA) [78] contains over 10,000 WSIs from var-
ious cancer types, and Genotype-Tissue Expression (GTEx) [79,80] con-
tains over 20,000WSIs from various tissues. These databases may serve
as potential training data for various tasks. Furthermore, both TCGA and
GTEx also provide genomic profiles, which could be used to investigate
relationships between genotype and morphology. The problem is that
the WSIs in these repositories contain labels at the case-level, and in
order to be able to use them for training data, some preprocessing or
specialized machine learning algorithm for treating case-level labels is
required.

Many researches have attempted to solve the problem. Most of the
approaches fall into one of the following categories: 1) efficient increase
of label data, 2) utilization of weak label or unlabeled information, or
3) utilization of models/parameters for other tasks.

4.2.1. Efficient Labeling
One way to increase training data is to reduce the working time of

pathologists to specify ROIs in the WSI. Easy-to-use GUI tools helps pa-
thologists efficiently label more samples in shorter periods of time
[41,42]. For example, Cytomine [41] not only allows pathologists to sur-
round ROIs in WSIs with ellipses, rectangles, polygons or freehand
drawings, but also applies content-based image retrieval algorithms to
speed up annotation. Another interesting idea to reduce working time
is to automatically localize ROIs during diagnosis, which uses the usual
working time for diagnosis as labeling by tracking pathologists' behav-
ior. This approach tracks pathologists' eye movement [43], mouse



Table 2
Downloadable WSI database.

Dataset or author's name # slides or patches Stain Disease Additional data

TCGA [33,78] 18,462 H&E Cancer Genome/transcriptome/epigenome
GTEx [79,80] 25,380 H&E Normal Transcriptome
TMAD [81,82] 3726 H&E/IHC IHC score
TUPAC16 [83] 821 from TCGA H&E Breast cancer Proliferation score for 500 WSIs, position

for mitosis for 73 WSIs, ROI for 148 cases
Camelyon17 [40] 1000 H&E Breast cancer (lymph node metastasis) Mask for cancer region (in 500 WSIs with

5 WSIs per patient)
Köbel et al. [52,84] 80 H&E Ovarian carcinoma
KIMIA Path24 [85,86] 24 H&E/IHC and others various tissue
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cursor positions [44] and change in viewport [45]. However, localizing
ROIs accurately from these tracking data is not always easy since
pathologist's do not always spend time looking at ROIs, and boundary
information obtained by these approaches tends to be less clear.

Another approach that utilizes a machine learning method is active
learning [42,46–49,104,105]. This is generally effective when the acqui-
sition cost of label data is large (i.e. pathological images). Active learning
is a method used in supervised learning, and it automatically chooses
themost valuable unlabeled sample (i.e. the one that is expected to im-
prove the identification performance of classifiers when labeled cor-
rectly and used as a training data) and display it for labeling by
pathologists. Since this approach is likely to increase discrimination per-
formancewith smaller number of labeled images, the total labeling time
to obtain the same discrimination performance will be shortened [46].
Many criteria such as uncertainty sampling [42], Query-by-Committee
[46], variance reduction [47], and hypothesis space reduction [48]
have been applied for selecting valuable unlabeled samples.

4.2.2. Incorporating Insufficient Label
Even if the exact position of the ROI in a WSI is not known, it is pos-

sible that the information regarding the presence/absence of the ROI in
theWSI is available from the pathological diagnosis assigned to theWSI
or WSI-level labels. These so-called weak labels are easy to obtain com-
pared to patch-level labels even when the WSIs have no further infor-
mation, and in this regard, WSIs is considered as a “bag” made with
many patches (instances) in machine learning settings. When diagnos-
ing cancer, WSI is labeled as cancer if at least one patch contains
Table 3
Hand annotated histopathological images publicly available.

