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Abstract 

Background:  Drug sensitivity prediction and drug responsive biomarker selection on high-throughput genomic 
data is a critical step in drug discovery. Many computational methods have been developed to serve this purpose 
including several deep neural network models. However, the modular relations among genomic features have been 
largely ignored in these methods. To overcome this limitation, the role of the gene co-expression network on drug 
sensitivity prediction is investigated in this study.

Methods:  In this paper, we first introduce a network-based method to identify representative features for drug 
response prediction by using the gene co-expression network. Then, two graph-based neural network models are 
proposed and both models integrate gene network information directly into neural network for outcome prediction. 
Next, we present a large-scale comparative study among the proposed network-based methods, canonical predic-
tion algorithms (i.e., Elastic Net, Random Forest, Partial Least Squares Regression, and Support Vector Regression), and 
deep neural network models for drug sensitivity prediction. All the source code and processed datasets in this study 
are available at https​://githu​b.com/compb​iolab​ucf/drug-sensi​tivit​y-predi​ction​.

Results:  In the comparison of different feature selection methods and prediction methods on a non-small cell lung 
cancer (NSCLC) cell line RNA-seq gene expression dataset with 50 different drug treatments, we found that (1) the 
network-based feature selection method improves the prediction performance compared to Pearson correlation 
coefficients; (2) Random Forest outperforms all the other canonical prediction algorithms and deep neural network 
models; (3) the proposed graph-based neural network models show better prediction performance compared to 
deep neural network model; (4) the prediction performance is drug dependent and it may relate to the drug’s mecha-
nism of action.

Conclusions:  Network-based feature selection method and prediction models improve the performance of the 
drug response prediction. The relations between the genomic features are more robust and stable compared to the 
correlation between each individual genomic feature and the drug response in high dimension and low sample size 
genomic datasets.
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Background
Powered by the high-throughput genomic technologies 
developed in the past two decades, personalized treat-
ment has been enabled to understand complex diseases 
for individual patients. Diverse diseases such as cancer 
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have gained increasing attention and a great number of 
works are going on to accelerate our understanding of 
the molecular basis of cancer through the application of 
genome analysis technologies [1–3]. However, due to the 
unavoidable patient heterogeneity, different patients have 
differential responses to the same treatment. Precision 
medicine takes the variabilities into account and allows 
clinicians to predict more accurately which treatment 
and prevention strategies for a particular cancer type will 
work on an individual patient.

However, the question of effective translation of high-
throughput omics data from patient samples into prog-
nosis and personalized treatment still remains. It needs 
a comprehensive study across many drugs, patients, dis-
eases and profiling technologies, which is limited by time, 
expense and scope of the drugs that can be tested. There-
fore, the researchers have been using omics data from 
tumor-derived cell lines and predictive algorithms as a 
substitute for the aforementioned study [4, 5]. The omics 
data includes but not limited to gene expression, muta-
tion, and copy number variations.

Several studies have explored the use of state-of-the-art 
machine learning models, such as kernel-based meth-
ods [4, 6–8], Elastic Net [8, 9], nonlinear regression [10, 
11], partial least-squares regression [4], and deep learn-
ing-based methods [12–17] to predict drug sensitivities. 
Most of the studies used omics data from CCLE (Cancer 
Cell Line Encyclopedia) [18] and GDSC (Genomics of 
Drug Sensitivity in Cancer) [19] to train the models and 
test the prediction power on an independent test set. 
However, different studies have found different models 
to be more accurate. Some studies [8, 20] concluded that 
Elastic Net performed better than other models whereas 
some other studies [4] found kernel-based methods to be 
better. Recently the deep neural network (DNN) based 
methods are becoming increasingly popular and several 
studies [12–15] have defined different models that used 
multi-omics data, often with drug structural information 
to predict drug sensitivity. Several other studies [16, 17] 
instead focused on drug synergy prediction. However, 
the modular relations among genomic features have been 
largely ignored in these studies.

