
RESEARCH ARTICLE

Fast optimization of non-negative matrix tri-

factorization

AndrejČoparID
1*, Blaž Zupan1,2, Marinka Zitnik1,3

1 Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia, 2 Department of

Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States of America,

3 Department of Computer Science, Stanford University, Stanford, CA, United States of America

* andrej.copar@fri.uni-lj.si

Abstract

Non-negative matrix tri-factorization (NMTF) is a popular technique for learning low-

dimensional feature representation of relational data. Currently, NMTF learns a represen-

tation of a dataset through an optimization procedure that typically uses multiplicative

update rules. This procedure has had limited success, and its failure cases have not been

well understood. We here perform an empirical study involving six large datasets compar-

ing multiplicative update rules with three alternative optimization methods, including alter-

nating least squares, projected gradients, and coordinate descent. We find that methods

based on projected gradients and coordinate descent converge up to twenty-four times

faster than multiplicative update rules. Furthermore, alternating least squares method can

quickly train NMTF models on sparse datasets but often fails on dense datasets. Coordi-

nate descent-based NMTF converges up to sixteen times faster compared to well-estab-

lished methods.

Introduction

Extracting patterns from relational data is a key task in natural language processing [1], bioin-

formatics [2], and digital humanities [3]. We typically represent a relational dataset with a data

matrix, encoding, for example, information on document-term frequencies, gene-disease asso-

ciations, or user-item ratings. Non-negative matrix tri-factorization (NMTF) is a general tech-

nique that takes a data matrix and compresses, or embeds, the matrix into a compact latent

space. The learned embedding space can be used to identify clusters [4, 5], reveal interesting

patterns [6, 7], and generate feature representations for downstream analytics [8, 9]. NMTF

has been used to discover disease-disease associations [10]. identify cancer driver genes from

patient data [11], and to model topics in text data [12]. However, despite numerous applica-

tions, training NMTF models on large datasets can be slow and has remained computationally

challenging [13].

A distinguishing property of non-negative matrix tri-factorization is that it factorizes a

given data matrix and represents it with a product of three non-negative low-dimensional

matrices, often called latent matrices [14] (Fig 1). While these latent matrices are key to

PLOS ONE | https://doi.org/10.1371/journal.pone.0217994 June 11, 2019 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Čopar A, Zupan B, Zitnik M (2019) Fast

optimization of non-negative matrix tri-

factorization. PLoS ONE 14(6): e0217994. https://

doi.org/10.1371/journal.pone.0217994

Editor: Holger Fröhlich, University of Bonn, Bonn-

Aachen International Center for IT, GERMANY

Received: January 22, 2019

Accepted: May 22, 2019

Published: June 11, 2019

Copyright: © 2019 Čopar et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This work was supported by the

Slovenian Research Agency grant P2-0209 to BZ.

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0003-4309-9170
https://doi.org/10.1371/journal.pone.0217994
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217994&domain=pdf&date_stamp=2019-06-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217994&domain=pdf&date_stamp=2019-06-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217994&domain=pdf&date_stamp=2019-06-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217994&domain=pdf&date_stamp=2019-06-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217994&domain=pdf&date_stamp=2019-06-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217994&domain=pdf&date_stamp=2019-06-11
https://doi.org/10.1371/journal.pone.0217994
https://doi.org/10.1371/journal.pone.0217994
http://creativecommons.org/licenses/by/4.0/

matrix tri-factorization, finding the factorization of a given matrix is an NP-hard problem

[15]. We thus use optimization methods to find latent matrices that approximately factorize

the matrix. A traditional approach uses multiplicative update rules [4], a method, which

iteratively revises latent matrices to minimize the approximation error. Such an iterative

update involves multiplying the current approximation with the gradient of the objective

function, which captures the discrepancy between the input data matrix and its latent-based

reconstruction. Several studies improved the performance of multiplicative update rules,

for example, by using parallelization [16, 17]. A significant limitation of multiplicative

update rules is that the method is slow to converge [13]. For this reason, classic non-

negative matrix factorization [18] has been studied using alternative training algorithms,

including alternating least squares [19, 20], projected gradients [21, 22], and coordinate

descent [20]; however, these methods have not been investigated for non-negative matrix tri-

factorization.

Here, we develop three training algorithms for non-negative matrix tri-factorization that

use projected gradients, coordinate descent, and alternating least squares optimization. First,

projected gradient method uses a step-size parameter to maximize the learning rate without

compromising non-negative constraints on latent matrices in NMTF [21]. Second, coordinate

descent method uses partial computation result of latent matrices to successively adjust the

update step, decomposing the update of latent matrices into a series of coordinate-specific, or

latent factor-specific, updates. It has been shown that coordinate descent can reduce the

computational time of machine learning methods, such as support vector machines [23] and

classic non-negative matrix factorization [20, 24]. Third, alternating least squares method

alternates between updating one latent matrix while fixing the other two [19]. The success of

these three methods for various tasks in machine learning [25–27] encouraged us to adapt

them for non-negative matrix tri-factorization. We derive projected gradients, coordinate

descent, and alternating least squares methods for NMTF. We then show convergence and

runtime improvements of the new training algorithms over traditional multiplicative update

rules on six datasets.

Materials and methods

We first describe datasets and their preprocessing. We then continue with a formal presenta-

tion of optimization methods, focusing on derivation of three optimization methods that are

new for non-negative matrix tri-factorization.