Dataset or paper Image size (px) # images Stain

KIMIA960 [87,88] 308 × 168 960 H&E/IHC
Bio-segmentation [89,90] 896 × 768, 768 × 512 58 H&E
Bioimaging challenge 2015 [91,92] 2040 × 1536 269 H&E
GlaS [23,93] 574–775 × 430–522 165 H&E
BreakHis [15,94] 700 × 460 7909 H&E
Jakob Nikolas et al. [88,95] 1000 × 1000 100 IHC
MITOS-ATYPIA-14 [96] 1539 × 1376, 1663 × 1485 4240 H&E

Kumar et al. [97,98] 1000 × 1000 30 H&E

MITOS 2012 [20,99] 2084 × 2084, 2252 × 2250 100 H&E
Janowczyk et al. [100,101] 1388 × 1040 374 H&E
Janowczyk et al. [100,101] 2000 × 2000 311 H&E
Janowczyk et al. [100,101] 100 × 100 100 H&E
Janowczyk et al. [100,101] 1000 × 1000 42 H&E
Janowczyk et al. [100,101] 2000 × 2000 143 H&E
Janowczyk et al. [100,101] 775 × 522 85 H&E
Janowczyk et al. [100,101] 50 × 50 277,524 H&E
Gertych et al.[22] 1200 × 1200 210 H&E
Ma et al.[102] 1040 × 1392 81 IHC
Linder et al. [63,103] 93–2372 × 94–2373 1377 IHC

Xu et al. [54] Various size 717 H&E
Xu et al. [54] 1280 × 800 300 H&E
cancerous tissue, or normal if none of the patches contain cancerous tis-
sue. This setting is a problem of multiple instance learning [50,106] or
weakly-supervised learning [49,51]. In a typicalmultiple instance learn-
ing problem, positive bags contain at least one positive instance and
negative bags do not contain any positive instances. The aim of multiple
instance learning is to predict bag or instance label based on training
data that contains only bag labels. Variousmethods inmultiple instance
learning have been applied to histopathological image analysis includ-
ing boosting-based approach [49], support vector machine-based ap-
proach [52] and deep learning-based approach [51].

In contrast, semi-supervised learning [30,53,107,108] utilizes both
labeled and unlabeled data. Unlabeled data is used to estimate the
true distribution of labeled data. For example, as shown in Fig. 1, deci-
sion boundary which takes only the labeled samples into account
would form a vertical line, but that considering both labeled and unla-
beled samples would form a slanting line, which could be more accu-
rate. Since semi-supervised learning is considered particularly
effective when samples in the same class form a well-discriminative
cluster, relatively easy problem could be a good target.

4.2.3. Reusing Parameters from Another Task
Performing supervised learning using too few training data would

only result in insufficient generalization performance. This is true espe-
cially in deep learning, where the number of parameters to be learned
is very large. In such a case, instead of learning the entire model from
scratch, learning often starts by using (a part of) parameters of a pre-
trainedmodel optimized in another similar task. Such a learningmethod
Disease Additional data Potential usage

various tissue Disease classification
Breast cancer Disease classification
Breast cancer Disease classification
Colorectal cancer Mask for gland area Gland segmentation
Breast cancer Disease classification
Colorectal cancer Blood vessel count Blood vessel detection
Breast cancer Coordinates of mitosis with a

confidence degree/six criteria to
evaluate nuclear atypia

Mitosis detection, nuclear
atypia classification

Various cancer Coordinates of annotated nuclear
boundaries

Nuclear segmentation

Breast cancer Coordinates of mitosis Mitosis detection
Lymphoma None Disease classification
Breast cancer Coordinates of mitosis Mitosis detection
Breast cancer Coordinates of lymphocyte Lymphocyte detection
Breast cancer Mask for epithelium Epithelium segmentation
Breast cancer Mask for nuclei Nuclear segmentation
Colorectal cancer Mask for gland area Gland segmentation
Breast cancer None Tumor detection
Prostate cancer Mask for gland area Gland segmentation
Breast cancer TIL analysis
Colorectal cancer Mask for epithelium and stroma Segmentation of epithelium

and stroma
Colon cancer
Colon cancer Mask for colon cancer Segmentation
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is called transfer learning. In CNN, layers before the last (typically three)
fully-connected layers are regarded as feature extractors. The fully-
connected layers are often replaced by a new network suitable for the
target task. The parameters in earlier layers can be used as is [54], or as
initial parameters and then the network is learned partially or fully
from the training data of the target task [16,55,56] (so-called fine-
tuning). In pathological images, no network learned from tasks using
other pathological images are available, and thus networks learned
using ImageNet, which is a database containing vast number of general
images, are often used [16,54–56]. For example, Xu et al., performed clas-
sification and segmentation tasks on brain and colon pathological images
using features extracted from CNN trained on ImageNet, and achieved
state-of-the-art performance [54]. Although the pathological image itself
looks very different to the general images (e.g. cats and dogs), they share
common basic image structures such as lines and arcs. Since earlier
layers in deep learning capture these basic image structures, such pre-
trained models using general images work well in histopathological
image analysis. Nevertheless, if models pre-trained on sufficient number
of diverse tissue pathology images are available, they may outperform
the ImageNet pre-trained models.