It is well known that gene, transcript or protein iso-
forms do not function in isolation in the cell, but are 
integrated together as a network of interactions between 
cellular components. Cancer, as a complex disease, 
reflects the perturbations or breakdown of specific func-
tion modules in the complex cellular network, rather than 
a consequence of an abnormality in a single gene [21]. 
Thus, instead of considering the gene individually in the 
cancer studies, integrating network and high-throughput 
information together could probably improve the quality 
of the analysis [22]. Graph-based neural network recently 

has shown remarkable success in pattern recognition 
and data mining [23–25], and network-based embed-
ding models are constructed by using random walk [24, 
26] or neighborhood based method [27] to learn the net-
work topological features. It is also proving its worth in 
the field of computational biology, such as drug-disease 
association prediction, drug-drug interaction prediction 
or protein-protein interaction prediction [28–33].

In this paper, we investigated the role of the gene co-
expression network on drug sensitivity prediction. First, 
we compared a network-based feature selection method 
with the canonical feature selection method, and four dif-
ferent classification models were applied to the selected 
features to investigate the predictive power. Second, we 
look into two techniques, i.e., network-based embed-
ding model (Fig. 1) and graphical neural network (GNN) 
model (Fig. 2), which integrate gene network information 
directly into  a neural network for drug sensitivity pre-
diction. A non-small cell lung cancer (NSCLC) cell line 
RNA-seq gene expression dataset with 50 different drug 
treatments was applied to evaluate the performance [34].

Methods
In this section, we first introduce mathematical nota-
tions, and then a network-based learning model that is 
widely used for feature selection from a given data set 
[3]. Next, we discuss an advanced network-based embed-
ding model to learn the representative features from the 
gene co-expression network and a graphical neural net-
work model for drug sensitivity prediction. At the end 
of this section, we also introduce four canonical regres-
sion models and deep neural network as the baseline 
methods.

Notations
In this paper, the gene expression data is denoted by 
X = [x1, x2, . . . , xm] , where xi is the expression of the i-th 
gene across all the samples (i.e., cell lines). The dimension 
of the data set is m× n , where m is the number of genes 
and n is the number of cell lines. The drug response infor-
mation, i.e., area under the dose response curve (AUC) 
and median effective dose (ED50), is the target data set 
that measures the sensitivity of cell lines. It is denoted 
by y = [y1, y2, . . . , yn] , and yj is the response of the j-th 
cell line to the drug. The drug sensitivity prediction can 
be defined as a regression problem. Drug response infor-
mation of the test cell lines will be predicted based on 
the gene expression data and the known drug response 
information.

Network‑based feature selection model
We first introduce a network-based learning model that 
was applied successfully to identify molecular signatures 
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in several variations [3, 35–37]. In the network, each 
vertex represents a gene and the edges represent the 
relations among the genes. Let A ∈ R

m×m be the gene 
correlation matrix (i.e., the adjacency matrix of the gene 
co-expression network) based on the absolute value of 
the Pearson’s correlation coefficients between the pair 
of genes, where each Aij is the correlation between the 

two vectors, xi and xj , which represent the i-th and the 
j-th genes. Then the features correlation matrix A is used 
to construct a normalized graph Laplacian L = I − S , 
where S = D− 1

2AD− 1
2 , D is a diagonal matrix with the 

column-sum of A on the diagonal entries, and I is the 
identify matrix. Given a gene correlation matrix, the 
objective of the network-based learning model is to learn 
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Fig. 1  Workflow of the network-based embedding method. First, an embedding matrix is learned based on the local neighborhood structure in 
the gene co-expression network. Then, the features learned from the embedding matrix and the gene expression matrix are concatenated together 
to train a fully connected network for drug sensitivity prediction
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an assignment vector f ∈ R
m×1 , which represents the 

importance of each gene (i.e., vertex) for drug sensitiv-
ity prediction. The initial labeling is f 0 = c , i.e., Pearson’s 
correlation coefficients between gene expression and 
the drug responses of the cell lines. The higher absolute 
value indicates the gene has more discriminative power. 
The network-based learning model assumes that the gene 
should be assigned similar importance scores if they are 
highly correlated in the network, which leads to the fol-
lowing objective function to be minimized:

