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ABSTRACT
Introduction A short cervix (cervical length <25 mm) 
in the midtrimester (18–24 weeks) of pregnancy is a 
powerful predictor of spontaneous preterm delivery. 
Although the biological mechanisms of cervical change 
during pregnancy have been the subject of extensive 
investigation, little is known about whether genes 
influence the length of the cervix, or the extent to 
which genetic factors contribute to premature cervical 
shortening. Defining the genetic architecture of cervical 
length is foundational to understanding the aetiology of 
a short cervix and its contribution to an increased risk of 
spontaneous preterm delivery.
Methods/analysis The proposed study is designed to 
characterise the genetic architecture of cervical length 
and its genetic relationship to gestational age at delivery 
in a large cohort of Black/African American women, who 
are at an increased risk of developing a short cervix and 
delivering preterm. Repeated measurements of cervical 
length will be modelled as a longitudinal growth curve, 
with parameters estimating the initial length of the cervix 
at the beginning of pregnancy, and its rate of change over 
time. Genome- wide complex trait analysis methods will be 
used to estimate the heritability of cervical length growth 
parameters and their bivariate genetic correlation with 
gestational age at delivery. Polygenic risk profiling will 
assess maternal genetic risk for developing a short cervix 
and subsequently delivering preterm and evaluate the role 
of cervical length in mediating the relationship between 
maternal genetic variation and gestational age at delivery.
Ethics/dissemination The proposed analyses will be 
conducted using deidentified data from participants in an 
IRB- approved study of longitudinal cervical length who 
provided blood samples and written informed consent for 
their use in future genetic research. These analyses are 
preregistered with the Center for Open Science using the 
AsPredicted format and the results and genomic summary 
statistics will be published in a peer- reviewed journal.

BACKGROUND AND INTRODUCTION
A short cervix (cervical length <25 mm) in 
the midtrimester (18–24 weeks) of pregnancy 
is a powerful predictor of maternal risk for 

delivering preterm (<37 weeks),1–29 and the 
only biomarker for spontaneous preterm 
birth that can be coupled with an effec-
tive clinical intervention.30–47 Preterm birth 
and prematurity- related conditions are the 
leading causes of perinatal morbidity and 
mortality worldwide48–51 and in the USA,52 53 
where there is a pronounced and persistent 
racial disparity in the incidence of preterm 
birth and its associated health outcomes.54–59 
Although the rate of medically indicated 
preterm births is on the rise,48 51 58 60 most 
preterm births are idiopathic, and occur 
spontaneously.51 60 Thus, prevention of spon-
taneous preterm birth remains a major public 
health priority.56 58 61 62 A better understanding 

Strengths and limitations of this study

 ► This study will be the first to characterise the genet-
ic architecture of cervical length and its longitudinal 
change during pregnancy.

 ► This study will be the first to estimate the bivariate 
genetic correlation between cervical length and ges-
tational age at delivery.

 ► While the study cohort is not large enough to identify 
individual genetic variants associated with cervi-
cal length, it is well powered to analyse aggregate 
genome- wide summary statistics in order to es-
timate trait heritability and bivariate genetic cor-
relations, and to develop a polygenic risk score to 
identify women with the highest risk of developing a 
short cervix and delivering preterm.

 ► The study cohort predominately comprises wom-
en who self- identify as Black/African American; 
although the findings of this study may not be 
generalisable to women from other populations or 
ancestry groups, they could improve screening and 
clinical care for a population of women who are 
disproportionally affected by health disparities in 
preterm birth and perinatal outcomes.
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of the primary pathogenic mechanisms contributing to 
spontaneous preterm birth is needed to develop effective 
strategies for reducing the morbidity and mortality associ-
ated with prematurity.

Despite extensive evidence of a genetic contribution to 
gestational age at birth,63–83 there has been little success 
identifying specific genetic variants that influence the 
timing of labour and delivery.84 The difficulty in gene 
discovery may be due, in part, to the syndromic nature 
of spontaneous preterm birth.85 86 Multiple mechanistic 
pathways in both the mother and the fetus—each influ-
enced by unique genes and environmental risk factors—
are thought to contribute to the premature onset of 
labour.49 58 60 87 For this reason, statistical genetic methods 
may be more successful at identifying genes associated 
with individual risk factors, rather than the final common 
outcome of spontaneous preterm birth. A genetic study 
of cervical length could prove highly informative, given 
that the length of the cervix is an easily measured, quan-
titative trait that is highly correlated with risk for sponta-
neous preterm delivery.88