Fig 1. Non-negative matrix tri-factorization (NMTF). An input 5 × 4 sparse data matrix (left) is approximated by a product of three non-negative

low-dimensional latent matrices (U, S, and V). The product (right) gives a reconstruction of the original data matrix. The reconstructed matrix has all

of its elements completed, which can be leveraged for prediction. The goal of training an NMTF model is to find the latent matrices that produce a

high-quality reconstruction of the input matrix [28].

https://doi.org/10.1371/journal.pone.0217994.g001

Fast optimization of non-negative matrix tri-factorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0217994 June 11, 2019 2 / 15

https://doi.org/10.1371/journal.pone.0217994.g001
https://doi.org/10.1371/journal.pone.0217994

Datasets and preprocessing

We considered six datasets of varying size and density (Table 1). These datasets are popular

benchmark datasets in the analysis of relational data and matrix factorization. (1) AlphaDigits

[29] is a binary dataset of 1404 hand-drawn images of numbers and letters with dimensions of

16x20. (2) Coil20 [30] is a dataset of 1440 images each of size 128x128. Images from both data-

sets were flattened into a single 16,384-column vector and each pixel is represented with a

value in range 0-255. (3) Mutations [31] contains a sparse binary matrix of almost five thou-

sand patient samples with 19 different types of tumors and somatic mutations in 25 thousand

genes. (4) MovieLens [32] is a sparse dataset of 10 million ratings given to ten thousand movies

from 70 thousand different users. Each rating is represented by a discrete value between 0 and

5. (5) Newsgroups [33] is a real-valued sparse document-term dataset containing over 10 thou-

sand documents with 73 thousand terms. Stop words are removed from the text and TF-IDF is

used to generate feature vectors. (6) Finally, STRING dataset [34] contains binary and undi-

rected protein-protein interaction network for Homo Sapiens, which we obtain from the

STRING database.

Non-negative matrix tri-factorization (NMTF)

Non-negative matrix tri-factorization (NMTF) aims to represent the data X 2 Rn�m with a

product of three non-negative latent matrices U 2 Rn�k1

þ
, S 2 Rk1�k2

þ
and V 2 Rm�k2

þ
[4]. Here,

parameters k1 and k2 represent factorization ranks and describe the number of latent vectors

that form the row and column space, respectively. Matrix factorization can reduce dimension-

ality and noise of the original input data matrix X [35], and provide an understanding of the

latent structure present in the data. In contrast to classic non-negative matrix factorization

[18], which decomposes the input matrix into two latent matrices, NMTF decomposes the

input matrix into three latent matrices. Here, latent matrix U approximates the row vector

space of X with a k1-dimensional vector space. Similarly, V describes a column-space with k2

vectors, and S describes interactions between the two latent vector spaces.

Discrepancy between input data matrix X and its reconstruction X̂ ¼ USVT is measured

through a loss function that aims to minimize the following Frobenius distance DFro:

DFroðXjjUSV
TÞ ¼ jjX � USVTjj

2

Fro: ð1Þ

Here, several alternative loss functions can be used, such as the Kullback-Leibler diver-

gence, Alpha divergence [36], and Beta divergence [37]. In addition to non-negativity, we can

promote other structural properties by including additional regularization terms in the loss

function DFro. In particular, in clustering applications, we might want to impose orthogonality

on U and V [4] such that U’s and V’s latent vectors indicate memberships of row and column

objects in distinct clusters [38]. For example, adding UT U regularization term to the loss

Table 1. Datasets considered in this study. ‘Nonzero’ indicates the number of non-zero values in a data matrix.

Dataset Rows Columns Density (%) Non-zero

AlphaDigits 1404 320 100.0 0.45M

Coil20 1440 16,384 100.0 23M

STRING 19,576 19,576 2.9 11.3M

MovieLens 69,878 10,677 1.3 9.7M

Mutations 4,790 25,169 0.8 1M

Newsgroups 18,821 70,066 0.1 1.4M

https://doi.org/10.1371/journal.pone.0217994.t001

Fast optimization of non-negative matrix tri-factorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0217994 June 11, 2019 3 / 15

https://doi.org/10.1371/journal.pone.0217994.t001
https://doi.org/10.1371/journal.pone.0217994

function will make latent vectors in U to be orthogonal to each other. Another popular

approach is to impose sparsity constraints on latent matrices by including ||U||1 and ||V||1 reg-

ularization in the loss function [39]. In this paper, we develop optimization algorithms, which

optimize an objective function that consists of the reconstruction error and does not include

any additional constraints or regularization terms other than non-negativity of latent matrices.

Multiplicative update rules for NMTF

The objective function of NMTF is non-convex; however when we fix all but one latent matrix,

the function becomes convex [4]. Minimization of the objective function with respect to each

of the three latent matrices U, V and S, allows the algorithm to converge to a local stationary

point [13]. Multiplicative update rules start by initializing latent matrices with random values

and then iteratively update the matrices in the direction of the gradient until convergence.

Convergence criteria is often measured as difference in the value of objective function in Eq 1

between two or more successive iterations of the algorithm. Next, we give a summary deriva-

tion of existing multiplicative update rules [28]. Karush Kuhn-Tucker condition @F
@UUik
¼ 0

takes the partial derivative of U and calculates the updated U matrix at i-th row and k-th col-

umn. The resulting update rule for U is as follows:

U U� ðXVST � USVTVSTÞ; ð2Þ

where symbol� denotes Hadamard product and symbol� denotes Hadamard division. Simi-

larly, the update rule for V is derived:

V V� ðXTUS� VSTUTUSÞ: ð3Þ

Finally, to obtain the update rule for latent matrix S, we take derivative of the objective

function with respect to S and use the Karush Kuhn-Tucker conditions for S. This procedure

gives the following update rule for S:

S S� ðUTXV� UTUSVTVÞ: ð4Þ

Section A in S1 File shows derivations of multiplicative update rules.

Alternating least squares for NMTF

Alternating least squares method [40] iteratively updates the latent matrices and each update

involves solving a least-squares problem. Here, we obtain the update rules by deriving the

objective function in Eq 1 for each latent matrix and then enforcing non-negativity on the

latent matrix using a heuristic. This derivation procedure gives the following update rules:

U ½ðXVSTÞðSVTVSTÞ
� 1
�
þ
;

V ½ðXTUSÞðSTUTUSÞ� 1
�
þ
;

S ½ðUTUÞ� 1
ðUTXVÞðVTVÞ� 1

�
þ
;

ð5Þ

where [A]+ is projection to non-negative space, calculated as Aij = 0 if Aij< 0 else Aij. Alternat-

ing least squares approach is equivalent to the second-order quasi-Newton approach [5]. Sec-

tion B in S1 File shows full derivations of alternating least squares approach, where Section E

in S1 File shows the derivation of quasi-Newton approach and its equivalence to alternating

least squares. Efficient implementations of alternating least squares method is as fast as multi-

plicative update rules but has unstable convergence. This is because alternating least squares

Fast optimization of non-negative matrix tri-factorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0217994 June 11, 2019 4 / 15

https://doi.org/10.1371/journal.pone.0217994

method transforms current approximation of the latent matrices into non-negative matrices

by simply replacing all negative values with zero values [19].