4.3. Different Levels of Magnification Result in Different Levels of
Information

Tissues are usually composed of cells, and different tissues show dis-
tinct cellular features. Information regarding cell shape is well captured
in high-powerfieldmicroscopic images, but structural information such
as a glandular structure made of many cells are better captured in a
lower-power field (Fig. 2). Because cancerous tissues have both cellular
and structural atypia, images taken at multiple magnifications would
each contain important information. Pathologists diagnose diseases by
acquiring different kinds of information from the cellular level to the tis-
sue level by changing magnifications of a microscope. Even in machine
learning, researches utilizing images at different magnifications exist
[57–59]. As mentioned above, it is difficult to handle the images at its
original resolution directly, images are often resized to correspond to
variousmagnifications and used as input for analysis. Regarding diagno-
sis, themost informative magnification is still controversial [14,39,109],
but improvement in accuracy is sometimes achieved by inputting both
high and low magnification images simultaneously, probably depend-
ing on the types of diseases and tissues, and machine learning
algorithms.

4.4. WSI as Orderless Texture-like Image

Pathological image is different from cats and dogs in nature, in a
sense that it shows repetitive pattern ofminimum components (usually
cells). Therefore, it is rather closer to texture than object. CNN acquires
shift invariance to a certain extent by pooling operations. In addition,
even normal CNN can learn texture-like structure by data augmentation
Fig. 2.Multiple magnification levels of the same histopathological image. Right images show th
papillary structure, and rightmost image clearly shows nucleus of each cell. The histopathologi
by shifting the tissue image with a small stride. Meanwhile, there has
been methods which utilize texture structure more intensively, such
as gray level co-occurrence matrix [110], local binary pattern [111],
Gabor filter bank, and recently developed deep texture representations
using a CNN [64,112]. Deep texture representations are computed using
a correlationmatrix of featuremaps in a CNN layer. Converting the CNN
features to texture representations would lead to the acquisition of in-
variance regarding cell position, while utilizing good representations
learned by CNN. Another advantage of deep texture representation is
that there are no constraints on the size of input image, which is very
suitable for large image size of WSI. The boundary between texture
and non-texture is unclear, but a single cell or a single structure is obvi-
ously not a texture. Better approachwould thus depend on the object to
be analyzed.
4.5. Color Variation and Artifacts

WSIs are created through multiple processes: pathology specimens
are sliced and placed on a slide glass, stained with hematoxylin and
eosin, and then scanned. At each step undesirable effects, which are un-
related to the underlying biological factors, could be introduced. For ex-
ample, when tissue slices are being placed onto the slides, they may be
bent and wrinkled; dust may contaminate the slides during scanning;
blur attributable to different thickness of tissue sections may occur
(Fig. 3); and sometimes tissue regions are marked by color markers.
Since these artifacts could adversely affect the interpretation, specific al-
gorithms to detect artifacts such as blur [71] and tissue-folds [73] have
been proposed. Such algorithms may be used for preprocessing WSIs.

Another serious artifact is color variation as shown in Fig. 4. The
sources of variation include different lots or manufacturers of staining
reagents, thickness of tissue sections, staining conditions and scanner
models. Learning without considering the color variation could worsen
the performance of machine learning algorithm. If sufficient data on
every stained tissue acquired by every scanner can be incorporated,
the influence of color variation on classification accuracy may become
negligible; however, that seems very unlikely at the moment.

To address this issue, variousmethods have been proposed so far in-
cluding conversion to gray scale, color normalization [65–68], and color
augmentation [69,70]. Conversion to grayscale is the easiest way, but it
ignores the important information regarding the color representation
used routinely by pathologists. In contrast, color normalization tries to
adjust the color values of an image on a pixel-by-pixel basis so that
the color distribution of the source image matches to that of a reference
image. However, as the components and composition ratios of cells or
tissues in target and reference images differ in general, preprocessing
such as nuclear detection using a dedicated algorithm to adjust the com-
ponent is often required. For this reason, color normalization seems to
be suitable when WSIs analyzed in the tasks contain, at least partially,
similar compositions of cells or tissues.
e magnified region indicated by red box on the left images. Leftmost image clearly shows
cal images are adopted from TCGA [33].