where α ∈ (0, 1) is a parameter to balance the contribu-
tions of the two terms in Eq. (1), the first of which is the 
Laplacian term encouraging assigning similar impor-
tance scores to strongly connected vertices in the gene 
co-expression network; and the second term is the fitting 
term, which encourages consistency between the impor-
tance score and the initial score. The gene with high 
importance scores in f  will be selected for further analy-
sis. The idea behind the network-based learning model is 
the relations between the genes are more robust and sta-
ble compared to the correlation between each individual 
gene and the drug response in high dimension and low 
sample size genomic datasets. In this study, the predic-
tive power of the genes identified by the network-based 
learning model will be compared to the ones selected by 
Pearson correlation coefficients. Five different methods 
will be applied to evaluate the predictive power of the 
genes.

Graph‑based neural network models
Inspired by our network-based learning model and the 
recent advancements in deep representation learning for 
a network, we introduce two graph-based neural network 
models for drug sensitivity prediction in this subsection. 
In the first model, a network-based embedding method 
is proposed to learn the gene expression level of the tar-
get gene based on the local neighborhood structure. In 
the second model, a recently developed graphical neural 
network model is introduced by incorporating the gene 
co-expression network information.

Network‑based embedding method
Different from encoding graph structure into low-
dimensional embeddings [38], our proposed method is 
to learn a embedding matrix E ∈ R

m×n that represents 
the expression level of the target node based on its local 
neighborhood structure as shown in Fig.  1, where each 
row in E represents the local network information of 
its corresponding row in X . For each target node (gene) 
v, we constructed a partially connected shallow neural 

(1)L(f ) = αf TLf + (1− α)
∥

∥f − c
∥

∥

2

2
,

network (SNN) to encode the network information from 
its neighbors. We defined the top three correlated genes 
of gene v based on gene co-expression network and con-
sider them as first order neighbors. Again the top three 
correlated genes with each of first order neighbors, in 
total nine genes were taken as second order neighbors. 
Both the first order neighbor and their direct second 
order neighbors were fed into the input of the SNN to 
learn the embedding information of the target node. The 
embedding vector of the node v is updated based on the 
following equation:

where N(v) denotes the first order and second order 
neighbors of the node v and ekv is the embedding vector 
of the target node v in the k-th layer. 

∑

u∈N (v)
ek−1
u

|N (v)| is the 
average of neighbors’ embedding vectors from previous 
layer. W k is learnable weight parameters. σ(· ) denotes the 
activation function. K is the number of layers. The initial 
embedding vector is e0v = xv . The loss function of the 
embeddings is defined as:

where zv = eKv  and u denotes the neighbor nodes of v 
and A is the adjacency matrix of the gene co-expression 
network. In this loss function, we enforce that the rela-
tion between the learned embedding vectors should also 
be consistent with the original co-expression network. 
As shown in Fig.  1, the learned embedding vectors of 
the genes in the framework can be considered as a new 
set of features for drug sensitivity prediction. Once the 
embedding matrix is constructed, this matrix and gene 
expression matrix go through independent feature selec-
tion steps. We concatenated the selected features and fed 
that into a fully connected neural network to get a cor-
responding drug response as output. We used ReLU as 
activation function in the hidden layer and MSE as loss 
function.

Graphical neural network model
The network-based embedding method mentioned above 
only consider the local structures of the network to learn 
the representative features. In this subsection, we intro-
duce a multi-layer graphical neural network model (GNN) 
which consider the global structure of the network that 
has been successfully applied in different domains [25, 
28, 39]. Let Ã denotes the adjacency matrix A of the gene 
co-expression network plus the identity matrix and D̃ is a 
diagonal matrix with the column-sum of A on the diagonal 

(2)

ekv = σ



W k

�

u∈N (v)

ek−1
u

|N (v)|
+ ek−1

v



 for k = 1, 2, 3 . . .K ,

(3)L =
∑

(u,v)∈V×V

�zTu zv − Au,v�
2,
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entries. A layer-wise propagation rule of the GNN can be 
defined as:

where Hk is the output of k-th layer and H0 = X . W k−1 
is learnable weight parameters of the (k-1)th layer and σ
(· ) denotes the activation function. The output HK  can 
be considered as new feature matrix for drug sensitivity 
prediction as shown in Fig. 2. In the framework, we used 
ReLU as activation function and MSE as loss function.