Biomechanical properties of the cervix
The uterine cervix has two opposing functions during 
pregnancy: first, it must remain firmly closed to prevent 
intrauterine infection, spontaneous abortion, or preterm 
delivery; and second, at the onset of labour, it must 
open to allow successful parturition.89 90 These changes 
are reflected in the histology,91–94 biochemistry94–97 and 
biomechanical properties98–100 of the cervix. While the 
uterine corpus is predominantly composed of smooth 
muscle (ie, myometrium), the uterine cervix is funda-
mentally a connective tissue.89 90 Smooth muscle cells 
constitute approximately 10% of the cervix stroma, with 
the remainder comprising collagen and elastin fibres, 
interspersed with cervical fibroblasts.89 90 The structural 
integrity of the cervical stroma is essential for carrying a 
pregnancy to term, and relies on the strength and organ-
isation of the fibrous network structure, rather than the 
contractile strength of smooth muscle.98–100 Remodel-
ling of this collagen- rich, connective tissue is a complex 
process which begins early in pregnancy, and culminates 
with softening, effacement and dilation of the cervix at 
parturition.91–97

The length of the cervix is defined as the distance 
between the external os and the functional internal os,88 
and can be easily measured by transvaginal ultrasonog-
raphy over the course of a pregnancy.101–103 Estimates 
for the mean length of the cervix in the midtrimester 
vary between 35 and 45 mm, depending on the popu-
lation,1 2 9–11 88 104–109 with cervical lengths shorter than 
25 mm before 24 weeks meeting the clinical definition 
of a short cervix.2 88 Typically, the cervix progressively 
shortens with increasing gestational age,2 decreasing 
between 0.1–0.3 mm per week after 15 weeks of gesta-
tion.8 110–112

Relationship between cervical length and spontaneous 
preterm birth
A short cervix in the midtrimester is associated with a 
sixfold increase in the risk of preterm delivery.2 The 
shorter the cervix, and the earlier in pregnancy the short-
ening occurs, the higher the risk for spontaneous preterm 
delivery.1–29 In women with a cervical length <25 mm, 
every additional 1 mm of cervical shortening is associated 
with a 3% increase in the odds of spontaneous preterm 
delivery.113 114 The rate of change in cervical length is also 
significantly associated with an increased risk of preterm 
delivery,2 115–118 independent of the initial measurement.

Mean cervical length in the midtrimester is significantly 
shorter—and the incidence of a short cervix is more 
than twice as high—among Black women living in North 
America and Europe, compared with women from other 
racial and ethnic backgrounds.104 106–109 119 Cervical short-
ening begins at an earlier gestational age, and occurs more 
rapidly, among Black/African American mothers,120 121 
and midtrimester cervical length is more predictive of 
risk for spontaneous preterm delivery for Black/African 
American women, compared with white/Caucasian 
American women.108 122 While structural and social risk 
factors are strongly associated with an increased risk of 
premature cervical shortening and spontaneous preterm 
delivery among Black/African American women,119–122 
the observed variation in mean midtrimester cervical 
length among women from different continental ancestry 
groups raises the question of whether population- level 
differences in the frequency of risk alleles may also be 
contributing to the risk of premature cervical short-
ening and subsequent risk for spontaneous preterm 
delivery.71 123

A biometrical genetic approach to the study of cervical length
Sonographic measurements of cervical length in the 
midtrimester and gestational age at delivery are two 
quantitative phenotypic traits that can be approximated 
by a normal distribution.2 9–11 114 These sampling distri-
butions are characterised by mean and variance statistics, 
which provide an estimate for interindividual differences 
within each trait in the population. The relative contri-
butions of genetic and environmental factors influencing 
population- level variation in these traits can be estimated 
using biometric modelling techniques in a genetically 
informative cohort. The concept of heritability describes 
the proportion of the total phenotypic variation in a trait 
that can be attributed to genetic variation among individ-
uals in the population.124–126

The broad- sense heritability of spontaneous preterm 
birth is estimated between 25% and 40%,65 66 68 70 76 78 80–82 
and can be separated into fetal and maternal compo-
nents explaining 11%–35% and 13%–20% of the pheno-
typic variance, respectively.78 80 81 Heritability estimates 
vary significantly by population, although variation in 
gestational age at birth among ancestry groups can be 
primarily attributed to sociodemographic and environ-
mental factors.127 Although the maternal and fetal genetic 
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contributions to spontaneous preterm delivery are well 
described in the literature, there is no estimate for the 
heritability of cervical length, and very little is known 
about how genes influence the length and rate of change 
of the cervix during pregnancy.69 72 84 128–130