Projected gradients for NMTF

Optimization of matrix factorization models that use gradient descent [18] repeatedly apply

additive updates to model parameters in the direction specified by the gradient of the

objective function and using a particular step size. The selection of the step size is not trivial

[41]. When using a large fixed step size, we risk accidentally increasing the value of objective

function. When the step size is too small, it can significantly slow down the convergence

speed.

Projected gradients method is a gradient-based optimization method intended for solving

constrained convex problems [42]. In the case of non-negative matrix tri-factorization, the

method realizes the non-negativity constraints by projecting negative values in a latent matrix

to a non-negative space [43]. The method is similar to multiplicative update rules. In particu-

lar, it uses an adaptive learning rate (i.e., step-size parameter) that is automatically determined

in order to perform a maximum possible step in the gradient direction while staying in the

non-negative space. In contrast to alternating least squares, projected gradients method is able

to handle the non-negativity constraint of latent matrices in a more principled way [44]. Note

that by setting the step-size parameter to 1, the update rules become equivalent to multiplica-

tive update rule.

We derive projected gradients for NMTF and obtain the following update rule for latent

matrix U:

Pu ¼ U � U� ðUSVTVSTÞ � ðXVSTÞ;

Zu ¼

P
ðPu � ðUSV

TVST � XVSTÞÞ

TrððSVTVÞðSTPu
TPuÞÞ

;

U ½U � ZuPu�þ;

ð6Þ

where Pu is a projection matrix, and ηu is step-size parameter. The update rule for latent matrix

V is as follows:

Pv ¼ V � V� ðVS
T
UTUSÞ � ðXTUSÞ;

Zv ¼

P
ðPv � ðVS

T
UTUS � XTUSÞÞ

TrððSPv
TPvÞðS

T
UTUÞÞ

;

V ½V � ZvPv�þ;

ð7Þ

where Pv is a projection matrix, and ηv is a step-size value. The update rule for latent matrix S

is as follows:

Ps ¼ S � S� ðUTUSVTVÞ � ðUTXVÞ;

Zs ¼

P
ðPs � ðU

TUSVTV � UTXVÞÞ
TrððUTUPsÞðV

TVPs
TÞÞ

;

S ½S � ZsPs�þ;

ð8Þ

where Ps is a projection matrix, and ηs is a step-size value. Section C in S1 File shows full deri-

vations of projected gradient approach.

Fast optimization of non-negative matrix tri-factorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0217994 June 11, 2019 5 / 15

https://doi.org/10.1371/journal.pone.0217994

Coordinate descent for NMTF

Coordinate descent is an optimization method widely used in machine learning, including in

support vector machines [45], and non-negative matrix factorization (NMF) [20, 46]. Coordi-

nate descent has been proposed as an alternative approach for NMF methods, and its advan-

tages for two-factor NMF and multiplicative updates have been already reported [47–49]. In

contrast to the multiplicative and gradient-based method, which update latent matrices in a

joint gradient direction, coordinate descent separately computes the gradient of each vector in

each latent matrix.

Coordinate descent is a first-order method, similar to multiplicative update rules, alternat-

ing least squares, and projected gradients. While other methods use derivatives of entire latent

matrices, coordinate descent computes derivatives concerning scalars or one-dimensional vec-

tors of latent matrices and re-use partially computed results as soon as possible [50]. For exam-

ple, updates to the first vector in a latent matrix are included in computing the second one,

and the values from the first two vectors are then used to compute the third vector. Coordinate

descent can use different ordering of vector updates, which gives rise to different variants of

the method [51]: cyclic coordinate descent, stochastic coordinate descent, and greedy coordi-

nate descent. The cyclic approach uses the same ordering of updates in each iteration of the

algorithm, whereas a stochastic approach uses a random order of updates. Finally, a greedy

approach [49] selects to update the vector that reduce objective function the most.

Next, we present NMTF update rules implementing cyclic coordinate descent:

u�i u�i þ
ðXVSTÞ

�i � ðUSV
TVSTÞ

�i

si�V
TVsTi�

� �

þ

;

v�j v�j þ
ðXTUSÞ

�j � ðVS
TUTUSÞ

�j

sT
�jU

TUs�j

" #

þ

;

sij sij þ
ðUTXVÞij � ðU

TUSVTVÞij
uT
�i u�ivT�j v�j

" #

þ

:

ð9Þ

Here, u�i represents i-th column of U, and ui� represents i-th row of U. Update rules for U

and V successively applied to every column in U and V, where sij update is applied to each ele-

ment in latent matrix S. Section D in S1 File shows full derivation of coordinate descent rules.

Overview of optimization algorithms for non-negative matrix tri-

factorization

Optimization methods considered in this paper use the same overall algorithmic approach

shown in Algorithm 1. The main difference between these methods is the use of different

update rules for latent matrices U, S, and V. The algorithm takes as input a data matrix X, and

factorization rank parameters k1 and k2, which define the number of latent vectors for each

dimension of the input matrix. Parameter � defines the stopping criterion. First, the algorithm

initializes latent matrices and fills them with random values. It then performs a series of itera-

tions, during which it iteratively improves U, V, and S using appropriate equations. Multiplica-

tive update rules method uses Eqs 2–4, alternating least squares method uses Eq 5, projected

gradients method uses Eqs 6–8, and coordinate descent method uses Eq 9.

Algorithm 1 Algorithm for non-negative matrix tri-factorization of X into latent matrices

U, S, and V. MUR, multiplicative update rules; ALS, alternating least squares; PG, projected

gradients; COD, coordinate descent.

Fast optimization of non-negative matrix tri-factorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0217994 June 11, 2019 6 / 15

https://doi.org/10.1371/journal.pone.0217994

Input: Data matrix X 2 Rn�m
þ

, Factorization ranks k1, k2 and optimization
technique OPT.
1: Initialize Un�k1 � Uð0; 1Þ
2: Initialize Vm�k2 � Uð0; 1Þ
3: Initialize Sk1�k2 � Uð0; 1Þ
4: repeat
5: switch (OPT)
6: case MUR:
7: Update U, V, S using Eqs 2, 3 and 4
8: case ALS:
9: Update U, V, S using Eq 5
10: case PG:
11: Update U, V, S using Eqs 6, 7 and 8
12: case COD:
13: Update U, V, S using Eq 9
14: end switch
15: until U, V and S converge or maximum number of iterations is
exceeded
16: return U, V and S

Implementation

Methods are implemented in Python and available at https://github.com/acopar/fast-nmtf.