Alternative methods for comparison and evaluation
For more insight in the drug sensitivity prediction prob-
lem by using gene expression data, we compared our 
proposed methods with four canonical prediction algo-
rithms that were used in DREAM 7 - Drug Sensitivity 
Prediction Challenge [4]: Random Forest, Support Vector 
Regression (SVR), Elastic Net, and Partial Least Squares 
Regression (PLSR). In addition, the fully connected deep 
neural network (DNN) was also involved in the compari-
son in this study. These five prediction algorithms were 
applied to evaluate the discriminative power of the fea-
tures identified by the network-based feature selection 
model in equation (1).

Random forest
Random Forest regression algorithm is a nonlinear 
multiple regression approach that performs bootstrap 
sampling of the training data to generate multitude of 
regression trees and outputs the mean prediction of indi-
vidual trees [40]. All the trees in the forest run in paral-
lel and find their results independently. In this baseline 
method, 500 trees were grown in the forest and 50 ran-
dom features were selected for node splitting from all the 
features. This model was implemented via Python pack-
age sklearn.ensemble (RandomForestClassifier).

Elastic net
Elastic Net [41] is a regularized regression method to 
learn the coefficients β following optimization problem:

where

Pα is the elastic net penalty that linearly combines the 
L1 and L2 penalties of the coefficients. In our analysis, 
we fixed the α = 0.5 and the � was selected based on 

(4)Hk = σ

(

D̃
− 1

2 ÃD̃
− 1

2Hk−1W k−1

)

,

min
β∈Rm

R�(β) = min
β∈Rm

[

1

2n

n
∑

i=1

(yi − xTi β)
2
+ �Pα(β)

]

,

Pα(β) =

m
∑

j=1

[

1

2
(1− α)β2

j + α|βj|

]

.

deviance likelihood ratio. This model was implemented 
via Python package sklearn.linear_model (ElasticNet).

Support vector regression
SVR is a kernel based method that can characterized 
by Vapnik-Chervonenkis control of the margin and the 
number of support vectors [42]. In our analysis, Radial 
Basis Function (RBF) kernel was used to train the model 
with the objective function

which subject to 0 ≤ αi ≤ C for ∀i , and 
∑

i αiyi = 0 . In 
the analysis, C was fixed to 1, and γ = 1/(number of fea-
tures in X*variance of X ). This model was implemented 
via Python package sklearn.svm (SVR).

Partial least squares regression
PLSR is a statistical method that projects both independ-
ent variables (mRNA expression) and predicted variable 
(drug response values) in a new space and find a linear 
model between them. Specifically, PLSR is based on the 
basic latent component deposition to construct a matrix 
of latent component T  as a linear transformation of X : 
T = XW  , where T  is a n× c matrix giving the c latent 
components for the n samples and W = [w1,w2, . . . ,wc] 
is a c ×m matrix of weights. The objective function need 
to be solved is:

with i = 1, . . . , c and subject to wT
i wi = 1 and 

wT
i X

TXwj = 0 , for j = 1, . . . , i − 1 . More details on the 
PLSR method has been previously published in [43]. 
In the analysis, we fixed c = 1 . This model was imple-
mented via Python package sklearn.cross_decomposition 
(PLSRegression).

Deep neural network
A two hidden layers fully-connected feedforward neural 
network model was also constructed for comparison. We 
used ReLU as activation on both hidden layers and Soft-
max on the output layer. Each neuron in the input layer 
represented the expression of one gene across all the cell 
lines. This model was implemented via pytorch [44].