Classical twin and family studies are the most common 
methods for estimating trait heritability through compar-
ison of genotypic and phenotypic similarities between 
pairs of family members, stratified by their genetic related-
ness.124–126 131 For instance, observing an increased pheno-
typic correlation among monozygotic twin pairs (who are 
genetically identical) compared with dizygotic twin pairs 
(who share, on average, 50% of their genetic material) would 
indicate the contribution of genetic factors to trait vari-
ance. A recent meta- analysis of 17 804 traits from 2748 twin 
studies published in the last 50 years estimates an average 
heritability of 49% across all categories of complex human 
traits.131 The average heritability of traits specifically related 
to female reproduction is estimated at 45%, with 144 of the 
164 studied traits consistent with a simple and parsimonious 
model in which all trait resemblance between twins can be 
attributed to additive genetic influences.131

No large twin or family cohorts to date have collected data 
on cervical length, and the lack of a heritability estimate 
discourages large scale genetic studies aiming to identify 
the contribution of individual genes to cervical length and 
its rate of change during pregnancy.124–126 A solution exists 
in modern statistical methods for estimating heritability 
using genome- wide association data from large, population- 
based cohorts of unrelated individuals.132–134 Genome- wide 
complex trait analysis (GCTA) can be used to estimate the 
proportion of phenotypic variation in a population that 
is attributable to common genetic variants, in the form of 
single nucleotide polymorphisms (SNPs) at millions of 
positions across the genome.132–134 SNP- based heritability 
estimation is based on the same fundamental concept as 
twin and family methods; that is, the correlation between 
shared genotypes and shared phenotypes. If the degree of 
genetic similarity between pairs of individuals is positively 
correlated with the degree of phenotypic similarity between 
individuals, this suggests that genetic variation contributes to 
phenotypic variation in the trait.132–134 While twin and family- 
based methods use theoretically derived estimates of genetic 
relatedness based on known pedigrees, SNP- based methods 
estimate the degree of genetic similarity between individuals 
empirically from the observed genotypic SNP data.132–134 
The estimated coefficient of genetic similarity between two 
individuals—that is, the mean number of shared alleles for 
all genotyped SNPs, weighted by the frequency of each allele 
in the population—is represented in a genetic relationship 
matrix (GRM), which contains a single value for each pair 
of individuals in the cohort. Instead of testing for an associa-
tion between the phenotype and the genotype at each SNP 
independently, the GRM is used to estimate the phenotypic 
variance explained by genetic variation across all genotyped 
SNPs simultaneously.132–134 Although SNP- based heritability 
estimates are often lower than those reported by classical 
twin studies due to methodological limitations, they can 

be used to approximate the lower bound of genetic contri-
butions to phenotypic variance and help contextualise the 
results of genome- wide association studies.124–126

A simple extension of these methods can be used to esti-
mate the coheritability, or genetic covariance, between two 
traits.135 Just as phenotypic variance can be partitioned into 
genetic and environmental components to estimate herita-
bility, phenotypic covariance between two traits can also be 
decomposed into its constituent genetic and environmental 
components.136 137 A strong genetic correlation between 
cervical length and gestational age at delivery would suggest 
that some of the same genes influence the expression of 
both traits, and that assessing the genetic risk for one trait 
would allow estimation of the genetic risk for the second trait 
via cross- trait polygenic analyses.138–140

Although a genetic correlation between cervical length 
and gestational age at delivery would suggest an underlying 
genetic aetiology shared between the two traits, it would not 
reveal any information about the causal mechanisms that 
lead to the observed correlation. Indeed, cross- sectional 
association- based analysis methods have limited power to 
unravel the mechanistic pathways that underly complex 
diseases. However, because genetic variants are fixed at 
conception, and therefore not subject to the question of 
reverse causation, they can be used to test the direction of 
causality in an observed association between an intermediate 
phenotype or modifiable risk factor, such as cervical length, 
and a clinically relevant outcome, such as spontaneous 
preterm delivery. A mediation model can be constructed 
within the structural equation modelling (SEM) framework 
to model the relationship between predictor and outcome 
variables, both directly and an indirectly, mediated by a 
third, intermediary variable.141–144 SEM can be used to test 
whether the same genetic factors influence both traits inde-
pendently (ie, horizontal pleiotropy), or if unique genetic 
factors influence cervical length, which then mediates the 
risk for spontaneous preterm delivery through a short or 
rapidly shortening cervix during pregnancy. Understanding 
if, and how, maternal genetic risk for spontaneous preterm 
delivery is mediated by cervical change during pregnancy 
may improve the predictive value of midtrimester cervical 
length for use in universal screening programmes, and 
inform clinical interventions for women at high risk for 
spontaneous preterm delivery associated with a short cervix.