The experiments were run on a dual Xeon E5-2660v4 server with combined number of 24

cores. Matrix operations were performed using NumPy package, accelerated with the Intel

MKL library. Support for sparse matrix representation was implemented using SciPy library.

Results

We empirically study the convergence of the algorithms on six datasets of varying size and

density. We find that traditional multiplicative update rules method has the worst perfor-

mance. In contrast, coordinate descent converges 5 to 24 times faster than multiplicative

update rules (Table 2) and up to 16 times faster when comparing the runtime (Table 3). Multi-

plicative update rules method outperforms alternating least squares on dense datasets, whereas

alternating least squares achieves most promising results on sparse datasets.

Experimental setup

We quantify convergence of an NMTF optimization algorithm by recording the number of

algorithm iterations and the optimization runtime. We run each NMTF optimization algo-

rithm until the relative difference of approximation error between two successive iterations is

below a user-specified threshold. In particular, in iteration i, we calculate the value of objective

Table 2. Number of iterations needed by NMTF training algorithms to converge (Eq 11, ε = 10−6). Symbol1 denotes no convergence. MUR, multiplicative update

rules; ALS, alternating least squares; PG, projected gradients; COD, coordinate descent. The MUR/COD column shows a speed-up of coordinate descent relative to multi-

plicative update rules, i.e., the number of iterations of MUR divided by the number of iterations of COD.

Dataset Dataset type MUR ALS PG COD MUR/COD

AlphaDigit dense 3641 1 1444 332 10.97

Coil20 dense 13598 1 6348 566 24.03

STRING sparse 1516 67 579 114 13.30

MovieLens sparse 2165 319 1029 154 14.06

Mutations sparse 1293 86 486 149 8.68

Newsgroups sparse 432 70 148 86 5.02

https://doi.org/10.1371/journal.pone.0217994.t002

Fast optimization of non-negative matrix tri-factorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0217994 June 11, 2019 7 / 15

https://github.com/acopar/fast-nmtf
https://doi.org/10.1371/journal.pone.0217994.t002
https://doi.org/10.1371/journal.pone.0217994

function Di, which is defined as the squared Frobenius distance between input data matrix X

and its approximation X̂ ¼ USVT [52]:

Di ¼k X � X̂ k2
Fro =jjXjj

2

Fro ¼k X � USVT k2
Fro =jjXjj

2

Fro; ð10Þ

where U, V, S are the latent matrices returned in i-th iteration of the algorithm. Optimization

is then terminated when the relative difference in objective function becomes sufficiently small

[53]:

jDiþ1 � Dij=Di < ε; ð11Þ

where ε = 10−6 is used in our experiments. Optimization method that needs fewer iterations to

satisfy this stopping criterion is considered to represent a faster NMTF training algorithm

under the assumption that the amount of computation required to execute one iteration is

similar across different optimization methods. To avoid this assumption, we also the optimiza-

tion runtime, i.e., the total amount of computation time needed to train the NMTF model

until convergence.

We also qualitatively check convergence of NMTF training by tracing the value of the

objective function (Fig 2) and we mark the training as diverging if the objective function

oscillates or is at convergence point substantially higher than those of other optimization

methods. In our experiments, we observed that alternating least squares method diverged on

dense datasets. If the algorithm does not converge within a maximum number of iterations

(nSTOP = 50,000), the optimization is terminated. If the algorithm does not reach the stopping

criterion in nSTOP iteration, its results are excluded from reporting to avoid potential bias in

results caused by selection of nSTOP parameter. Finally, in the case of multiplicative update

rules methods, convergence in early iterations of training algorithm can be slow, which can

accidentally trigger the stopping criterion. To address this issue, we additionally specify a mini-

mum number of iterations (nSTART = 100).

Non-negative matrix tri-factorization has two parameters, k1 and k2, that determine the size

of latent matrices. We set these parameters to 20 in our analysis of convergence and we vary

them (k1 = k2; ki 2 {10, 20, . . ., 100}) in order to study the impact of factorization rank on opti-

mization runtime. We repeat all our experiments ten times and initialize latent matrices to val-

ues between 0 and 1 that are sampled uniformly at random [54].

Convergence of NMTF optimization methods

Table 2 and Fig 2 show convergence of four NMTF optimization methods across six datasets.

Table 2 reports the number of iterations needed by each optimization method to converge,

Table 3. Runtime of NMTF training algorithms. Shown is time in seconds until convergence of each optimization method, averaged across ten independent runs of the

method. Runs that did not converge are excluded from reporting. MUR, multiplicative update rules; ALS, alternating least squares; PG, projected gradients; COD, coordi-

nate descent. The MUR/CUD column shows a speed-up of coordinate descent relative to multiplicative update rules, i.e., the runtime of MUR divided by the runtime of

COD.

Dataset MUR ALS PG COD MUR/COD

AlphaDigit 7.1 1 4.5 1.8 4.0

Coil20 295.4 1 170.8 18.0 16.4

STRING 236.0 10.1 92.5 19.8 11.9

MovieLens 839.6 106.6 349.6 51.7 16.2

Mutations 67.5 4.5 29.5 10.5 6.4

Newsgroups 39.4 6.7 15.9 11.4 3.5

https://doi.org/10.1371/journal.pone.0217994.t003

Fast optimization of non-negative matrix tri-factorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0217994 June 11, 2019 8 / 15

https://doi.org/10.1371/journal.pone.0217994.t003
https://doi.org/10.1371/journal.pone.0217994

averaged across ten independent runs of the method and omitting the runs in which the

method does not converge. We see that alternating least squares and coordinate descent con-

verge fastest and have a clear advantage over multiplicative update rules, a traditional NMTF

optimization method. Additionally, our results suggest that coordinate descent might be most

suitable for dense datasets, whereas alternating least squares method has poor convergence on

dense datasets. Overall, considering optimization traces in Fig 2, coordinate descent converges

fast and does not suffer from unstable training, which hampers alternative least squares. These

results indicate that multiplicative update rules, which is the default NMTF optimization

method in many applications, perform substantially worse than alternative optimization meth-

ods described in the present study.