Results
In the experiments, we first compare the prediction 
power of the genes identified by network-based feature 
selection model and the genes identified by Pearson cor-
relation coefficients. Four canonical prediction meth-
ods and DNN are applied to evaluate drug sensitivity 

max
α≥0

n
∑

i

αi −
1

2

∑

j,k

αjαkyjyk exp(−γ �xj − xk�
2),

max
wi∈R

m
wT
i X

T yyTXwi,
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prediction performance. Next, for the same selected fea-
tures, we compare the different prediction methods (i.e., 
four canonical methods and DNN). The proposed graph-
based neural network models are also involved in the 
comparison. The experiments are evaluated on 144 non-
small cell lung cancer (NSCLC) cell lines screened by the 
same 50 drugs. Pearson correlation coefficients between 
predicted drug response (i.e., AUC and ED50) and the 
true response values are applied to estimate the predic-
tion accuracy.

NSCLC cell line dataset
The feature selection methods and prediction mod-
els were tested on 144 NSCLC cell lines RNA-seq gene 
expression dataset [34]. All the 144 cell lines were 
screened by the same drugs and the AUC and ED50 
scores for each drug on each cell line are available in this 
study. Gene expression and drug response data went 
through significant pre-processing steps to make them 
compatible with each other. Firstly, the genes with low 
expression or low variance were filtered out. Secondly, 
if a gene has numerical value for more than 90% of the 
cell lines then we replaced all existing (if any) NaNs with 
the mean expression of that gene, otherwise, we filtered 
it out. Moreover, if a drug has the same response value 
from more than 80% of the cell lines, then we also filtered 
it out. In the end, we kept 50 drugs in this study.

Network‑based feature selection methods improve 
prediction performance
To evaluate the quality of the genes identified by net-
work-based feature selection method and Pearson cor-
relation coefficients (i.e., the features are selected based 
the correlation coefficients values between drug response 
and the gene expression), we designed a drug sensitiv-
ity prediction task by the assumption that high quality 
of the identified molecular signatures can lead to better 
drug sensitivity prediction performance. In this task, the 
NSCLC cell line dataset was split into 70% as the train-
ing set, and 30% as the test set directly as the number of 
cell lines is limited. One hundred genes were selected 
in the training set by each feature selection method. For 
network-based feature selection method, the 100 genes 
were selected based on the top 100 importance scores. 

Whereas for correlation based approach, we select the 
genes with top 100 correlation coefficients. The drug 
sensitivity performance was measured on the test set. 
Five different prediction algorithms, Elastic Net (E net), 
PLSR, Random Forest (RF), SVM, and DNN were chosen 
to evaluate the results. We repeated the random splitting 
50 times for each algorithm in each drug. To make the 
prediction results comparable among different feature 
selection methods and prediction algorithms, the same 
setup of training and test sets were used for all the meth-
ods in each splitting. Since no validation set was involved 
for model selection, the parameters in each prediction 
algorithm were fixed and the values are provided in  the 
Methods section. The Pearson correlation coefficients 
between predicted drug response values and the true val-
ues (AUC) was applied to measure the performance.

The average Pearson correlation coefficients of the 2500 
repeats (50 splittings for each drug and 50 drugs in total) 
for each prediction method are reported in Table 1 along 
with the p-value for each method inside the parenthe-
ses. As we can see from the table, prediction using all the 
methods except graph-based DNN produce statistically 
significant results (p-value < 0.05). The results also show 
that the genes selected by the network-based feature 
selection method perform better than the ones selected 
by Pearson correlation coefficients on four canonical pre-
diction methods. In Fig. 3, we plot the prediction results. 
Each dot represents one drug in each prediction method. 
CC and Net denote Pearson correlation coefficients and 
network-based feature selection methods, respectively. 
Though CC performs better than the network-based 
feature selection method (Table 1) on DNN, the median 
value of the network-based method is higher than CC. 
It indicates that among the 50 drugs, the network-based 
method performs better on more cases than CC.