Fig. 4. Color variation of histopathological images. Both of these two images show
lymphocytes. The histopathological images are adopted from TCGA [33].
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On the other hand, color augmentation is a kind of data augmenta-
tion performed by applying random hue, saturation, brightness, and
contrast. The advantage of color augmentation lies in the easy imple-
mentation regardless of the object being analyzed. Color augmentation
seems to be suitable for WSIs with smaller color variation, since exces-
sive color change in color augmentation could lead to the loss of color
information in the final classifier. As color normalization and color aug-
mentation could be complementary, combination of both approaches
may be better.

5. Summary and Outlook

Digital histopathological image recognition is a very suitable prob-
lem formachine learning since the images themselves contain informa-
tion sufficient for diagnosis. In this review, we brought up problems in
digital histopathological image analysis using machine learning. Due
to great efforts made so far, these problems are becoming tractable,
but there is still room for improvement. Most of these problems are
likely to be solved once a large number of well-annotatedWSIs become
available. Gathering WSIs from various institutes to collaboratively an-
notate them with the same criteria and making these data public will
be sufficient to boost the development ofmore sophisticated digital his-
topathological image analysis.

Finally, we suggest some potential future research topics that have
not been well studied so far.

5.1. Discovery of Novel Objects

In actual diagnostic situations, unexpected objects such as aberrant
organization, rare tumor (thus not included in training data) and for-
eign bodies could exist. However, discrimination model including
Convolutional Neural Networks forcibly categorizes such objects into
one of the pre-defined categories. To solve the problem, outlier detec-
tion algorithms, such as one-class kernel principal component analysis
[113], have been applied to the digital pathological images but only a
few researches have addressed the problem so far. More recently,
some deep learning-based methods utilizing reconstruction error
Fig. 3. Artifacts in WSIs. Top: tumor region is outlined with red marker. The arrow
indicates a tear possibly formed during the tissue preparation process. Left bottom:
blurred image. Right bottom: folded tissue section. The histopathological images are
adopted from TCGA [33].
[114] have been proposed for outlier detection in other domains, but
they are not yet applied in the histopathological image analysis.

5.2. Interpretable Deep Learning Model

Deep learning is often criticized because its decision-making process
is not understandable to humans and therefore often described as being
a black box. Although decision-making process of human is not a com-
plete white box either, people want to know the decision process or de-
cision basis. This could lead to a new discovery in the pathology field.
Although this problem has not been completely solved so far, some re-
search has attempted to provide solutions, such as joint learning of
pathological images and its diagnostic reports integratedwith attention
mechanism [115]. In other domains, decision basis can be inferred indi-
rectly represented by visualizing the response of a deep neural network
[115,116], or presenting themost helpful training image using influence
functions [117].

5.3. Intraoperative Diagnosis

Pathological diagnosis during surgery influences intraoperative de-
cisionmaking, and thus could be another important application in histo-
pathological image analysis. As diagnostic time in intraoperative
diagnosis is very limited, rapid classification while keeping accuracy is
of importance. Due to the time constraint, rapid frozen section is used
instead of Formalin-fixed paraffin-embedded (FFPE) section which
takes longer time to prepare. Therefore, for this purpose training of clas-
sifiers should be performed using frozen section slides. Few research
has analyzed frozen sections [118] so far partly because the number of
WSIs suitable for the analysis is not sufficient, and task ismore challeng-
ing compared to FFPE slides.

5.4. Tumor Infiltrating Immune Cell Analysis

Because of the success of tumor immunotherapy, especially immune-
checkpoint blockade therapies including anti-PD-1 and anti-CTLA-4 anti-
bodies, immune cells in tumor microenvironment have gained substan-
tial attention in recent years. Therefore, quantitative analysis of tumor
infiltrating immune cells in slides using machine learning techniques
will be one of the emerging themes in digital histopathological image
analysis. Tasks related to this analysis include detection of immune
cells from H&E stained image [119,120] and detection of more specific
type of immune cells using immunohistochemistry [102]. Additionally,
the pattern of immune cell infiltration and proximity of each immune
cells are reportedly related to cancer prognosis [121], analysis of spatial
relationships between tumor cells and immune cells, and the relation-
ships between these data and prognosis or response to immunotherapy
using specialized algorithms such as graph-based algorithms [62,122]
will also be of great importance.
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