Serizel et al. [47] show that two-factor NMF converges faster using a stochastic mini-batch

approach, where the dataset is split into blocks and updates are in each iteration performed on

each individual block. We have developed stochastic mini-batch versions of each of the four

presented NMTF optimization techniques. Section G in S1 File and Fig C in S1 File show the

convergence of mini-batch versions together with its non-batch counterparts. While the mini-

batch variants do improve the convergence speed of multiplicative updates and projected gra-

dient, they are highly unstable, and the resulting value of the objective function is worse com-

pared to the non-mini-batch variants. Mini-batch variants of alternating least squares and

coordinate descent did not converge.

Fig 2. Optimization traces for six datasets and four NMTF optimization methods. Graphs show the value of NMTF

cost (objective) function [4, 8, 14] at each iteration of the NMTF training algorithm. Shown is the optimization trace of

the algorithm run with the smallest approximation error (solid lines). The highlighted area shows the span of the NMTF

objective values across ten independent runs; each started from a different random initialization (see Experimental

setup). MUR, multiplicative update rules; ALS, alternating least squares; PG, projected gradients; COD, coordinate

descent.

https://doi.org/10.1371/journal.pone.0217994.g002

Fast optimization of non-negative matrix tri-factorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0217994 June 11, 2019 9 / 15

https://doi.org/10.1371/journal.pone.0217994.g002
https://doi.org/10.1371/journal.pone.0217994

Analysis of matrix tri-factorization runtime

So far, we investigated convergence of NMTF optimization methods by studying the number

of iterations needed by each method to converge. However, comparing methods solely based

on the number of algorithm iterations is sufficient only if all methods perform an equal

number of computations in each iteration. That is not true when training NMTF models (see

Materials and methods). In particular, computational complexity of a single iteration of the

algorithm varies substantially across optimization methods. It is thus essential to investigate

and compare different methods by studying their optimization runtime.

Table 3 shows optimization runtime of four NMTF optimization methods. Results are qual-

itatively consistent with results in Table 2. Specifically, we find that coordinate descent excels

on dense datasets, whereas alternating least squares method is the fastest method on sparse

datasets.

Impact of factorization rank on optimization runtime

Factorization rank is a crucial parameter of non-negative matrix tri-factorization (see Experi-

mental setup) as it determines the size of latent matrices and, indirectly, the learning capacity

of a factorized model. By increasing the number of latent vectors, i.e., increasing the values of

k1 and k2, we can typically reduce the approximation error Di (Eq 10); however larger factori-

zation rank increases the runtime.

We studied how an increase in factorization rank affects the runtime of each of four NMTF

optimization algorithms. Results in Fig 3 indicate that the runtime of multiplicative update

rules and projected gradients increase much faster than the runtime for coordinate descent.

Thus, we conclude that coordinate descent method might be the preferred optimization

method in applications when large factorization rank is needed.

By increasing factorization rank, more latent vectors are added to the model. Larger factori-

zation rank can lead to overfitting and with it to poorer generalization and can potentially

affect performance on held-out data. To study the effects of factorization rank on objective

value, we have varied the factorization rank in the range k 2 {10, 20, . . ., 100} and assess the

objective value on the held-out data transformed into the same latent space. Results (Section F

in S1 File, Figs A and B in S1 File) are consistent with a similar experiment where the objective

value was assessed on the training data (Fig 2). We also observe that coordinate descent and

alternating least squares are more prone to fluctuations depending on the random initializa-

tion for larger factorization rank values.

Discussion

Currently, multiplicative update rules represent a popular off-the-shelf optimization approach

for non-negative matrix tri-factorization (NMTF) that is used in diverse applications, ranging

from bioinformatics to natural language processing (e.g., [4–12]). We derived three new opti-

mization methods for NMTF and demonstrated their convergence and scalability on six data-

sets of varying size and density. Importantly, we observe that coordinate descent, the newly

derived method, converges fast and is stable on datasets of varying size and density. Our results

suggest that coordinate descent might be a preferred off-the-shelf optimization method to

train NMTF models on large datasets. These findings together with complete mathematical

derivations (see S1 File) and a scalable public implementation of the algorithms (see section

Implementation) represent primary contributions of this paper.

Coordinate descent offers a good compromise between factorization quality and the num-

ber of iterations of the algorithm needed for convergence. We find that coordinate descent is

the fastest approach that often requires fewer than 100 iterations to converge, even on large

Fast optimization of non-negative matrix tri-factorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0217994 June 11, 2019 10 / 15

https://doi.org/10.1371/journal.pone.0217994

datasets. Furthermore, the final value of the NMTF objective function attained by coordinate

descent is comparable to that of multiplicative update rules. However, one drawback of coordi-

nate descent is a higher computational cost per iteration, which can become an issue when fac-

torizing data matrices at larger factorization ranks. Coordinate descent also exhibits higher

sensitivity to initialization of the latent matrices, as indicated by the larger span of the objective

function in Fig 2, especially in the case of small and sparse datasets.

The alternating least squares method performs well on sparse datasets but fails to converge

to a high-quality solution on dense datasets. The method is thus sensitive to the properties of

the dataset and, despite its performance on sparse data, we would advise using coordinate

descent as a stable off-the-shelf NMTF optimization method. We note that the observed insta-

bilities of alternating least squares and notable convergence issues are due to the heuristic

enforcement of non-negativity in the learned latent matrices. In particular, as a final step in

each iteration of the algorithm, alternating least squares method sets negative values in each

latent matrix (U, S, and V) to zero values [19, 40]. The use of this heuristic generates non-nega-

tive latent matrices. However, the alternating least squares method cannot guarantee that the

objective function value will decrease with each iteration of the algorithm, which can lead to

instability of NMTF model training.

Our results suggest that multiplicative update rules method the most robust approach, as

the method is not sensitive to initialization of latent matrices (Fig 2, see the width of the span

of the NMTF objective function) and its final solution is at least as good as that of projected

gradients or coordinate descent. However, multiplicative update rules method has the slowest

Fig 3. Impact of factorization rank on factorization time across six datasets and four NMTF optimization

methods. The total runtime in seconds needed for convergence of the NMTF training algorithm is shown as a

function of factorization rank (k1 = k2; ki 2 {10, 20, . . ., 100}), averaged across ten independent runs of the algorithm.