Canonical prediction methods perform better than DNN
Comparing the prediction performance among the four 
canonical prediction methods and DNN model, Random 
Forest has the best overall performance in Table  1 and 
Fig. 3. In addition, all the canonical prediction methods 
perform better than DNN. Due to the limited number 
of cell lines, DNN needs a larger sample size to train the 
model to get better performance. Moreover, the results in 

Table 1  Drug response prediction results on the selected features

*The difference between the performances of the two feature selection methods is statistically significant (p-value < 0.01 ). The better results between two methods 
are shown in italic

Feature selection method Prediction methods

Elastic net PLSR Random forest SVR DNN

Correlation based 0.376 (0.041) 0.389 (0.033) 0.406 (0.026) 0.382 (0.037) 0.346 (0.045)

Network based 0.392* (0.032) 0.391 (0.033) 0.421 (0.021) 0.385 (0.035) 0.330 (0.057)
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SVR show the largest variation while DNN on the genes 
selected by the network-based method shows the small-
est variation.

In Table  2, we also report the prediction results on 
the top-20 drugs. The top-20 drugs were selected based 
on the performance across all the methods. In the top-
20 drugs, the Random Forest on the features selected 
by the network-based method outperforms all the other 

methods (6 out of 20). Followed by PLSR on the features 
selected by the correlation coefficients (5 out of 20). 
DNN does not get the best performance on any of the 
drugs. We also observe that the responses of some drugs 
are easy to predict by any methods (e.g., SW157765 and 
SW157692), while some drugs are not (e.g., SW041995 
in the Table  2). The prediction performance is drug 
dependent and it may relate to the drug’s mechanism of 
action (MOA). The available molecular structures of the 
top-20 drugs are listed in Additional file  1: Figure S1. 
Drug SW157765 accelerated metabolism and it is asso-
ciated with activity in cells with high expression of the 
cytochrome p450 family member [34]. The selected gene 
signatures for SW15776 by our network-based feature 
selection model are enriched in several metabolic path-
ways (Additional file 1: Table S1).

Graph‑based neural network models improve prediction 
performance compare to DNN
We introduced two graph-based neural network mod-
els, network-based embedding method and GNN in 
the Methods  section, which integrate gene co-expres-
sion network into the drug sensitivity prediction. The 
performance of the two models was compared to the 
DNN and results are reported in Table 3 and Fig. 4. The 
training-test setups in this experiment were the same 
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Fig. 3  Drug response prediction results on the selected features. 
Each dot represents one drug. The mean correlation coefficients 
between the predicted AUC and the true AUC scores of 50 repeats for 
each drug are plotted

Table 2  Prediction results of the top-20 drugs

The best results across all the methods are italic. Embed represents the network-based embedding method (Fig. 1) and GNN represents the graphical neural network 
model (Fig. 2)

Drugs E net CC E net Net PLSR CC PLSR Net RF CC RF Net SVR CC SVR Net DNN CC DNN Net GNN Embed