METHODS AND PROPOSED ANALYSIS
Objective
The primary aim of this study is to characterise the 
genetic architecture of cervical length and its bivariate 
genetic correlation with gestational age at delivery. The 
hypotheses are as follows: (1) maternal genetic variation 
contributes directly to variance in cervical length and 
its rate of change during pregnancy; (2) there is a bivar-
iate genetic correlation between cervical length/change 
and gestational age at delivery; and (3) cervical length/
change causally mediates a portion of the maternal 
genetic contribution to gestational age at delivery.



4 Wolf HM, et al. BMJ Open 2022;12:e053631. doi:10.1136/bmjopen-2021-053631

Open access 

Study start and end dates
The proposed study will use phenotypic data and biolog-
ical specimens collected from women enrolled under the 
protocol entitled Biological Markers of Disease in the Predic-
tion of Preterm Delivery, Preeclampsia and Intra- Uterine Growth 
Restriction: A Longitudinal Study (NCT00340899) between 
November 2005 and Novermber 2016. Research activi-
ties specific to this project began in August 2017 (research 
design and planning). DNA samples isolated from banked 
biological specimens provided by the 5000 selected partici-
pants were sent to a commercial laboratory for genotyping 
via low- pass whole genome sequencing in May 2021. Geno-
typing is projected to be completed by February 2022. Statis-
tical analysis following the proposed protocol will begin once 
genotyping is complete.

Study participants
This study involves women enrolled in a longitudinal study 
of cervical length at the Center for Advanced Obstetrical 
Care and Research (CAOCR) at Hutzel Women’s Hospital 
in Detroit, Michigan. The center in affiliated with Wayne 
State University and the Detroit Medical Center, and is 
an integral part of the Perinatal Research Branch of The 
Eunice Kennedy Shriver National Institute of Child Health 
and Human Development (National Institutes of Health, 
U.S. Department of Health and Human Services). This 
research was approved by the Institutional Review Boards 
of Wayne State University (WSU IRB#110605MP2F) 
and NICHD/NIH/DHHS (OH97- CH- N067). All study 
participants were enrolled between 2005 and 2017 and 
provided written informed consent before the collection 
of demographic or clinical information, images, or biolog-
ical samples. From a set of 8226 pregnancies with serial 
cervical length measurements available, 5971 pregnan-
cies were selected on the basis of the following criteria: 
a singleton pregnancy, at least 2 cervical length measure-
ments performed between 8 and 40 weeks of gestation, 
availability of a blood sample and consent to its use in 
future genetic research, and availability of relevant demo-
graphic and clinical characteristics (weight, height, age, 
parity, etc). Women with a medically induced preterm 
delivery or a termination during study participation were 
excluded from the current analysis. Additional exclusion 
criteria include a history of cervical trauma or any serious 
medical conditions (such as severe chronic hypertension 
or renal insufficiency, congestive heart disease, chronic 
respiratory insufficiency, etc). Biological samples from 
5000 participants meeting these criteria were selected for 
genotyping. The study cohort of 5000 women comprises 
women who self- identify as Black/African (4640 women, 
93%), Caucasian/white (139 women, 3%), or Biracial/
other racial identity (220 women, 4%).

Patient and public involvement
Patient/public input was not consulted regarding the 
design, conduct, reporting or dissemination plans of our 
research.

Data collection and outcome measures
Demographic characteristics, relevant medical history 
and pregnancy outcome data were obtained for each 
participant via medical record abstraction. Maternal 
peripheral blood samples were collected from each 
participant during their enrolment period in the orig-
inal study. DNA extracted from buffy coat isolations has 
been sent to a commercial laboratory for low- pass whole 
genome sequencing (sequencing depth 1×).