Runs that did not converge are excluded from reporting. MUR, multiplicative update rules; ALS, alternating least

squares; PG, projected gradients; COD, coordinate descent.

https://doi.org/10.1371/journal.pone.0217994.g003

Fast optimization of non-negative matrix tri-factorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0217994 June 11, 2019 11 / 15

https://doi.org/10.1371/journal.pone.0217994.g003
https://doi.org/10.1371/journal.pone.0217994

convergence among the considered optimization methods. This finding is especially important

as multiplicative update rules are currently favored NMTF optimization method. Another

drawback of multiplicative update rules is a long start-up time; that is, the method appears to

have reached a local stationary point during which the algorithm gives no improvements and

returns latent matrices of low-quality if exited prematurely. A good alternative to multiplica-

tive update rules are projected gradients. Similar to multiplicative update rules, projected gra-

dients are robust and can learn a high-quality NMTF model, however, the methods needs an

order of magnitude fewer iterations than multiplicative update rules and also has a shorter

start-up time.

There are many interesting avenues of future work. For example, the use of heuristics could

further improve performance of NMTF optimization methods [49]. Applying multiple updates

to a particular latent matrix before moving on to updating the next latent matrix is a fruitful

direction, as such approach could reduce the number of expensive matrix multiplications.

Another idea is to use heuristics to determine the ordering of updates in the case of coordinate

descent algorithm. In our experiments, coordinate descent used random initialization of latent

matrices; however, pre-training by multiplicative update rules might further improve

convergence.

Non-negative matrix tri-factorization is a core component of joint matrix factorization [8]

that has been successfully used for fusion of heterogeneous data [55–57]. Such matrix factori-

zation-based data integration can fuse many large datasets [10], however it can require sub-

stantial computational resources for inference. A speed-up of non-negative matrix tri-

factorization by coordinate descent thus provides a fruitful research direction towards a com-

putationally-effective data fusion and large-scale data integration.

Conclusion

A traditional optimization approach to non-negative matrix tri-factorization uses multiplica-

tive update rules. We described three alternative algorithms that train a non-negative matrix

tri-factorization model based on alternating least squares, projected gradients, or coordinate

descent. We conducted an empirical study comparing convergence and runtime of the train-

ing algorithms on six datasets. Our results show that the new approaches converge faster than

multiplicative update rules and that coordinate descent achieves the best average performance.

Supporting information

S1 File. Detailed mathematical derivations for multiplicative updates, alternating least

squares, projected gradient, coordinate descent and quasi-Newton optimization tech-

niques. Experimental results of objective value on held-out data and convergence of stochastic

mini-batch NMTF approach.

(PDF)

Acknowledgments

This work was supported by the Slovenian Research Agency grant P2-0209.

Author Contributions

Methodology: Andrej Čopar, Marinka Zitnik.

Software: Andrej Čopar.

Supervision: Blaž Zupan, Marinka Zitnik.

Fast optimization of non-negative matrix tri-factorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0217994 June 11, 2019 12 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0217994.s001
https://doi.org/10.1371/journal.pone.0217994

Visualization: Andrej Čopar.

Writing – original draft: Andrej Čopar.

Writing – review & editing: Andrej Čopar, Blaž Zupan, Marinka Zitnik.

References
1. Huang S, Xu Z, Lv J. Adaptive local structure learning for document co-clustering. Knowledge-Based

Systems. 2018; 148:74–84.

2. Fu G, Wang J, Domeniconi C, Yu G. Matrix factorization-based data fusion for the prediction of

lncRNA–disease associations. Bioinformatics. 2017; 1:9.

3. He M, Zhang J, Yang P, Yao K. Robust Transfer Learning for Cross-domain Collaborative Filtering

Using Multiple Rating Patterns Approximation. In: WSDM. Los Angeles, California, USA; 2018. p. 225–

233.

4. Ding C, Li T, Peng W, Park H. Orthogonal nonnegative matrix t-factorizations for clustering. In: KDD.

New York, NY, USA; 2006. p. 126–135.

5. Cichocki A, Zdunek R, Phan AH, Amari Si. Nonnegative matrix and tensor factorizations: applications to

exploratory multi-way data analysis and blind source separation. John Wiley & Sons; 2009.

6. Wang F, Li T, Wang X, Zhu S, Ding C. Community discovery using nonnegative matrix factorization.

Data Mining and Knowledge Discovery. 2011; 22(3):493–521. https://doi.org/10.1007/s10618-010-

0181-y

7. Zitnik M, Zupan B. Collective pairwise classification for multi-way analysis of disease and drug data. In:

Proceedings of the Pacific Symposium on Biocomputing. World Scientific; 2016. p. 81–92.

8. Zitnik M, Zupan B. Data fusion by matrix factorization. IEEE Transactions on Pattern Analysis and

Machine Intelligence. 2015; 37(1):41–53. https://doi.org/10.1109/TPAMI.2014.2343973 PMID:

26353207

9. Zitnik M, Zupan B. Jumping across biomedical contexts using compressive data fusion. Bioinformatics.

2016; 32(12):i90–i100. https://doi.org/10.1093/bioinformatics/btw247 PMID: 27307649

10. Zitnik M, Janjić V, Larminie C, Zupan B, Pržulj N. Discovering disease-disease associations by fusing

systems-level molecular data. Scientific Reports. 2013; 3:3202. https://doi.org/10.1038/srep03202

PMID: 24232732

11. Xi J, Li A, Wang M. A novel unsupervised learning model for detecting driver genes from pan-cancer

data through matrix tri-factorization framework with pairwise similarities constraints. Neurocomputing.

2018;. https://doi.org/10.1016/j.neucom.2018.03.026

12. Wang H, Nie F, Huang H, Makedon F. Fast nonnegative matrix tri-factorization for large-scale data co-

clustering. In: IJCAI. vol. 22. Barcelona, Spain; 2011. p. 1553.

13. Lin CJ. On the convergence of multiplicative update algorithms for nonnegative matrix factorization.

IEEE Transactions on Neural Networks. 2007; 18(6):1589–1596. https://doi.org/10.1109/TNN.2007.