SW157765 0.7606 0.7823 0.7212 0.7093 0.7956 0.8239 0.7228 0.7286 0.6615 0.3557 0.3406 0.3580

SW157692 0.5879 0.6098 0.5479 0.5402 0.6297 0.6984 0.5621 0.5738 0.5421 0.3354 0.3566 0.3364

SW134727 0.4957 0.4393 0.5456 0.5400 0.5226 0.4875 0.5248 0.5138 0.4722 0.3373 0.3654 0.3934

SW005017 0.4885 0.4793 0.5257 0.5097 0.4874 0.4690 0.5562 0.5510 0.5025 0.3769 0.3514 0.3393

SW072554 0.4784 0.4873 0.5000 0.4976 0.4870 0.4921 0.4505 0.4560 0.3644 0.3225 0.3821 0.3548

SW198886 0.4997 0.4444 0.4867 0.4702 0.4325 0.4074 0.4781 0.4673 0.4776 0.3072 0.4064 0.3553

SW197409 0.4163 0.4231 0.4775 0.4705 0.4401 0.4321 0.4709 0.4747 0.4392 0.3416 0.3853 0.3672

SW134963 0.4369 0.4034 0.4838 0.4727 0.4744 0.4193 0.4706 0.4616 0.4144 0.3462 0.3652 0.3691

SW006981 0.4223 0.4229 0.4558 0.4465 0.4162 0.3955 0.4541 0.4523 0.4367 0.3377 0.3439 0.3471

SW096640 0.3883 0.4111 0.4348 0.4292 0.4803 0.4774 0.4229 0.4196 0.3596 0.3413 0.3820 0.3806

SW148608 0.3968 0.4017 0.4167 0.4033 0.4110 0.4058 0.4702 0.4571 0.3950 0.3615 0.3637 0.3570

SW023297 0.3222 0.3711 0.3915 0.3846 0.4151 0.4313 0.4732 0.4824 0.4624 0.3605 0.3658 0.3341

SW074797 0.4224 0.4696 0.3923 0.4058 0.4223 0.4426 0.3768 0.3915 0.3614 0.3122 0.3955 0.3470

SW015134 0.4077 0.4283 0.3945 0.3924 0.4340 0.4654 0.3872 0.3909 0.3706 0.3374 0.3812 0.3459

SW043997 0.4006 0.3585 0.4345 0.4298 0.4160 0.4145 0.4062 0.4019 0.3655 0.3115 0.4248 0.3431

SW208072 0.3912 0.3910 0.4213 0.4236 0.4335 0.4489 0.4087 0.4109 0.3307 0.3247 0.3576 0.3394

SW113135 0.3942 0.4196 0.3974 0.4093 0.4603 0.4727 0.3643 0.3756 0.3152 0.3304 0.3820 0.3273

SW088073 0.2786 0.3024 0.4111 0.4020 0.4148 0.4146 0.4607 0.4607 0.4257 0.3127 0.3686 0.3536

SW018825 0.3759 0.3817 0.4028 0.4109 0.4093 0.4130 0.4118 0.4278 0.3383 0.3302 0.3661 0.3304

SW041995 0.3861 0.4071 0.3994 0.4125 0.4263 0.4313 0.3661 0.3681 0.3477 0.3405 0.3276 0.3554
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as the setups in the previous  section. From the result, 
we can see that both graph-based neural network mod-
els improved the prediction performance compared 
to DNN which was not considering the gene network 
information in the modeling. GNN outperforms net-
work-based embedding method and the performance 
of the top-20 drugs is also available in Table  2. Com-
pared to the network-based embedding method, GNN 
considers the global structure of the gene co-expression 
network to learn the representative information for 
drug sensitivity prediction while the network-based 
embedding method only learns the representative fea-
tures from the local neighborhood structure in the net-
work. The network representative information learned 
by GNN may have more predictive power compared to 
the topological features learned from the local network 
structure by the embedding method.

Though the graph-based neural network models 
improve the performance of drug response prediction 
compared to DNN. The overall performance is still worse 
than the canonical prediction methods in Fig.  3 and 
Tables  1 and 2 since the neural network models suffer 
from overfitting and high-variance gradients in the high 

dimension and low sample size data. A larger sample size 
is needed to further improve the prediction performance.

Running time
For a single iteration, correlation based feature selec-
tion takes 0.30 second of CPU time on average whereas 
network-based feature selection takes 1.16 second. Net-
work-based feature selection method is always more 
time intensive than its correlation based counterpart. 
Time required for the predictive algorithm is insignifi-
cant compared to the feature selection step (both corre-
lation based and network-based feature selection) except 
for random forest and DNN. The classifier function itself 
takes same amount of time for correlation based and net-
work-based methods, for example SVR requires 0.0017 
second for one prediction in both feature selection based 
models. Similarly, feature selection step takes same 
amount of time irrespective of the classifier used, for 
example correlation based feature selection always takes 
around 0.30 second. The codes were run using Intel(R) 
Core(TM) i7-8700 CPU @ 3.20GHz CPU.