Cervical length is measured in millimetres (mm) using 
a transvaginal 12–3 MHz ultrasound endocavitary probe 
(SuperSonic Imagine).102 Serial cervical length measure-
ments were obtained between 8 and 40 weeks of gesta-
tion when patients were seen for prenatal care visits in 
the CAOCR clinic. Cervical stiffness was also assessed in 
some women via cervical elastography, by measuring the 
percentage of displacement or deformation of cervical 
tissue during manual application of oscillatory pres-
sure. The primary outcome measure, gestational age at 
delivery, is measured from the first day of a woman’s last 
menstrual period and confirmed by ultrasound.

Statistical methods and approach
Relationships among repeated measures of cervical 
length during pregnancy will be modelled as a longitu-
dinal growth curve, with parameters describing the initial 
length of the cervix and its rate of change over time. The 
intercept parameter (intercept term (INT)) will represent 
the best estimate for the baseline measurement of cervical 
length in early pregnancy, while the slope parameter 
(SLP) will represent the linear rate of change in cervical 
length during pregnancy. Higher order parametric terms 
can also be incorporated to model non- linear growth. 
Individual growth trajectories and parameters will be 
estimated for each participant in the cohort, and associa-
tions between INT, SLP and the outcome variable will be 
tested to determine if the starting value or rate of change 
of cervical length varies significantly with respect to gesta-
tional age at delivery.

Quality control for genomic data will conform to the 
current best practices for the platform used for geno-
typing. Each individual will be empirically assigned to an 
ancestry group using genome- wide molecular variation and 
an external reference panel of known ancestry. If a small 
number of outliers are identified, they can be excluded from 
analysis. Otherwise, analyses can be performed within empir-
ically assigned ancestry groups and then meta- analysed. This 
approach has the advantage of minimising genomic inflation 
and sample loss due to exclusion of low frequency, unknown 
or admixed ancestry groups. The open- source, whole- 
genome association analysis toolset PLINK will be used to 
test for association between genetic variants (eg, SNPs) and 
individual estimates of cervical length growth parameters as 
quantitative traits,145 for the purpose of constructing a poly-
genic risk score (PRS) for a short cervix. The PRS method 
will be used to aggregate the effects of many moderately 
associated SNPs across the genome for multiple signifi-
cance thresholds (eg, p<0.00001, p<0.0001, p<0.001, etc) 



5Wolf HM, et al. BMJ Open 2022;12:e053631. doi:10.1136/bmjopen-2021-053631

Open access

and the phenotypic variance accounted for by SNPs within 
each threshold will be calculated.146 The PRS approach will 
allow further characterisation of the genetic architecture of 
cervical length by estimating the total number of genetic 
loci influencing phenotypic variance and the effect sizes and 
frequency of risk alleles in the population. Furthermore, 
a PRS can be used to infer genetic overlap between two 
traits, such as cervical length and gestational age at delivery, 
and to predict associated phenotypes based on a genetic 
profile.139 140 147 148

The genomic- relatedness- based restricted maximum- 
likelihood (GREML) method from the GCTA framework 
will be used to estimate the SNP- based heritabilities of 
cervical length growth parameters and gestational age 
at delivery within the sample, and calculate the genetic 
correlation between these phenotypes.132–134 136 The SEM 
framework will be used to test for mediation of the rela-
tionship between maternal genetic variation and gesta-
tional age at delivery. A mediation model will assess the 
effects of common genetic variants (SNPs and/or PRS) 
on gestational age at birth, both directly and indirectly, 
mediated through cervical length growth parameters 
(INT and SLP). The standard criteria of a p value less 
than 0.05 will be used to draw inferences. A false discovery 
rate correction will be applied based on iterations of the 
model used.

Power calculation
The estimation of statistical power was performed for the 
questions outlined in the study objectives for a sample 
size of 5000 participants. While individual SNP associ-
ation tests will be performed, this study lacks the statis-
tical power to identify the contribution of a single SNP 
while controlling for multiple tests at the genome- wide 
level (ie, family- wise error rate of 5×10−8). The summary 
statistics from individual SNP association tests will be 
used to estimate the aggregate GCTA and PRS statistical 
summaries as previously described. Statistical power for 
GCTA methods followed the approach as described by 
the GREML power calculator.149 We estimate 80% power 
to detect a cervical length heritability of 0.16 or greater 
using the GCTA method (as previously mentioned, the 
average heritability female reproductive traits is around 
0.45, based on 164 estimates from twin studies131). For 
the bivariate GCTA approach, we estimate 80% power to 
detect a genetic correlation between cervical length and 
gestational age at delivery of 0.36 or greater, and 80% 
power to estimate a mediating role of cervical length on 
the relationship between the PRS and gestational age at 
delivery for a wide range of scenarios in which the propor-
tion of this direct effect that is mediated ranges from 10% 
to 100%.