895831

14. Wang YX, Zhang YJ. Nonnegative matrix factorization: A comprehensive review. IEEE Transactions on

Knowledge and Data Engineering. 2013; 25(6):1336–1353. https://doi.org/10.1109/TKDE.2012.51

15. Vavasis SA. On the complexity of nonnegative matrix factorization. SIAM Journal on Optimization.

2009; 20(3):1364–1377. https://doi.org/10.1137/070709967

16. Čopar A, Zitnik M, Zupan B. Scalable non-negative matrix tri-factorization. BioData Mining. 2017;

10(1):41. https://doi.org/10.1186/s13040-017-0160-6 PMID: 29299064

17. Sun Z, Li T, Rishe N. Large-scale matrix factorization using MapReduce. In: ICDM. Sydney, Australia;

2010. p. 1242–1248.

18. Lee DD, Seung HS. Algorithms for non-negative matrix factorization. In: NIPS. Vancouver, Canada;

2001. p. 556–562.

19. Berry MW, Browne M, Langville AN, Pauca VP, Plemmons RJ. Algorithms and applications for approxi-

mate nonnegative matrix factorization. Computational Statistics & Data Analysis. 2007; 52(1):155–173.

https://doi.org/10.1016/j.csda.2006.11.006

20. Cichocki A, Zdunek R, Amari Si. Hierarchical ALS algorithms for nonnegative matrix and 3D tensor fac-

torization. In: Independent Component Analysis and Signal Separation. Springer; 2007. p. 169–176.

21. Lin Cb. Projected gradient methods for nonnegative matrix factorization. Neural Computation. 2007; 19

(10):2756–2779. https://doi.org/10.1162/neco.2007.19.10.2756

Fast optimization of non-negative matrix tri-factorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0217994 June 11, 2019 13 / 15

https://doi.org/10.1007/s10618-010-0181-y
https://doi.org/10.1007/s10618-010-0181-y
https://doi.org/10.1109/TPAMI.2014.2343973
http://www.ncbi.nlm.nih.gov/pubmed/26353207
https://doi.org/10.1093/bioinformatics/btw247
http://www.ncbi.nlm.nih.gov/pubmed/27307649
https://doi.org/10.1038/srep03202
http://www.ncbi.nlm.nih.gov/pubmed/24232732
https://doi.org/10.1016/j.neucom.2018.03.026
https://doi.org/10.1109/TNN.2007.895831
https://doi.org/10.1109/TNN.2007.895831
https://doi.org/10.1109/TKDE.2012.51
https://doi.org/10.1137/070709967
https://doi.org/10.1186/s13040-017-0160-6
http://www.ncbi.nlm.nih.gov/pubmed/29299064
https://doi.org/10.1016/j.csda.2006.11.006
https://doi.org/10.1162/neco.2007.19.10.2756
https://doi.org/10.1371/journal.pone.0217994

22. Zdunek R, Cichocki A. Fast nonnegative matrix factorization algorithms using projected gradient

approaches for large-scale problems. Computational Intelligence and Neuroscience. 2008; 2008:3.

https://doi.org/10.1155/2008/939567

23. Hsieh CJ, Chang KW, Lin CJ, Keerthi SS, Sundararajan S. A dual coordinate descent method for large-

scale linear SVM. In: ICML. New York, NY, USA; 2008. p. 408–415.

24. Kim J, He Y, Park H. Algorithms for nonnegative matrix and tensor factorizations: A unified view based

on block coordinate descent framework. Journal of Global Optimization. 2014; 58(2):285–319. https://

doi.org/10.1007/s10898-013-0035-4

25. Takács G, Tikk D. Alternating least squares for personalized ranking. In: RecSys. Dublin, Ireland;

2012. p. 83–90.

26. Birgin EG, Martı́nez JM, Raydan M. Nonmonotone spectral projected gradient methods on convex sets.

SIAM Journal on Optimization. 2000; 10(4):1196–1211. https://doi.org/10.1137/S1052623497330963

27. Nesterov Y. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM

Journal on Optimization. 2012; 22(2):341–362. https://doi.org/10.1137/100802001

28. Long B, Zhang ZM, Yu PS. Co-clustering by block value decomposition. In: KDD. ACM, New York, NY,

USA; 2005. p. 635–640.

29. Binary Alphadigits dataset. Available: https://cs.nyu.edu/~roweis/data.html. Accessed 10 Apr 2018.

30. Nene SA, Nayar SK, Murase H. Columbia object image library (COIL-20). Technical Report CUCS-005-

96. 1996;.

31. Park S, Kim SJ, Yu D, Pena-Llopis S, Gao J, Park JS, et al. An integrative somatic mutation analysis to

identify pathways linked with survival outcomes across 19 cancer types. Bioinformatics. 2015; 32

(11):1643–1651. https://doi.org/10.1093/bioinformatics/btv692 PMID: 26635139

32. Harper FM, Konstan JA. The MovieLens Datasets: History and Context. ACM Transactions on Interac-

tive Intelligent Systems. 2016; 5(4):19.

33. Rennie JDM, Rifkin R. Improving Multiclass Text Classification with the Support Vector Machine; 2001.

34. Roth A, Szklarczyk D, Simonovic M, Wyder S, vonÂ Mering C, Morris JH, et al. The STRING database

in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic

Acids Research. 2016; 45(D1):D362–D368. https://doi.org/10.1093/nar/gkw937 PMID: 27924014

35. Wilson KW, Raj B, Smaragdis P, Divakaran A. Speech denoising using nonnegative matrix factorization

with priors. In: ICASSP 2008. Las Vegas, Nevada, USA; 2008. p. 4029–4032.

36. Cichocki A, Lee H, Kim YD, Choi S. Non-negative matrix factorization with α-divergence. Pattern Rec-

ognition Letters. 2008; 29(9):1433–1440. https://doi.org/10.1016/j.patrec.2008.02.016

37. Sun DL, Fevotte C. Alternating direction method of multipliers for non-negative matrix factorization with

the beta-divergence. In: ICASSP. Florence, Italy; 2014. p. 6201–6205.

38. Yoo J, Choi S. Orthogonal nonnegative matrix tri-factorization for co-clustering: Multiplicative updates

on Stiefel manifolds. Information Processing & Management. 2010; 46(5):559–570. https://doi.org/10.