Discussion
Quantitative prediction of cellular responses to drugs is 
a challenging and valuable topic in personalized medi-
cine. In the past decades, high-throughput technology 
has become a routine tool for monitoring genomic vari-
ations and it has been widely adopted for exploring drug 
response in the pharmaceutical research [45]. However, 
how to predict the effect of candidate therapeutic drugs 
and identify consistent molecular signatures using high-
throughput technology is a challenging task due to het-
erogeneity of treatment effects, high dimension and low 
sample size, and statistical randomness or experimental 
noise in the data. Learning from the setup of the NCI 
DREAM challenge and the submitted drug sensitivity 
prediction algorithms [4], we did a comprehensive study 
on comparing the algorithms. In addition, a network-
based feature selection method and two graph-based 
neural network models are introduced and involved in 
the comparison. These introduced methods fully explore 
modular co-expression structures along with gene dis-
criminative power to provide more reliable representa-
tive features to improve the prediction performance. 
In general, network-based models can better capture 
the molecular interaction in the cellular system, which 
improves the predictive power of the selected genomic 
features. Network-based analysis also provides better 
consistency in genomic feature identification across dif-
ferent studies for the similar research purpose. We can 
conclude that network-based methods employ molecu-
lar and biomedical networks to extract useful genomic 

Table 3  Drug response prediction performance

*The difference between the performance of graph-based neural network 
model and DNN is statistically significant (p value < 0.05). The better results 
between two methods are shown in italic

Graph-based neural network

DNN CC GNN Network-based 
embedding

Correlation 0.3459 (0.045) 0.3742* (0.029) 0.3507* (0.042)

DNN CC GNN Embed
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Fig. 4  Drug response prediction results of the neural network 
based models. Each dot represents one drug. The mean correlation 
coefficients between the predicted AUC and the true AUC scores 
of 50 repeats for each drug are plotted. Embed represents the 
network-based embedding method (Fig. 1) and GNN represents the 
graphical neural network model (Fig. 2)
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information, and build better predictive models for drug 
sensitivity prediction.

Currently the improvement for graph-based deep neu-
ral networks are limited in our study. To further increase 
the drug prediction accuracy, multi-omics data can be 
integrated together for the analysis. Multi-omics data 
capture genomic, epigenomic and transcriptomic char-
acteristics of each cell line in the cohort and provide 
more accurate molecular signatures for drug response 
prediction on top of the large-scale biological features 
compared to single omics data only. TCGA, ICGC, and 
CCLE projects have profiled and analyzed large num-
bers of human tumor samples and cancer cell lines to 
measure the aberrations at the DNA, RNA, protein, 
and epigenetic levels. All these large-scale datasets can 
be integrated together for drug sensitivity prediction to 
overcome the overfitting problem in the deep neural net-
work models. The integration of multi-omics data could 
make more biological information available for extrac-
tion e.g. genomic features from each modality, interac-
tion of features within a modality, interaction of features 
across modalities. Our future study will extend this work 
to learn whether graph-based deep neural networks can 
achieve an edge over canonical methods while handling 
the complex interactive networks in multi-omics data. 
In addition, the chemical structural information for each 
drug can also be integrated together to further improve 
the performance.

Conclusion
This study introduced a network-based feature selection 
method and two graph-based neural network models for 
drug sensitivity prediction. Comparing to the Pearson 
correlation coefficients for feature selection, four canoni-
cal prediction methods, and deep neural network on an 
NSCLC cell line dataset, we have made several useful 
observations. First, the network-based feature selection 
method identifies more representative features based on 
gene co-expression network for drug sensitivity predic-
tion. Second, Random Forest outperforms all the other 
canonical prediction methods and deep neural network 
models, Third, the graph-based neural network models 
show better drug response prediction performance com-
pared to DNN, however, it is still worse than the perfor-
mance of the canonical prediction methods and a dataset 
with larger sample size is needed to further increase the 
prediction accuracy. Fourth, the prediction performance 
is drug dependent and it may relate to the drug’s mecha-
nism of action (MOA). All the observations above were 
made based on the area under the dose response curve 
(AUC) values. Similar trends were also observed for 
ED50 values (results are not shown).
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