DISCUSSION
This study is designed to decipher the genetic architec-
ture of cervical length and its genetic relationship to 
spontaneous preterm birth in a large cohort of Black/

African American women with longitudinal cervical 
length measurements across pregnancy. Characterising 
the number, effect size and population frequency of 
genetic variants influencing cervical changes during preg-
nancy is essential to inform a mechanistic understanding 
of cervical shortening and its contribution to maternal 
liability for preterm birth.

This project has the potential to identify genetic factors 
contributing to the increased incidence of spontaneous 
preterm birth and the higher relative risk for preterm 
delivery associated with a short cervix in Black/African 
American women. The development of a PRS for assessing 
maternal genetic liability to cervical shortening and subse-
quent risk for spontaneous preterm birth could aid in 
clinical risk assessment for women of African ancestry, and 
help identify high risk women who could benefit from early 
intervention to prevent preterm delivery.150 A PRS would be 
particularly useful for primigravida, who have no medical 
history of pregnancy to inform their risk for spontaneous 
preterm delivery, and who may not receive cervical length 
screening as standard of care in the absence of other known 
risk factors. Rapid assessment of a patient’s genetic risk for 
developing a short cervix and delivering preterm could help 
identify additional patients who would benefit from effec-
tive clinical interventions, such as vaginal administration of 
progesterone for the prevention of spontaneous preterm 
birth.

Cervical length screening by transvaginal ultrasound 
is the best available technique for predicting and 
preventing preterm birth when paired with the admin-
istration of vaginal progesterone in patients with a short 
cervix. A simple extension of the methods described in 
this study design could be used to test for genetic moder-
ation of the relationship between vaginal progesterone 
treatment and cervical length change during pregnancy. 
A pharmacogenomic study of the women in the cohort 
who were treated with vaginal progesterone due to a preg-
nancy complicated by a short cervix could be conducted 
to identify genetic alleles that modify the responsive-
ness of progesterone treatment in women with a short 
cervix and determine whether response to progesterone 
is informed by the developed PRS or individual genetic 
variants (SNPs).

Limitations
Although the study cohort is not large enough to identify 
individual genetic variants associated with cervical length 
change or gestational duration while controlling for 
multiple tests at the genome- wide level, it is well powered 
to analyse aggregate genome- wide summary statistics in 
order to estimate trait heritability and bivariate genetic 
correlations, and to develop a PRS to identify women with 
the highest risk of developing a short cervix and deliv-
ering preterm.

The study cohort predominately comprises women who 
self- identify as Black/African American; although the find-
ings of this study may not be generalisable to women from 
other populations or ancestry groups, they could improve 
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screening and clinical care for a population of women 
who are disproportionally affected by health disparities in 
preterm birth and perinatal outcomes. While heritability 
estimates and alleles/allele frequencies vary from popu-
lation to population, we do not expect the underlying 
mechanistic relationships between genes, cervical change 
and gestational duration to differ substantially between 
our study population and other global populations. 
Thus, we hope that a better understanding of how genes 
contribute to cervical change during pregnancy and risk 
for preterm delivery can inform perinatal care for women 
from all populations across the globe.

The proposed study does not address the influence of 
fetal genes, which are predicted to play a role in the timing 
of birth. Furthermore, there may be overlapping fetal and 
maternal genes associated with cervical length and spon-
taneous preterm birth, given that matrix metabolism is 
implicated in both cervical ripening and changes in the 
fetal membranes preceding parturition.84 Fetal genetic 
variants may also promote preterm premature rupture 
of membranes,84 151–153 which often occurs in the setting 
of a prematurely shortened cervix.154–156 The proposed 
cohort has a rich biobank, including fetal blood samples, 
that will allow follow- up studies of the fetal genetic contri-
butions to cervical length changes during pregnancy.

Although this study will examine maternal genetic 
contributions to the correlation between cervical length 
and gestational age at delivery, we do not discuss all of the 
environmental and sociodemographic factors that may 
also contribute.157 Additionally, population differences 
in vaginal microbiome states, which are associated with 
cervical inflammation,158–161 may also contribute to the 
association between cervical length and gestational age 
at birth.162 163 Cervicovaginal samples collected from the 
cohort will allow evaluation of the vaginal microbiome 
and its relationship to cervical length and the presence of 
proinflammatory cytokines.
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