1016/j.ipm.2009.12.007

39. Kim SJ, Hwang T, Giannakis GB. Sparse robust matrix tri-factorization with application to cancer geno-

mics. In: CIP. Baiona, Spain; 2012. p. 1–6.

40. Kim H, Park H. Nonnegative matrix factorization based on alternating nonnegativity constrained least

squares and active set method. SIAM Journal on Matrix Analysis and Applications. 2008; 30(2):713–

730. https://doi.org/10.1137/07069239X

41. Merritt M, Zhang Y. Interior-point gradient method for large-scale totally nonnegative least squares

problems. Journal of Optimization Theory and Applications. 2005; 126(1):191–202. https://doi.org/10.

1007/s10957-005-2668-z

42. Iusem A. On the convergence properties of the projected gradient method for convex optimization.

Computational & Applied Mathematics. 2003; 22(1):37–52.

43. Birgin EG, Martı́nez JM, Raydan M. Spectral projected gradient methods: review and perspectives.

Journal Statistical Software. 2014; 60(3):539–559. https://doi.org/10.18637/jss.v060.i03

44. Cichocki A, Zdunek R. Multilayer nonnegative matrix factorization using projected gradient approaches.

International Journal of Neural Systems. 2007; 17(06):431–446. https://doi.org/10.1142/

S0129065707001275 PMID: 18186593

45. Joachims T. Making large-scale SVM learning practical. Technical Report, SFB 475: Komplexitätsre-

duktion in Multivariaten Datenstrukturen, Universität Dortmund; 1998.

46. Yu HF, Hsieh CJ, Si S, Dhillon I. Scalable coordinate descent approaches to parallel matrix factorization

for recommender systems. In: ICDM. Brussels, Belgium; 2012. p. 765–774.

Fast optimization of non-negative matrix tri-factorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0217994 June 11, 2019 14 / 15

https://doi.org/10.1155/2008/939567
https://doi.org/10.1007/s10898-013-0035-4
https://doi.org/10.1007/s10898-013-0035-4
https://doi.org/10.1137/S1052623497330963
https://doi.org/10.1137/100802001
https://cs.nyu.edu/~roweis/data.html
https://doi.org/10.1093/bioinformatics/btv692
http://www.ncbi.nlm.nih.gov/pubmed/26635139
https://doi.org/10.1093/nar/gkw937
http://www.ncbi.nlm.nih.gov/pubmed/27924014
https://doi.org/10.1016/j.patrec.2008.02.016
https://doi.org/10.1016/j.ipm.2009.12.007
https://doi.org/10.1016/j.ipm.2009.12.007
https://doi.org/10.1137/07069239X
https://doi.org/10.1007/s10957-005-2668-z
https://doi.org/10.1007/s10957-005-2668-z
https://doi.org/10.18637/jss.v060.i03
https://doi.org/10.1142/S0129065707001275
https://doi.org/10.1142/S0129065707001275
http://www.ncbi.nlm.nih.gov/pubmed/18186593
https://doi.org/10.1371/journal.pone.0217994

47. Serizel R, Essid S, Richard G. Mini-batch stochastic approaches for accelerated multiplicative updates

in nonnegative matrix factorisation with beta-divergence. In: 2016 IEEE 26th International Workshop on

Machine Learning for Signal Processing (MLSP). IEEE; 2016. p. 1–6.

48. Gillis N, Glineur F. Accelerated multiplicative updates and hierarchical ALS algorithms for nonnegative

matrix factorization. Neural computation. 2012; 24(4):1085–1105. https://doi.org/10.1162/NECO_a_

00256 PMID: 22168561

49. Hsieh CJ, Dhillon IS. Fast coordinate descent methods with variable selection for non-negative matrix

factorization. In: KDD. San Diego, California, USA; 2011. p. 1064–1072.

50. Liao Q, Guan N, Zhangg Q. Gauss-Seidel based non-negative matrix factorization for gene expression

clustering. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

Shanghai, China; 2016. p. 2364–2368.

51. You Y, Lian X, Liu J, Yu HF, Dhillon IS, Demmel J, et al. Asynchronous parallel greedy coordinate

descent. In: NIPS. Barcelona, Spain; 2016. p. 4682–4690.

52. Li L, Lebanon G, Park H. Fast Bregman divergence NMF using Taylor expansion and coordinate

descent. In: KDD. Beijing, China; 2012. p. 307–315.

53. Germain FG, Mysore GJ. Stopping criteria for non-negative matrix factorization based supervised and

semi-supervised source separation. IEEE Signal Processing Letters. 2014; 21(10):1284–1288. https://

doi.org/10.1109/LSP.2014.2331981

54. Langville AN, Meyer CD, Albright R, Cox J, Duling D. Initializations for the nonnegative matrix factoriza-

tion. In: KDD. Philadelphia, Pennsylvania, USA; 2006. p. 23–26.

55. Vitali F, Marini S, Pala D, Demartini A, Montoli S, Zambelli A, et al. Patient similarity by joint matrix trifac-

torization to identify subgroups in acute myeloid leukemia. JAMIA Open. 2018; 1(1):75–86. https://doi.

org/10.1093/jamiaopen/ooy008

56. Marini S, Vitali F, Rampazzi S, Demartini A, Akutsu T. Protease target prediction via matrix factorization.

Bioinformatics. 2018; 35(6):923–929. https://doi.org/10.1093/bioinformatics/bty746

57. Malod-Dognin N, Petschnigg J, Windels SF, Povh J, Hemmingway H, Ketteler R, et al. Towards a data-

integrated cell. Nature communications. 2019; 10(1):805. https://doi.org/10.1038/s41467-019-08797-8

PMID: 30778056

Fast optimization of non-negative matrix tri-factorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0217994 June 11, 2019 15 / 15

https://doi.org/10.1162/NECO_a_00256
https://doi.org/10.1162/NECO_a_00256
http://www.ncbi.nlm.nih.gov/pubmed/22168561
https://doi.org/10.1109/LSP.2014.2331981
https://doi.org/10.1109/LSP.2014.2331981
https://doi.org/10.1093/jamiaopen/ooy008
https://doi.org/10.1093/jamiaopen/ooy008
https://doi.org/10.1093/bioinformatics/bty746
https://doi.org/10.1038/s41467-019-08797-8
http://www.ncbi.nlm.nih.gov/pubmed/30778056
https://doi.org/10.1371/journal.pone.0217994

